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Abstract. We consider a singularly perturbed convection-diffusion problem in a rectangular do-
main. It is solved numerically using a first-order upwind finite-difference scheme on a tensor-product
piecewise-uniform Shishkin mesh with O(N) mesh points in each coordinate direction. It is known
[G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Rus-
sian Academy of Sciences, Ural Branch, Ekaterinburg, Russia, 1992 (in Russian)] that the error is
almost-first-order accurate in the maximum norm. We decompose the error into a sum of continu-
ous almost-first-order terms and the almost-second-order residual under the assumption ε ≤ CN−1,
where ε is the singular perturbation parameter and C is a constant. This error expansion is applied
to obtain maximum-norm error estimates for the Richardson extrapolation technique and derive
bounds on the errors in approximating the derivatives of the true solution by divided differences
of the computed solution. The analysis uses a decomposition of the true solution requiring fewer
compatibility conditions than in earlier publications. Numerical results are presented that support
our theoretical results.
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1. Introduction. The main result of this paper is a certain error expansion for
the singularly perturbed two-dimensional convection-diffusion problem

Lu := −ε�u+ b1ux + b2uy + cu = f in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω.

(1.1)

Here ε is a small parameter that satisfies 0 < ε � 1, while b1(x, y), b2(x, y), c(x, y)
are smooth functions with

b1(x, y) > β1 > 0, b2(x, y) > β2 > 0, c(x, y) ≥ 0 for all (x, y) ∈ Ω̄,(1.2a)

where β1, β2 are positive constants. To simplify the presentation we assume that

β1 = β2 = β > 0.(1.2b)

Note that all the results of this paper also hold true for the general case (1.2a); see
Remarks 1.1 and 4.5.

The solution of problem (1.1) has exponential layers at the outflow boundaries
x = 1 and y = 1 (see [8, 10]). We are interested in ε-uniform numerical methods that
resolve the boundary layers. One approach is using layer-adapted highly nonuniform
meshes.

Problem (1.1) is discretized using the standard first-order upwind scheme

LNuN :=
(−ε(δ2x + δ2y) + b1,ijD

−
x + b2,ijD

−
y + cij

)
uNij = fij in ΩN ,

uNij = 0 on ∂ΩN .
(1.3)
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Here δ2x, δ
2
y, D

−
x , D

−
y are the standard finite-difference differentiation operators; see

notation (2.1). Note from [11, 8, 10] that this scheme satisfies the maximum principle.
We discretize on the mesh Ω̄N = ω̄σ,N × ω̄σ,N = {(xi, yj) ∈ Ω̄ : i, j = 0, . . . , N}

that is the tensor-product of two equal piecewise-uniform meshes. Each of these one-
dimensional meshes ω̄σ,N is constructed by dividing each of the subintervals [0, 1− σ]
and [1− σ, 1] into N/2 equal subintervals of width H and h, respectively:

xi = yi =

{
iH for i = 0, . . . , N/2, where H = 2(1− σ)/N,
(1− 2σ) + ih for i = N/2, . . . , N, where h = 2σ/N.

(1.4)

Shishkin [13] was the first to suggest such piecewise-uniform meshes for problems
like (1.1) with the mesh transition parameter σ := min{(2/β) ε lnN, 1/2}. For sim-
plicity we assume that

ε ≤ CN−1,(1.5)

which is not a restriction in practical situations. This assumption implies that

σ =
2

β
ε lnN.(1.6)

Note also that N−1 < H < 2N−1 and

h

ε
=

4

β
N−1 lnN, e−β(1−xN/2)/ε = e−β(1−yN/2)/ε = e−βσ/ε = N−2.(1.7)

Further, let ∂ΩN be the set of mesh points on the boundary, i.e., ∂ΩN = Ω̄N ∩ ∂Ω,
while ΩN = Ω̄N\∂ΩN is the set of the internal mesh points.

Thus the domain Ω̄ is dissected by the transition lines x = 1 − σ and y = 1 − σ
into four parts

Ω2 := [0, 1− σ]× (1− σ, 1], Ω12 := (1− σ, 1]× (1− σ, 1],
Ω̄0 := [0, 1− σ]× [0, 1− σ], Ω1 := (1− σ, 1]× [0, 1− σ].

The restriction of the mesh Ω̄N to each of them is a rectangular uniform mesh.
Remark 1.1. The analogue of Ω̄N for β1 �= β2 is the tensor-product rectangular

mesh ω̄σ1,N × ω̄σ2,N , where σk, Hk, hk, ω̄σk,N , for k = 1, 2, are defined similarly to σ,
H, h, ω̄σ,N with βk used instead of β; see, e.g., [8, p. 101].

The paper is organized as follows. Most of the notation is collected in section 2. In
section 3 we analyze a decomposition of the true solution into an asymptotic expansion
of order one and its residual. This decomposition and our estimates of its components
require fewer compatibility conditions than in earlier publications [13, 7].

In section 4 we present a certain error expansion for the upwind scheme (1.3)
on the Shishkin mesh (1.4). Shishkin [13] gave an ε-uniform almost-first-order esti-
mate of the error in the discrete maximum norm, which was slightly improved in [5,
Remark 3.3] to

‖uNij − u(xi, yj)‖ ≤ CN−1 lnN.

We decompose the error into a sum of continuous almost-first-order terms and the
almost-second-order residual (Theorem 4.1). This error expansion is applied in sub-
section 4.1 to obtain maximum-norm error estimates for the Richardson extrapolation
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technique, and in subsection 4.2 to derive bounds on the errors in approximating the
derivatives. Section 5 is devoted to the proof of Theorem 4.1.

Similar error expansions were constructed in [9, 4] for one-dimensional convection-
diffusion problems. These error expansions were used there to analyze the Richardson
extrapolation technique. We mainly follow the analysis in [9], extending it to the two-
dimensional problem. In subsection 4.2 we obtain a two-dimensional analogue of the
one-dimensional estimates [1, 3, 4]. We follow the approach of [4], where, to analyze
a defect correction method, the error expansion was also used to obtain bounds on
the differences of the error in two adjoining nodes.

Richardson extrapolation applied to singularly perturbed problems was also stud-
ied in earlier publications of Shishkin [12, 14], where ε-uniform maximum-norm er-
ror estimates were obtained for a one-dimensional parabolic problem and a two-
dimensional elliptic problem in an infinite strip.

Numerical results supporting our theory are presented in section 6.

2. Notation. Throughout the paper we use the following notation. Let k be a
nonnegative integer and α ∈ (0, 1]. The standard notation Ck(Ω̄) is used for the space
of functions whose derivatives up to order k are continuous on Ω̄, with the norm

‖v‖k =
∑

0≤l≤k

∑
i+j=l

max
(x,y)∈Ω̄

∣∣∣∣ ∂
i+j

∂xi∂yj
v(x, y)

∣∣∣∣ .

As usual, we simply write C(Ω̄) and ‖v‖ when k = 0. The notation Ck,α(Ω̄) is used
for the space of Hölder continuous functions with the norm

∥∥v∥∥
0,α

= sup
x,x′∈Ω̄, x �=x′

|v(x)− v(x′)|
‖x− x′‖αe

,
∥∥v∥∥

k,α
=

∥∥v∥∥
k
+

∑
i+j=k

∥∥∥∥ ∂i+j

∂xi∂yj
v

∥∥∥∥
0,α

,

where ‖ · ‖e is the Euclidean norm in R2. Further, we shall use the notation C1,1(Ω̄)
when α = 1, and C1,α(Ω̄) only when α ∈ (0, 1).

Let v be a discrete function defined on Ω̃N ⊂ Ω̄N . By ‖v‖Ω̃N = maxΩ̃N |vij | we
denote the discrete maximum norm of v on Ω̃N . Sometimes we shall simply write ‖v‖
when Ω̃N = Ω̄N .

The finite-difference operators are defined in a standard manner by

hi := xi − xi−1, D−
x vij :=

vij − vi−1,j

hi
, δ2xvij :=

D−
x vi+1,j −D−

x vij
(hi + hi+1)/2

,

hj := yj − yj−1, D−
y vij :=

vij − vi,j−1

hj
, δ2yvij :=

D−
y vi,j+1 −D−

y vij

(hj + hj+1)/2
.

(2.1)

Here vij is any discrete function. Note that when it is clear that v(x, y) is a continuous
function, we shall sometimes use the notation vij := v(xi, yj), while when it is clear
that vij is a discrete function, we shall sometimes use the notation v(xi, yj) := vij .

For an arbitrary Ω̃ ⊂ Ω̄ and arbitrary constants a, b on Ω̄N define the function

Eij(a, Ω̃; b) =
{
a for (xi, yj) ∈ Ω̃,

b for (xi, yj) ∈ Ω̄N\Ω̃.
We shall also use other similar notation, e.g., Eij(a, i ≤ N/2; b).

Throughout the paper, C, sometimes subscripted, denotes a generic positive con-
stant that is independent of ε and any mesh used.
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3. Decomposition of the solution. In this section we decompose the solu-
tion into an asymptotic expansion of order one and its residual. We estimate the
components of this decomposition and their derivatives.

Theorem 3.1. Let α ∈ (0, 1), and β be from (1.2). Suppose that f ∈ C3,1(Ω̄)
and satisfies the compatibility conditions

f(0, 0) = f(0, 1) = f(1, 1) = f(1, 0) = 0,(3.1a) (
f

b1

)
y

(0, 0) =

(
f

b2

)
x

(0, 0),(3.1b)

(
1

b1

(
b1
∂

∂x
− b2 ∂

∂y
− c

)[
f

b1

])
y

(0, 0) =

(
f

b2

)
xx

(0, 0).(3.1c)

Then the boundary-value problem (1.1) has a classical solution u ∈ C3,α(Ω̄), and this
solution can be decomposed as

u = (u0 + v0 + w0 + z0) + ε(u1 + v1 + w1 + z1) + ε
2R,

where u0 ∈ C3,1(Ω̄), u1 ∈ C1,1(Ω̄), ∂k

∂xk v1,
∂k

∂ykw1 ∈ C1,1(Ω̄) for k ≥ 0, z1 ∈ C3(Ω̄),

R ∈ C1,1(Ω̄), and

‖u0‖3,1+‖u1‖1,1 ≤ C, u0(x, 0) = u0(0, y) = 0, u0,xx(0, 0) = u0,yy(0, 0) = 0,(3.2)

v0(x, y) = −u0(1, y)e
−b1(1,y)(1−x)/ε, w0(x, y) = −u0(x, 1)e

−b2(x,1)(1−y)/ε,

z0(x, y) = u0(1, 1)e
−b1(1,1)(1−x)/ε−b2(1,1)(1−y)/ε,

(3.3)

∥∥∥∥ ∂
k

∂xk
v1(x, ·)

∥∥∥∥
1,1,[0,1]

≤ Cε−ke−β(1−x)/ε,

∥∥∥∥ ∂
k

∂yk
w1(·, y)

∥∥∥∥
1,1,[0,1]

≤ Cε−ke−β(1−y)/ε for 0 ≤ k ≤ 3,

(3.4a)

∣∣∣∣ ∂
k+m

∂xk∂ym
z1(x, y)

∣∣∣∣ ≤ Cε−(k+m)e−β((1−x)+(1−y))/ε for 0 ≤ k +m ≤ 3,(3.4b)

‖R‖ ≤ C, |LR(x, y)| ≤ C
(
1 + ε−1e−β(1−x)/ε + ε−1e−β(1−y)/ε

)
.(3.5)

Remark 3.1. In (3.4a) by ‖ ∂k

∂xk v1(x, ·)‖1,1,[0,1] we denote the norm of the function
∂k

∂xk v1(x, y) as a function of the variable y in the space C1,1[0, 1] of Hölder continuous
functions. The second line in (3.4a) should be understood similarly.

Remark 3.2. Note that C1,1(Ω̄) = W 2,∞(Ω), and for any function in C1,1(Ω̄)
its second partial derivatives exist almost everywhere [2, pp. 151, 154]. Hence, since
R ∈ C1,1(Ω̄), in (3.5) the second inequality is to be understood in the sense that it
holds true almost everywhere.

Remark 3.3. Shishkin [13, Theorem III.2.1] decomposed the solution into a
smooth part and a layer part so that the layer part lay in the null space of L. A
similar decomposition was constructed by Linß and Stynes [7]. They presented a full
analysis and the explicit compatibility conditions. The solution was decomposed into
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an asymptotic expansion of order one and its residual. Then the residual was com-
bined with the smooth part of the solution so that the layer part “almost” lay in the
null space of L. Note that the hypotheses of our theorem are weaker than those of
[7, Theorem 5.1]. In particular, since we do not combine the smooth part with the
residual ε2R and do not estimate the derivatives of the latter, our decomposition is
useful only for small values of ε, e.g., under our assumption (1.5), but we require fewer
compatibility conditions at the corner (0, 0).

Proof. We mainly follow the proof and the notation of [7, Theorem 5.1], but omit
certain parts of this proof that are unnecessary for our decomposition, and combine
certain terms in a different manner.

By [7, Lemma 2.1], the compatibility conditions (3.1a) combined with f ∈ C3,1(Ω̄)
imply that u ∈ C3,α(Ω̄).

We decompose u as in [7]. Thus, u0 and u1 are the solutions of the reduced
problems [7, (5.2)]. Note that the boundary conditions u0(x, 0) = u0(0, y) = 0 for u0

yield u0,xx(0, 0) = u0,yy(0, 0) = 0 in (3.2), while the first estimate in (3.2) is obtained
applying [7, Theorem 4.1] twice. First, u0 ∈ C3,1(Ω̄) since f ∈ C3,1(Ω̄), while (3.1)
implies the compatibility conditions [7, (4.8a), (4.8b), (4.8c)]. Second, u1 ∈ C1,1(Ω̄)
since �u0 ∈ C1,1(Ω̄), while the compatibility condition �u0(0, 0) = 0 corresponds to
[7, (4.8a)].

Furthermore, v1 and w1 are given explicitly by [7, (5.11b), (5.15b)], while z1 is
the solution of the problem [7, (5.17b), (5.17c)]. By [7, Lemma 5.2], the compatibility
condition f(1, 1) = 0 implies that there exists z1 ∈ C3(Ω̄) satisfying (3.4b).

Estimates (3.5) are derived similarly to [7, (5.31)] and the argument that follows
it. Note that in [7] R ∈ C2,α(Ω̄), while we have R ∈ C1,1(Ω̄); see Remark 3.2. The
first estimate in (3.5) follows from the second by the maximum/comparison principle
extended to functions in the Sobolev space W 1,2(Ω) (see [2, section 8.1]).

4. Error expansion and its applications. In this section we present an ex-
pansion of the error of the upwind scheme (1.3) on the Shishkin mesh (1.4), (1.6)
into a sum of continuous first-order terms and the second-order residual. This error
expansion is applied in subsection 4.1 to obtain ε-uniform maximum-norm error es-
timates for the Richardson extrapolation technique, and in subsection 4.2 to derive
bounds on the errors in approximating the derivatives.

Theorem 4.1. Suppose that (1.5) and the conditions of Theorem 3.1 are satisfied.
Let uN be the solution of the discrete problem (1.3) on the mesh (1.4), (1.6). Then

uNij − u(xi, yj) = HΦ(xi, yj) +

(
h

ε

)
Ψ(xi, yj) +RN

ij ,(4.1)

where Φ(x, y) and Ψ(x, y) are defined in terms of u0, v0, w0, and z0 from Theorem 3.1,
and ϕ(x, y) ∈ C1,1(Ω̄) such that

‖ϕ‖1,1 ≤ C,(4.2)

as follows:

Φ(x, y) = ϕ(x, y)− ϕ(1, y)e−b1(1,y)(1−x)/ε − ϕ(x, 1)e−b2(x,1)(1−y)/ε

+ ϕ(1, 1)e−b1(1,1)(1−x)/ε−b2(1,1)(1−y)/ε,
(4.3)

Ψ(x, y) = ε−1(1− x)
(
b21(1, y)v0 + b

2
1(1, 1)z0

)
2

+ ε−1(1− y)
(
b22(x, 1)w0 + b

2
2(1, 1)z0

)
2

,

(4.4)
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while the residual RN
ij satisfies

|RN
ij | ≤ CN−2 Eij(1, Ω̄N

0 ; ln2N).(4.5)

Proof. The whole of section 5 is devoted to the proof of this theorem; see also
Remark 4.1.

Remark 4.1. A careful inspection of the proof of Theorem 4.1 shows that

LN (uN − u) = H
(b1u0,xx + b2u0,yy)

2

+

(
h

ε

)[
εb1(v0,xx + z0,xx)

2
+
εb2(w0,yy + z0,yy)

2

]
+ . . . ,

where . . . denotes the terms whose contribution to the error is of almost-second order;
see (5.1), (5.2), (5.7), (5.16), (5.18). The standard approach is to define the auxiliary
continuous problems

LΦ̄ =
(b1u0,xx + b2u0,yy)

2
in Ω, Φ̄ = 0 on ∂Ω,(4.6a)

LΨ̄1 =
εb1(v0,xx + z0,xx)

2
in Ω, Ψ̄1 = 0 on ∂Ω,(4.6b)

LΨ̄2 =
εb2(w0,yy + z0,yy)

2
in Ω, Ψ̄2 = 0 on ∂Ω,(4.6c)

and derive the error expansion

uNij − u(xi, yj) = HΦ̄(xi, yj) +

(
h

ε

)
[Ψ̄1(xi, yj) + Ψ̄2(xi, yj)] + · · · ,

where . . . denotes almost-second-order terms; see, e.g., [9] for the one-dimensional
case. Our proof mainly follows the analysis of [9], extending it to the two-dimensional
case, but, as we shall see, the solutions of the two-dimensional auxiliary problems (4.6)
are only in C1,α(Ω̄) since the first-order compatibility conditions are violated. Since
the solutions of (4.6) do not exhibit enough smoothness for our analysis, our error
expansion (4.1) uses their asymptotic expansions of order zero; see Remarks 4.2–4.4.

Remark 4.2. ϕ(x, y) used in Theorem 4.1 is the solution of the reduced problem

b1ϕx + b2ϕy + cϕ =

(
b1u0,xx + b2u0,yy

)
2

in Ω, ϕ(x, y) = 0 if x = 0 or y = 0,(4.7)

where u0 is from Theorem 3.1.
Remark 4.3. Φ(x, y) in (4.3) is an asymptotic expansion of order zero for the

solution Φ̄(x, y) of problem (4.6a). We chose to use Φ(x, y) instead of Φ̄(x, y) since,
as we shall prove in Lemma 5.7, Φ(x, y) ∈ C1,1(Ω̄), while by [7, Lemma 2.1], we
have Φ̄(x, y) ∈ C1,α(Ω̄) for α ∈ (0, 1). Note that generally Φ̄(x, y) /∈ C2,α(Ω̄) for any
α ∈ (0, 1), since the right-hand side (b1u0,xx + b2u0,yy)/2 does not generally vanish at
(1, 1) and thus does not satisfy one of the compatibility conditions.

Remark 4.4. Decompose Ψ(x, y) in (4.4) as Ψ = (Ψ1 + Ψ̃1) + (Ψ2 + Ψ̃2); see
(5.8) for details. Note that Ψ1(x, y)+Ψ̃1(x, y) and Ψ2(x, y)+Ψ̃2(x, y) are asymptotic
expansions of order zero for the solutions Ψ̄1(x, y) and Ψ̄2(x, y) of problems (4.6b),
(4.6c). By (3.3), one can easily check that Ψ1, Ψ̃1, Ψ2, and Ψ̃2 are chosen so that

−εΨ1,xx + b1(1, y)Ψ1,x =
b1(1, y)εv0,xx

2
, −εΨ̃1,xx + b1(1, 1)Ψ̃1,x =

b1(1, 1)εz0,xx
2

,

−εΨ2,yy + b2(x, 1)Ψ2,y =
b2(x, 1)εv0,yy

2
, −εΨ̃2,yy + b2(1, 1)Ψ̃2,y =

b1(1, 1)εz0,yy
2

.
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Remark 4.5. If β1 �= β2 and the mesh ω̄σ1,N × ω̄σ2,N described in Remark 1.1 is
used, then we have a slightly different error expansion:

uNij − u(xi, yj) = H1Φ1(xi, yj) +H2Φ2(xi, yj)

+

(
h1

ε

)
[Ψ1 + Ψ̃1](xi, yj) +

(
h2

ε

)
[Ψ2 + Ψ̃2](xi, yj) +RN

ij .

Here Ψ1 + Ψ̃1 and Ψ2 + Ψ̃2 are the first and the second terms on the right-hand side
in (4.4)—see Remark 4.4 and (5.8)—while Φ1 and Φ2 are defined by (4.3) with Φ and
ϕ replaced by Φk and ϕk for k = 1, 2. These functions ϕ1 and ϕ2 are the solutions of
the reduced problem (4.7) with the right-hand side (b1u0,xx + b2u0,yy)/2 replaced by
b1u0,xx/2 and b2u0,yy/2, respectively.

4.1. Richardson extrapolation. Now we shall see that the error expansion
given by Theorem 4.1 immediately implies ε-uniform maximum-norm error estimates
for the Richardson extrapolation technique.

In this subsection for the mesh Ω̄N we shall use the slightly different notation
Ω̄σ,N := Ω̄N = ω̄σ,N × ω̄σ,N . We shall also use the tensor-product rectangular mesh
Ω̄σ,2N := ω̄σ,2N × ω̄σ,2N = {(x̃i, ỹj) ∈ Ω̄ : i, j = 0, . . . , 2N}. Here ω̄σ,2N is a
piecewise-uniform mesh with the meshsizes h/2 and H/2 obtained uniformly bisecting
the original mesh ω̄σ,N . Note that ω̄σ,2N is also described by (1.4) with the same mesh
transition parameter σ (1.6) and N replaced by 2N . The two rectangular meshes are
nested; i.e., Ωσ,N = {(xi, yj)} ⊂ Ωσ,2N = {(x̃i, ỹj)}, and (xi, yj) = (x̃2i, ỹ2j).

Let ũ2N
ij = ũ2N (x̃i, ỹj) be the solution of the discrete problem (1.3) on the mesh

Ωσ,2N . Then under the conditions of Theorem 4.1, in addition to (4.1) we have

ũ2N(x̃i, ỹj)− u(x̃i, ỹj) = 1

2
HΦ(x̃i, ỹj)

1

2

(
h

ε

)
Ψ(x̃i, ỹj) + R̃2N(x̃i, ỹj).

Hence

[ 2ũ2N(xi, yj)− uNij ]− u(xi, yj) = 2R̃2N(xi, yj)−RN
ij ,

and we arrive at the following.
Corollary 4.2. Under the conditions of Theorem 4.1, we have

∣∣[ 2ũ2N(xi, yj)− uNij ]− u(xi, yj)
∣∣ ≤ CN−2 Eij(1, Ω̄0; ln

2N)

= C

{
N−2 in Ω̄N ∩ Ω̄0,

N−2 ln2N in Ω̄N\Ω̄0.

Thus, while the two computed solutions uNij and ũ2N
ij are almost-first-order ac-

curate, their linear combination [2ũ2N(xi, yj) − uNij ] is almost-second-order accurate
ε-uniformly.

4.2. Approximation of derivatives. In this subsection we apply the error
expansion given by Theorem 4.1 to derive bounds on the errors in approximating the
derivatives of the true solution by divided differences of the computed solution.

Corollary 4.3. Under the conditions of Theorem 4.1, we have

∣∣D−
x e

N
ij

∣∣+ ∣∣D−
x u

N
ij − ux(xi−1/2, yj)

∣∣ ≤ C



N−1 in Ω̄N ∩ Ω̄0,

N−1ln2N in Ω̄N ∩ Ω2,
N−1lnN/ε in Ω̄N ∩ (Ω1 ∪ Ω12),

(4.8a)
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∣∣D−
y e

N
ij

∣∣+ ∣∣D−
y u

N
ij − uy(xi, yj−1/2)

∣∣ ≤ C



N−1 in Ω̄N ∩ Ω̄0,

N−1ln2N in Ω̄N ∩ Ω1,
N−1lnN/ε in Ω̄N ∩ (Ω2 ∪ Ω12),

(4.8b)

where eNij = uNij − u(xi, yj) is the error, while xi−1/2 and yj−1/2 are the midpoints of
the segments [xi−1, xi] and [yj−1, yj ].

Proof. Since (4.8a) and (4.8b) are similar, we shall prove only bound (4.8a).
By Theorem 3.1 and (1.5), (2.1), (1.4), the second inequality (4.8a) follows from the
bound on |D−

x e
N
ij |, so we need prove only the first bound (4.8a).

By Theorem 4.1, we have

D−
x e

N
ij = HD−

x Φ(xi, yj) +

(
h

ε

)
D−

x Ψ(xi, yj) +D
−
x RN

ij .(4.9)

First, using (4.5), (2.1), (1.4), we get estimate (4.8a) for |D−
x RN

ij |.
Further in this proof and later throughout the paper, we shall use the inequalities

ε−1(1− x)e−b1(1,y)(1−x)/ε ≤ Ce−β(1−x)/ε,
ε−1(1− y)e−b2(x,1)(1−y)/ε ≤ Ce−β(1−y)/ε.

(4.10)

Define

Φ̂(x, y) = ϕ(x, y)− ϕ(x, 1)e−b2(x,1)(1−y)/ε, Ψ̂(x, y) =
ε−1(1− y)b22(x, 1)w0(x, y)

2
.

Since |D−
x Φ̃ij | ≤ maxΩ̄ |Φ̂x|, then by (4.2) we have |D−

x Φ̂ij | ≤ C. This implies esti-

mate (4.8a) also for |HD−
x Φ̂ij |.

Similarly, we get |D−
x Ψ̂ij | ≤ C. Note that in Ω̄0∪Ω1 we have the sharper estimate

|D−
x Ψ̂ij | ≤ CN−2, since (3.3) and (1.7) imply that maxΩ̄0∪Ω1

|Ψ̂x| ≤ CN−2. Hence,

|(h/ε)D−
x Φ̂ij | also satisfies inequality (4.8a).

We proceed similarly with D−
x (Φ − Φ̂)ij and D−

x (Ψ − Ψ̂)ij . Using (4.3), (4.4),

(3.3), we obtain |D−
x (Φ − Φ̂)ij | + |D−

x (Ψ − Ψ̂)ij | ≤ 1/ε. However, in Ω̄0 ∪ Ω2 we

need sharper estimates. By (2.1), we have |D−
x (Φ− Φ̂)ij | ≤ (2/H)maxΩ̄0∪Ω2

|Φ− Φ̂|.
Combining this with (3.3), (1.7), we get |D−

x (Φ− Φ̂)ij | ≤ CN−1 in Ω̄0∪Ω2. Similarly,

|D−
x (Ψ− Ψ̂)ij | ≤ CN−1 in Ω̄0 ∪Ω2. Hence, |HD−

x (Φ− Φ̂)ij | and |(h/ε)D−
x (Ψ− Ψ̂)ij |

also satisfy inequality (4.8a).

Combining the estimates that we derived for the right-hand terms in (4.9), we
obtain the first bound (4.8a). This completes the proof.

5. Proof of Theorem 4.1.

5.1. Discrete maximum/comparison principle and its corollaries. In this
subsection we state the comparison lemmas that will be used to prove Theorem 4.1.

It is well known that the upwind scheme (1.3) satisfies the discrete maximum/
comparison principle, which implies the following comparison lemma.

Lemma 5.1. Let Ω̃N be a connected submesh of ΩN .

(i) If |LNvij | ≤ LNBij in Ω̃N and |vij | ≤ Bij on ∂Ω̃
N , then |vij | ≤ Bij in Ω̃N .

(ii) If vij = 0 on ∂Ω̃N , then ‖v‖Ω̃N ≤ β−1‖LNv‖Ω̃N .

(iii) If LNvij = 0 in Ω̃N , then ‖v‖Ω̃N ≤ ‖v‖∂Ω̃N .
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Proof. See [11, Chapter IV] and [8, Chapter 13].
The following three lemmas follow from Lemma 5.1(i). We defer their proofs to

Appendix A.
Lemma 5.2. If LNvij = 0 in ΩN and |vij | ≤ e−β(1−xi)/ε on ∂ΩN , then |vij | ≤

CN−2 for i ≤ N/2.
Lemma 5.3. (i) If |LNvij | ≤ e−β(1−xi)/ε in ΩN and vij = 0 on ∂ΩN , then |vij | ≤

CN−1 in Ω̄N , and |vij | ≤ CN−2 for i ≤ N/2.
(ii) If |LNvij | ≤ Eij(ε−1e−β(1−xi)/ε, i > N/2; 0) in ΩN and vij = 0 on ∂ΩN , then

|vij | ≤ CEij(N−1, i ≤ N/2; 1).
(iii) Let |LNvij | ≤ ε−1e−β(1−xi)/ε for i > N/2, where vij is defined for i =

N/2, . . . , N , j = 0, . . . , N , and vij = 0 on the boundary of this submesh, i.e., if
i = N/2, N or j = 0, N . Then |vij | ≤ C for i ≥ N/2.

Remark 5.1. Clearly, the analogues of Lemmas 5.2 and 5.3, with x, i replaced by
y, j, also hold true.

Lemma 5.4. If |LNvij | ≤ Eij(0, Ω̄0; 1) and vij = 0 on ∂ΩN , then |vij | ≤
Cε Eij(1, Ω̄0; lnN) ≤ CN−1 Eij(1, Ω̄0; lnN).

5.2. Error and truncation error. We shall derive a representation of the error

eNij := uNij − u(xi, yj).
One can easily check that LNeNij = −LNuij+(Lu)ij =: rij [u]. Here for the truncation
error we have used the notation

rij [v] := −LNvij + (Lv)ij .(5.1)

Recalling the decomposition of u given by Theorem 3.1, we have

LNeN = r[u0 + v0 + w0 + z0] + εr[u1 + v1 + w1 + z1] + ε
2r[R].(5.2)

Furthermore, we study the contributions to the error of each of the right-hand side
terms separately.

In this section and the related appendices we shall use the notation

L1v := −εvxx + b1(x, y)vx, L2v := −εvyy + b2(x, y)vy,
LN

1 v := −εδ2xv + b1(x, y)D−
x v, LN

2 v := −εδ2yv + b2(x, y)D−
y v,

(5.3)

r1,ij [v] := −LN
1 vij + (L1v)ij , r2,ij [v] := −LN

2 vij + (L2v)ij ,(5.4)

so that L = L1 + L2 + c, L
N = LN

1 + LN
2 + c, and r[v] = r1[v] + r2[v].

5.3. Contribution of ε2r[R] in the maximum norm. The contribution to
the error of this component of the right-hand side in (5.2) is described by the following
result.

Lemma 5.5. If LNwij = rij [R] in ΩN , where R is from (3.5), and wij = 0 on
∂ΩN , then ‖w‖ ≤ Cε−1N−1.

Proof. Obviously,

‖w‖ ≤ ‖w +R‖+ ‖R‖.(5.5)

Since rij [R] = −LNRij +(LR)ij , we have LN [w+R]ij = (LR)ij . Recalling (3.5) and
applying Lemmas 5.1(ii), 5.3(i), and 5.1(iii), we get

‖w +R‖ ≤ C(1 + ε−1N−1) + max
∂ΩN

|Rij |.
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Combining this with (5.5), (3.5) and observing that (1.5) implies 1 ≤ Cε−1N−1, we
complete the proof.

Remark 5.2. The proof of this lemma does not use any estimates of the deriva-
tives of R and thus allows us to use a decomposition of the solution requiring fewer
compatibility conditions; see Remark 3.3.

Now, by (1.5), we have the following.

Corollary 5.6. If LNvij = ε2rij [R] in ΩN , where R is from (3.5), and vij = 0
on ∂ΩN , then |v| ≤ CN−2.

5.4. Contribution of r[u0]. The contribution to the error of this component
of the right-hand side in (5.2) is described by the following two lemmas.

Lemma 5.7. (i) The reduced problem (4.7) has a solution ϕ(x, y) ∈ C1,1(Ω̄) such
that ‖ϕ‖1,1 ≤ C, and thus Φ(x, y) from (4.3) using this function ϕ is also in C1,1(Ω̄).

(ii) If w satisfies

LNwij =

(
b1u0,xx + b2u0,yy

)
ij

2
in ΩN , wij = 0 on ∂ΩN ,(5.6)

then

|wij − Φ(xi, yj)| ≤ CN−1 Eij(1, Ω̄0; lnN).

Proof. (i) Note that ϕ is the solution of the reduced problem (4.7) with the
right-hand side

(
b1u0,xx + b2u0,yy

)
/2, which, by (3.2), is in C1,1(Ω̄) and vanishes at

the corner (0, 0), i.e., satisfies the compatibility condition [7, (4.8a)]. Hence, applying
[7, Theorem 4.1], we have ϕ(x, y) ∈ C1,1(Ω̄). This implies that Φ(x, y) ∈ C1,1(Ω̄).

(ii) This part of the proof is given in Appendix B.

Lemma 5.8. If LNvij = rij [u0] in ΩN , where u0 is from Theorem 3.1, and vij = 0
on ∂ΩN , then

|vij −HΦ(xi, yj)| ≤ CN−2 Eij(1, Ω̄0; lnN).

Proof. Recalling (5.1) and using Taylor series expansions and (3.2), we obtain

∣∣rij [u0]− (hib1u0,xx + hjb2u0,yy)ij/2
∣∣ ≤ C(εN−1 +N−2)‖u0‖3 ≤ CN−2.

Furthermore, since hi = hj = H for (xi, yj) ∈ Ω̄0, we have

∣∣rij [u0]−H (b1u0,xx + b2u0,yy)ij
∣∣ ≤ C[N−1 Eij(0, Ω̄0; 1) +N

−2].(5.7)

Combining this with LN (vij −Hwij) = rij [u0]−H(b1u0,xx + b2u0,yy)ij , where wij is
from Lemma 5.7, we get

∣∣LN (vij −Hwij)
∣∣ ≤ C[N−1 Eij(0, Ω̄0; 1) +N

−2].

Now, applying Lemmas 5.4 and 5.1(ii), we have

|vij −Hwij | ≤ CN−2 Eij(1, Ω̄0; lnN).

By Lemma 5.7, this yields the statement of the lemma.
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5.5. Contribution of r[v0 + w0 + z0]. Now we shall study the contribution
to the error of the component r[v0 + w0 + z0] of the right-hand side in (5.2).

The main result of this subsection is the following.
Lemma 5.9. If LNvij = rij [v0 + w0 + z0] in ΩN , where v0, w0, z0 are from

Theorem 3.1 and vij = 0 on ∂ΩN , then∣∣∣∣vij −
(
h

ε

)
Ψ(xi, yj)

∣∣∣∣ ≤ CN−2 Eij(1, Ω̄0; ln
2N),

where Ψ is from (4.4).
The whole subsection is devoted to the proof of this lemma.
Decompose Ψ from (4.4) as Ψ = Ψ1 +Ψ2 + Ψ̃1 + Ψ̃2, where

Ψ1(x, y) :=
ε−1(1− x)b21(1, y)v0

2
, Ψ̃1(x, y) :=

ε−1(1− x)b21(1, 1)z0
2

,

Ψ2(x, y) :=
ε−1(1− y)b22(x, 1)w0

2
, Ψ̃2(x, y) :=

ε−1(1− y)b22(1, 1)z0
2

.

(5.8)

Regarding the components of this decomposition, see Remark 4.4.
Now decompose v from Lemma 5.9 as vij = Vij +Wij + Zij , where

LNV = r[v0] in ΩN ,

∣∣∣∣V −
(
h

ε

)
Ψ1

∣∣∣∣ ≤ CN−2 on ∂ΩN ,(5.9a)

LNW = r[w0] in ΩN ,

∣∣∣∣W −
(
h

ε

)
Ψ2

∣∣∣∣ ≤ CN−2 on ∂ΩN ,(5.9b)

LNZ = r[z0] in ΩN ,

∣∣∣∣Z −
(
h

ε

)
(Ψ̃1 + Ψ̃2)

∣∣∣∣ ≤ CN−2 on ∂ΩN .(5.9c)

Note that such a decomposition of the boundary condition vij = 0 on ∂ΩN is possible.

Indeed, if x = 1 or y = 1, we have Ψ1(x, y) + Ψ̃1(x, y) = Ψ2(x, y) + Ψ̃2(x, y) = 0,
while if x = 0 or y = 0, we have |Ψ1| + |Ψ2| + |Ψ̃1| + |Ψ̃2| ≤ Cε−2 ≤ CN−2. Hence,
|Ψ1 +Ψ2 + Ψ̃1 + Ψ̃2| ≤ CN−2 on ∂ΩN .

Since (xi, yj) ∈ Ω̄0 if both i, j ≤ N/2, Lemma 5.9 follows from (5.10):∣∣∣∣Vij −
(
h

ε

)
Ψ1(xi, yj)

∣∣∣∣ ≤ CN−2 Eij
(
ln2N, i >

N

2
; 1

)
,(5.10a)

∣∣∣∣Wij −
(
h

ε

)
Ψ2(xi, yj)

∣∣∣∣ ≤ CN−2 Eij
(
ln2N, j >

N

2
; 1

)
,(5.10b)

∣∣∣∣Zij −
(
h

ε

)
[Ψ̃1(xi, yj) + Ψ̃2(xi, yj)]

∣∣∣∣ ≤ CN−2 Eij ]
(
ln2N, i, j >

N

2
; 1

)
.(5.10c)

Further, we shall prove that (5.10) follows from the following two lemmas.
Lemma 5.10. For V , W , Z from (5.9) we have

|Vij | ≤ CN−2 for i ≤ N

2
,(5.11a)

|Wij | ≤ CN−2 for j ≤ N

2
,(5.11b)

|Zij | ≤ CN−2 if i ≤ N

2
or j ≤ N

2
.(5.11c)
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Proof. We defer the proof of this lemma to Appendix C.

Define the auxiliary discrete functions ψ1,ij for i = N/2, . . . , N , j = 0, . . . , N ;

ψ2,ij for i = 0, . . . , N , j = N/2, . . . , N ; and ψ̃1,ij , ψ̃2,ij for i, j = N/2, . . . , N as
follows. Let them satisfy the discrete equations

(LNψ1)ij =
ε(b1v0,xx)ij

2
for i =

N

2
+ 1, . . . , N − 1, j = 1, . . . , N − 1,(5.12a)

(LNψ2)ij =
ε(b2w0,yy)ij

2
for i = 1, . . . , N − 1, j =

N

2
+ 1, . . . , N − 1,(5.12b)

(LN ψ̃1)ij =
ε(b1z0,xx)ij

2
for i, j =

N

2
+ 1, . . . , N − 1,(5.12c)

(LN ψ̃2)ij =
ε(b2z0,yy)ij

2
for i, j =

N

2
+ 1, . . . , N − 1,(5.12d)

and the following conditions on the boundaries of the submeshes, where they are
defined:

ψ1,ij = Ψ1(xi, yj) if i =
N

2
, N or j = 0, N,(5.13a)

ψ2,ij = Ψ2(xi, yj) if i = 0, N or j =
N

2
, N,(5.13b)

ψ̃k,ij = Ψ̃k(xi, yj) if i =
N

2
, N or j =

N

2
, N, k = 1, 2.(5.13c)

Lemma 5.11. For ψ1, ψ2, ψ̃1, ψ̃1 defined by (5.12), (5.13) and Ψ1, Ψ2, Ψ̃1, Ψ̃1

from (5.8) we have

|ψ1,ij −Ψ1(xi, yj)| ≤ C

(
h

ε

)
for i =

N

2
+ 1, . . . , N,(5.14a)

|ψ2,ij −Ψ2(xi, yj)| ≤ C

(
h

ε

)
for j =

N

2
+ 1, . . . , N,(5.14b)

|ψ̃k,ij − Ψ̃k(xi, yj)| ≤ C

(
h

ε

)
for i, j =

N

2
+ 1, . . . , N, k = 1, 2.(5.14c)

Proof. This lemma is proved in Appendix C.

Lemma 5.12. Estimates (5.10) follow from Lemmas 5.10 and 5.11.

Proof. To get the statement of this Lemma, it suffices to prove that

(a) estimate (5.10a) follows from (5.11a) and (5.14a),
(b) estimate (5.10b) follows from (5.11b) and (5.14b),
(c) estimate (5.10c) follows from (5.11c) and (5.14c).

(a) By (5.8), (3.3), (4.10), (1.7), we have |Ψ1(xi, yj)| ≤ CN−2 for i ≤ N/2.
Combining this with (5.11a), we get (5.10a) for i ≤ N/2. Since we have (5.14a), then
to obtain (5.10a) for i > N/2, it suffices to prove that

∣∣∣∣Vij −
(
h

ε

)
ψ1,ij

∣∣∣∣ ≤ C

(
h

ε

)2

for i >
N

2
,(5.15)

where ψ1 is defined by (5.12a), (5.13a). Recalling the notation (5.4) and using Taylor
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series expansions and (3.2), (3.3), for i > N/2 we get

∣∣∣∣r1,ij [v0]− h(b1v0,xx)ij
2

∣∣∣∣ ≤ Ch2ε−3e−β(1−xi+1)/ε,(5.16)

∣∣r2,ij [v0]∣∣ ≤ (2ε+ b2,ijN
−1) max

y∈[0,1]
|v0,yy(xi, y)| ≤ CN−1e−β(1−xi)/ε.

Note that, by (1.7), (1.5), we have N−1 ≤ Ch2ε−3 and e−β(1−xi+1)/ε ≤ Ce−β(1−xi)/ε,
while LN [V − (h/ε)ψ1] = r1[v0] + r2[v0]− hb1v0,xx/2. Hence,

∣∣∣∣LN

[
Vij −

(
h

ε

)
ψ1,ij

]∣∣∣∣ ≤ C

(
h

ε

)2

ε−1e−β(1−xi)/ε for i >
N

2
.

Note that (5.9a), (5.13a) imply |V −(h/ε)ψ1| ≤ CN−2 on ∂ΩN , while (5.10a), (5.13a)
imply |Vij− (h/ε)ψ1,ij | = |Vij− (h/ε)Ψ1(xi, yj)| ≤ CN−2 for i = N/2. Now, applying
Lemmas 5.3(iii) and 5.1(iii), we obtain (5.15). This completes part (a) of the proof.

(b) This part of the proof is analogous to part (a).
(c) Since this part of the proof is similar to part (a), we skip certain details. By

(5.8), (3.3), (4.10), (1.7), we have |Ψ̃1(xi, yj)| + |Ψ̃2(xi, yj)| ≤ CN−2 if i ≤ N/2 or
j ≤ N/2. Combining this with (5.11c), we get (5.10c) if i ≤ N/2 or j ≤ N/2. Since
we have (5.14c), then, to obtain (5.10c) for i, j > N/2, it suffices to prove that

∣∣∣∣Zij −
(
h

ε

)
(ψ̃1,ij + ψ̃2,ij)

∣∣∣∣ ≤ C

(
h

ε

)2

for i, j >
N

2
.(5.17)

Note that LN [Z − (h/ε)(ψ̃1 + ψ̃2)] = (r1[z0] − hb1z0,xx/2) + (r2[z0] − hb2z0,yy/2).
Hence, using Taylor series expansions and (3.2), (3.3), for i, j > N/2 we get

∣∣∣∣∣
(
r1[z0]− hb1z0,xx

2
+r2[z0]− hb2z0,yy

2

)
ij

∣∣∣∣∣≤Ch2ε−3(e−β(1−xi)/ε+ e−β(1−yj)/ε),(5.18)

which yields

∣∣∣∣LN

[
Zij −

(
h

ε

)
(ψ̃1,ij + ψ̃2,ij)

]∣∣∣∣ ≤ C

(
h

ε

)2

ε−1(e−β(1−xi)/ε + e−β(1−yj)/ε).

Combining this with the boundary conditions from (5.9c), (5.10c), (5.13c) and apply-
ing Lemmas 5.3(iii) and 5.1(iii), we obtain (5.17). This completes the proof.

Proof of Lemma 5.9. By Lemmas 5.10, 5.11, and 5.12, we have (5.10), which
yields the statement of Lemma 5.9.

5.6. Contribution of εr[u1 + v1 + w1 + z1]. The contribution to the error
of this component of the right-hand side in (5.2) is described by the following lemma.

Lemma 5.13. If LNvij = εrij [u1 + v1 +w1 + z1] in ΩN , where u1, v1, w1, z1 are
from Theorem 3.1, and vij = 0 on ∂ΩN , then

|vij | ≤ CN−2 Eij(1, Ω̄0; lnN).

Proof. Since this result is very close to the well-known theorem by Shishkin
[13, Theorem 2.3], [8, Theorem 13.2], while the argument is standard, we shall only
sketch the proof. Note that it simplifies the argument that the truncation error in
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the right-hand side is multiplied by ε. By (3.2), (1.5), we have |εr[u1]| ≤ CεN−1 ≤
CN−2. By (3.4), (1.7), we get |εr1,ij [v1 + z1]| ≤ C(h/ε)e−β(1−xi)/ε for i > N/2,
and |εr1,ij [v1 + z1]| ≤ Ce−β(1−xi+1)/ε ≤ CN−2 for i ≤ N/2. The term εr2[w1 + z1]
is estimated similarly. We have to be careful with Taylor series expansions of v1
and w1 since ∂k

∂xk v1 and ∂k

∂ykw1 are generally in C1,1(Ω̄). By (3.4a) and Remark 3.1,
we estimate as follows:

∣∣r2,ij [v1]∣∣ ≤ C
∥∥v1(xi, ·)∥∥1,1,[0,1]

≤ Ce−β(1−xi)/ε,∣∣r1,ij [w1]
∣∣ ≤ C

∥∥w1(·, yj)
∥∥

1,1,[0,1]
≤ Ce−β(1−yj)/ε.

Combining our estimates of all the components of the right-hand side and applying
Lemmas 5.1(ii) and 5.3(i),(ii), we get the statement of the lemma.

5.7. Proof of Theorem 4.1. The statement of the theorem is obtained by
recalling (5.1), (5.2) and combining Corollary 5.6 and Lemmas 5.8, 5.9, 5.13.

6. Numerical results. In this section we present numerical results illustrating
our estimates for the Richardson extrapolation technique (Corollary 4.2) and on the
errors in approximating the derivatives (Corollary 4.3).

We study the performance of the upwind scheme and the Richardson extrapola-
tion technique when applied to the test problem from [6] in which b1 = 2, b2 = 3,
c = 1,

u(x, y) = 2 sinx (1− e−2(1−x)/ε) y2(1− e−3(1−y)/ε),

and the right-hand side f is chosen so that (1.1) is satisfied. This problem was solved
numerically using the upwind scheme (1.3) on the tensor-product piecewise-uniform
Shishkin mesh from Remark 1.1 with β1 = 1.9, β2 = 2.9.

In Table 6.1 we present the errors before and after the Richardson extrapolation.
The odd rows contain the maximum nodal errors eN := ‖uNij −u(xi, yj)‖ in the speci-
fied subdomains of Ω̄, while the even rows contain the rates of convergence computed
by the standard formula r(eN ) = log2(e

N/e2N ). Clearly, the Richardson extrapola-
tion technique decreases the nodal errors and increases the rates of convergence. Note
that the errors are very similar for ε = 10−6 and ε = 10−8, which confirms that our
estimates are ε-uniform. The rates of convergence are slightly worse than predicted
by Corollary 4.2. However, since our rates of convergence are consistent with those
for the analogous one-dimensional problems [9, 4], we expect the rates of convergence
to increase as N increases, similarly to [9, 4].

Table 6.1
Maximum nodal errors before and after Richardson extrapolation.

ε = 10−6 ε = 10−8

Before extrapolation After extrapolation Before extrapolation After extrapolation

N Ω̄0 Ω̄\Ω̄0 Ω̄0 Ω̄\Ω̄0 Ω̄0 Ω̄\Ω̄0 Ω̄0 Ω̄\Ω̄0

32 4.944e-2 1.430e-1 1.069e-3 1.404e-2 4.944e-2 1.430e-1 1.069e-3 1.404e-2
0.901 0.623 1.727 1.265 0.901 0.623 1.727 1.265

64 2.649e-2 9.288e-2 3.230e-4 5.842e-3 2.649e-2 9.288e-2 3.229e-4 5.842e-3
0.944 0.690 1.782 1.412 0.944 0.690 1.782 1.412

128 1.377e-2 5.759e-2 9.388e-5 2.195e-3 1.377e-2 5.759e-2 9.391e-5 2.195e-3
0.978 0.748 1.832 1.517 0.978 0.748 1.832 1.517

256 6.990e-3 3.429e-2 2.638e-5 7.669e-4 6.990e-3 3.429e-2 2.638e-5 7.669e-4
0.991 0.790 0.991 0.790

512 3.518e-3 1.984e-2 3.518e-3 1.984e-2



ERROR EXPANSION FOR A TWO-DIMENSIONAL UPWIND SCHEME 1865

Table 6.2
Maximum nodal errors in approximating the derivatives.

‖D−
x uN − ux‖ ‖D−

y uN − uy‖
ε = 10−6 ε = 10−8 ε = 10−6 ε = 10−8

N Ω̄0 Ω2 Ω̄0 Ω2 Ω̄0 Ω1 Ω̄0 Ω1

64 3.841e-2 8.811e-2 3.841e-2 8.811e-2 5.199e-2 1.819e-1 5.199e-2 1.819e-1
0.938 0.711 0.938 0.711 1.001 0.811 1.001 0.811

128 2.005e-2 5.384e-2 2.005e-2 5.384e-2 2.598e-2 1.037e-1 2.598e-2 1.037e-1
0.961 0.764 0.961 0.764 0.991 0.824 0.991 0.824

256 1.030e-2 3.171e-2 1.030e-2 3.171e-2 1.307e-2 5.856e-2 1.307e-2 5.856e-2
0.974 0.805 0.974 0.805 0.996 0.838 0.996 0.838

512 5.241e-3 1.815e-2 5.241e-3 1.815e-2 6.554e-3 3.277e-2 6.554e-3 3.277e-2

Table 6.3
Maximum nodal errors in approximating ε-weighted derivatives.

ε ‖D−
x uN − ux‖ ε‖D−

y uN − uy‖
ε = 10−6 ε = 10−8 ε = 10−6 ε = 10−8

N Ω1 Ω12 Ω1 Ω12 Ω2 Ω12 Ω2 Ω12

64 2.524e-1 3.115e-1 2.524e-1 3.115e-1 3.739e-1 4.661e-1 3.739e-1 4.661e-1
0.475 0.517 0.475 0.517 0.479 0.521 0.479 0.521

128 1.816e-1 2.176e-1 1.816e-1 2.176e-1 2.684e-1 3.248e-1 2.684e-1 3.248e-1
0.616 0.641 0.616 0.641 0.618 0.644 0.618 0.644

256 1.185e-1 1.395e-1 1.185e-1 1.395e-1 1.749e-1 2.079e-1 1.749e-1 2.079e-1
0.712 0.728 0.713 0.728 0.714 0.729 0.714 0.729

512 7.233e-2 8.427e-2 7.233e-2 8.427e-2 1.066e-1 1.254e-1 1.066e-1 1.254e-1

Tables 6.2 and 6.3 are clear illustrations of Corollary 4.2. In these tables we
present the maximum nodal errors in approximating the derivatives and their rates
of convergence computed as in Table 6.1.

In summary, our numerical results confirm our theoretical results.

Appendix A. Proof of Lemmas 5.2, 5.3, and 5.4 from subsection 5.1. If
the conditions of Lemma 5.1(i) are satisfied, we say that Bij is a barrier function for
vij . Define the auxiliary discrete functions

Bi :=




2

(
1 +

αh

ε

)−N/2 (
1 +

αH

ε

)−(N/2−i)

, i = 0, . . . ,
N

2
,

(
1 +

αh

ε

)−(N−i)

+

(
1 +

αh

ε

)−N/2

, i =
N

2
, . . . , N,

(A.1)

B̄i :=




2

(
ε

β

) (
1 +

βH

ε

)−(N/2−i)

, i = 0, . . . ,
N

2
,

2

(
ε

β

)
+ σ − (N − i)h, i =

N

2
, . . . , N.

(A.2)

It is assumed here that {xi}Ni=0 are the nodes of the mesh (1.4), (1.6). Furthermore,
we shall use Bi and B̄i normalized in different manners as discrete barrier functions.

Lemma A.1. For any positive α the discrete function Bi from (A.1) is such that
e−α(1−xi)/ε < Bi ≤ CE(N−2α/β , i ≤ N/2; 1) and (−εδ2x + αD−

x )Bi ≥ 0.
Proof. The lower bound for Bi follows from the inequality e−t ≤ (1+ t)−1, which

holds true for t ≥ 0, with t := αhi/ε. The upper bound for Bi is obvious for i > N/2.

For i ≤ N/2, it follows from (1 + t)−1 ≤ e−t+t2 , which we have for t > 0. Setting

t := αh/ε, we get Bi ≤ 2(1+αh/ε)−N/2 ≤ 2e−ασ/ε+(αh/ε)2N/2. Further, (1.7) implies

e−ασ/ε ≤ N−2α/β and e(αh/ε)
2N/2 ≤ e. This proves the upper bound for Bi.
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The second inequality is checked using (1.4) and (2.1). In fact, (−εδ2x+αD−
x )Bi =

0 for i �= N/2 and (−εδ2x + αD−
x )Bi > 0 for i = N/2.

Proof of Lemma 5.2. Use Bi from Lemma A.1 with α := β as a barrier function
for vij . Note that LNBi ≥ (b1,ij − β)D−

x Bi ≥ 0.
Lemma A.2. The discrete function Bi from (A.1) with α := β/2 is such that

Bi ≤ CE(N−1, i ≤ N/2; 1) and LNBi ≥ Ce−β(1−xi)/εE(N, i ≤ N/2; ε−1).
Proof. This lemma follows from Lemma A.1. The first property is obvious. To

prove the second, note that LNBi ≥ (b1,ij − β/2)D−
x Bi ≥ (β/2)D−

x Bi. By (2.1),
(1.5), (1.4), calculations show that D−

x Bi = (hi + 2ε/β)−1Bi and (hi + 2ε/β)−1 ≥
CE(N, i ≤ N/2; ε−1). Recalling that Bi > e

−(β/2)(1−xi/ε) ≥ e−β(1−xi/ε), we complete
the proof.

Proof of Lemma 5.3. This lemma follows from Lemma A.2.
(i) By (1.5), use CN−1Bi as a barrier function for vij .
(ii), (iii) Use CBi as a barrier function for vij .
Proof of Lemma 5.4. By (1.4), (1.6), for the discrete function B̄i defined in (A.2)

we have 0 < B̄i ≤ Cε Eij(1, i ≤ N/2; lnN). Combining this with the analogous
estimate for B̄j and (1.5), we get

0 < B̄i + B̄j ≤ Cε Eij(1, Ω̄0; lnN) ≤ CN−1 Eij(1, Ω̄0; lnN).

By (2.1), (1.4), calculations show that D−
x B̄i = 1 for i > N/2, while D−

x B̄i ≥ 0 for
i ≤ N/2. In particular, D−

x B̄N/2 = 2(1 + βH/ε)−1. Further, LN B̄i ≥ b1,ij ≥ β for
i > N/2, while LN B̄i ≥ (−εδ2x + βD−

x )B̄i = 0 for i < N/2. For i = N/2 we also have
LN B̄i ≥ 0, which follows from

LN B̄i ≥
(−εδ2x + βD−

x

)
B̄i =

[
β + 2ε(h+H)−1

]
D−

x B̄i −
[
2ε(h+H)−1

]
D−

x B̄i+1,

where i = N/2. These imply that LN B̄i ≥ β Eij (0, i ≤ N/2; 1). Combining this
estimate with its analogue for LN B̄j , we obtain

LN (B̄i + B̄j) ≥ β Eij(0, Ω̄0; 1).

Hence, (Bi +Bj)/β is a barrier function for vij .

Appendix B. Proof of Lemma 5.7(ii).
Proof. Note that (4.3) implies that Φ(x, y) = 0 if x = 1 or y = 1. Further,

|Φ(x, y)| ≤ Cε ≤ CN−1 on ∂Ω. Hence,

|wij − Φij | ≤ CN−1 on ∂ΩN .(B.1)

To study LN (w−Φ), note that, by (4.7), (5.6), we have LNwij = (b1ϕx+b2ϕy+cϕ)ij .
Hence

LN (w − Φ) = (b1ϕx + b2ϕy + cϕ− LNϕ) + LN (ϕ− Φ).(B.2)

Using Taylor series expansions, (1.5), and (4.2), which was proved in Lemma 5.7(i),
we obtain for the first term on the right-hand side that

|(b1ϕx + b2ϕy + cϕ)ij − LNϕij | ≤ C(N−1 + ε)‖ϕ‖1,1 ≤ CN−1.(B.3)

To estimate LN (ϕ− Φ), we define

Φ1(x, y) := ϕ(1, y)e−b1(1,y)(1−x)/ε, Φ2(x, y) := ϕ(x, 1)e−b2(x,1)(1−y)/ε,

Φ12(x, y) := ϕ(1, 1)e−b1(1,1)(1−x)/ε−b2(1,1)(1−y)/ε,



ERROR EXPANSION FOR A TWO-DIMENSIONAL UPWIND SCHEME 1867

so that ϕ− Φ = Φ1 +Φ2 − Φ12. Thus, recalling the notation (5.3), we have

LN (ϕ− Φ) = LN
1 (Φ1 − Φ12) + L

N
2 (Φ2 − Φ12) + L

N
2 Φ1 + L

N
1 Φ2

+ c(Φ1 +Φ2 − Φ12).
(B.4)

For i ≤ N/2, using (1.3), (2.1), (1.4), and (1.7), we obtain

|LN
1 (Φ1 − Φ12)ij | ≤ CNe−β(1−xi+1)/ε ≤ CNe−β(σ−h)/ε ≤ CN−1.(B.5)

Consider i > N/2. First note that

−εΦ1,xx + b1(1, y)Φ1,x = 0, −εΦ12,xx + b1(1, 1)Φ12,x = 0,

while the left-hand sides here are slightly different from L1Φ1 and L1Φ12. Hence,

LN
1 (Φ1 − Φ12)ij = (LN

1 − L1)(Φ1 − Φ12)ij + [b1(xi, yj)− b1(1, yj)]Φ1,x(xi, yj)

− [b1(xi, yj)− b1(1, 1)]Φ12,x(xi, yj).

Using Taylor series expansions to estimate the first term on the right-hand side, and
the inequalities |b1(x, y)− b1(1, y)| ≤ C(1− x) and |b1(x, y)− b1(1, 1)| ≤ C[(1− x) +
(1− y)] combined with (4.10) to estimate the other terms, we obtain

|LN
1 (Φ1−Φ12)| ≤ C(hε−2e−β(1−xi+1)/ε+e−β(1−xi)/ε) ≤ C(hε−2eβh/ε+1)e−β(1−xi)/ε.

Combining this with (B.5) and noting that, by (1.7), (1.5), h ε−2 ≥ C and eβh/ε ≤ C,
we get

|LN
1 (Φ1 − Φ12)ij | ≤ C

[(
h

ε

)
Eij

(
ε−1e−β(1−xi)/ε, i >

N

2
; 0

)
+N−1

]
.(B.6)

Furthermore, one can easily see that

|LN
2 Φ1,ij | ≤ C‖ϕ‖1,1e

−β(1−xi)/ε ≤ Ce−β(1−xi)/ε.(B.7)

Combining (B.4) with (B.6), (B.7), and their analogues for LN
2 (Φ2 −Φ12) and L

N
1 Φ2,

and then with (B.2), (B.3), we finally get the estimate

|LN (w − Φ)ij | ≤ C

[(
h

ε

)
Eij

(
ε−1e−β(1−xi)/ε, i >

N

2
; 0

)

+

(
h

ε

)
Eij

(
ε−1e−β(1−yj)/ε, j >

N

2
; 0

)

+ e−β(1−xi)/ε + e−β(1−yj)/ε +N−1

]
.

Combining this with (B.1) and applying Lemmas 5.1(ii),(iii) and 5.3(i),(ii), we obtain

|wij − Φij | ≤ C

[(
h

ε

)
Eij

(
N−1, i ≤ N

2
; 1

)
+

(
h

ε

)
Eij

(
N−1, j ≤ N

2
; 1

)
+N−1

]

≤ C

[(
h

ε

)
Eij(N−1, Ω̄0; 1) +N

−1

]
.

By (1.7), this yields the statement of Lemma 5.7(ii).
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Appendix C. Proof of Lemmas 5.10 and 5.11.
Proof of Lemma 5.10. (a) Obviously,

|V | ≤ |V + v0|+ |v0|,(C.1)

where v0 is defined in (3.3). Since r[v0] = −LNv0 + Lv0, we have LN [V + v0] = Lv0.
One can easily check that −εv0,xx + b1(1, y)v0,x = 0 holds true and implies that
L1v0 = [b1(x, y) − b1(1, y)]v0,x. Combining this with |b1(x, y) − b1(1, y)| ≤ C(1 − x)
and (4.10), we get |L1v0| ≤ Ce−β(1−x)/ε, while |(L2 + c)v0| ≤ Ce−β(1−x)/ε. Hence,
|Lv0| ≤ Ce−β(1−x)/ε, which yields

∣∣LN [V + v0]ij
∣∣ ≤ Ce−β(1−xi)/ε in ΩN .

Combining this with the boundary condition

|(V + v0)ij | ≤
(
h

ε

)
|Ψ1,ij |+ CN−2 + |v0,ij | ≤ C(e−β(1−xi)/ε +N−2) on ∂ΩN ,

and applying Lemmas 5.1(ii), 5.2, 5.3(i), we get |(V + v0)ij | ≤ CN−2 for i ≤ N/2.
Combining this with (C.1), (3.3), and (1.7), we complete part (a) of the proof.

(b) This part of the proof is analogous to part (a).
(c) Since this part of the proof is similar to part (a), we skip certain details.

Again, we have |Z| ≤ |Z + z0| + |z0|, where z0 is defined in (3.3), which implies
LN [Z + z0] = Lz0. Further, −εz0,xx + b1(1, 1)z0,x = 0 and −εz0,yy + b2(1, 1)z0 = 0
imply Lz0 = [b1(x, y)−b1(1, 1)]z0,x+[b2(x, y)−b2(1, 1)]z0,y+cz0. By (3.3), this yields
|Lz0| ≤ Ce−β[(1−x)+(1−y)]/ε. Hence,

∣∣LN [Z + z0]ij
∣∣ ≤ Ce−β[(1−xi)+(1−yj)]/ε in ΩN ,

while |(Z+z0)ij | ≤ C(e−β[(1−xi)+(1−yj)]/ε+N−2) on ∂ΩN . Applying Lemmas 5.1(ii),
5.2, 5.3(i), we get |(Z + z0)ij | ≤ CN−2 for i ≤ N/2, and |(Z + z0)ij | ≤ CN−2 for
j ≤ N/2. Combining these two estimates, we proceed similarly to part (a).

Proof of Lemma 5.11. (a) By (5.13a), we have ψ1 − Ψ1 = 0 on the boundary of
the submesh {(xi, yj) : i = N/2, . . . , N, j = 0, . . . , N} where ψ1 is defined.

In this part of the proof we consider only i > N/2. Recalling the notation (5.3),
we introduce the following decomposition:

LN (ψ1 −Ψ1) = (LNψ1 − L1Ψ1)− (LN
1 Ψ1 − L1Ψ1)− (LN

2 + c)Ψ1.

Using Taylor series expansions and (5.8), (3.3), (4.10), we have

|LN
1 Ψ1 − L1Ψ1| ≤ Chε−2e−β(1−xi+1)/ε, |(LN

2 + c)Ψ1| ≤ Ce−β(1−xi)/ε.

In addition, we claim that

|LNψ1,ij − (L1Ψ1)ij | ≤ Ce−β(1−xi)/ε.(C.2)

Since (1.5), (1.7) imply that h ε−2 ≥ C and e−β(1−xi+1)/ε ≤ Ce−β(1−xi)/ε, we have

|LN (ψ1 −Ψ1)ij | ≤ C(h/ε) ε−1e−β(1−xi)/ε.

Further, by Lemmas 5.1(iii) and 5.3(iii), we get |ψ1,ij −Ψ1(xi, yj)| ≤ C(h/ε+N−2),
which yields statement (a) of the lemma.

To prove our claim (C.2), it suffices to check that
∣∣∣∣b1(x, y)εv0,xx2

− L1Ψ1

∣∣∣∣ ≤ Ce−β(1−x)/ε.(C.3)
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By Remark 4.4, we have −εΨ1,xx + b1(1, y)Ψ1,x = b1(1, y)εv0,xx/2, which implies

L1Ψ1 =
b1(x, y)εv0,xx

2
+ [b1(x, y)− b1(1, y)]

(εv0,xx
2

− v0,x
)
.

Furthermore, using (3.3), (4.10), and |b1(x, y)− b1(1, y)| ≤ C(1− x), we obtain (C.3)
and thus complete part (a) of the proof.

(c) This part of the proof is slightly different from part (a); namely, we have to
estimate LN

2 Ψ̃1 more carefully. Note that we consider only i, j > N/2 in part (c). Us-
ing the notation (5.4), we have LN

2 Ψ̃1 = −r2[Ψ̃1]−L2Ψ̃1. Further, (5.8), (3.3), (4.10)
imply that |L2Ψ̃1| ≤ Ce−β(1−x)/ε and |r2,ij [Ψ̃1]| ≤ Chε−2e−β(1−yj+1)/ε. Combining
these two estimates, we proceed as in part (a).

(b), (d) These parts of the proof are analogous to parts (a) and (c), respec-
tively.
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