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ERROR EXPANSION FOR AN UPWIND SCHEME APPLIED TO A
TWO-DIMENSIONAL CONVECTION-DIFFUSION PROBLEM*

NATALIA KOPTEVAT

Abstract. We consider a singularly perturbed convection-diffusion problem in a rectangular do-
main. It is solved numerically using a first-order upwind finite-difference scheme on a tensor-product
piecewise-uniform Shishkin mesh with O(N) mesh points in each coordinate direction. It is known
[G. I. Shishkin, Grid Approzimations of Singularly Perturbed Elliptic and Parabolic Equations, Rus-
sian Academy of Sciences, Ural Branch, Ekaterinburg, Russia, 1992 (in Russian)] that the error is
almost-first-order accurate in the maximum norm. We decompose the error into a sum of continu-
ous almost-first-order terms and the almost-second-order residual under the assumption e < CN~1,
where ¢ is the singular perturbation parameter and C is a constant. This error expansion is applied
to obtain maximum-norm error estimates for the Richardson extrapolation technique and derive
bounds on the errors in approximating the derivatives of the true solution by divided differences
of the computed solution. The analysis uses a decomposition of the true solution requiring fewer
compatibility conditions than in earlier publications. Numerical results are presented that support
our theoretical results.

Key words. convection-diffusion, upwind scheme, singular perturbation, error expansion,
Richardson extrapolation, approximation of derivatives, Shishkin mesh

AMS subject classifications. 65N06, 65N15, 35C20

DOI. 10.1137/S003614290241074X

1. Introduction. The main result of this paper is a certain error expansion for
the singularly perturbed two-dimensional convection-diffusion problem

Lu = —eAu+bjug +bouy +cu = f in Q= (0,1) x (0,1),

(1.1) u=20 on 0f).

Here ¢ is a small parameter that satisfies 0 < £ < 1, while b1 (z,y), ba(z,y), c(z,y)
are smooth functions with

(1.2a)  by(x,y) > B1 >0, ba(x,y) > B2 >0, c(x,y) >0 forall (x,y) €,
where (31, (B2 are positive constants. To simplify the presentation we assume that

(1.2b) Gr=p02=p8>0.

Note that all the results of this paper also hold true for the general case (1.2a); see
Remarks 1.1 and 4.5.

The solution of problem (1.1) has exponential layers at the outflow boundaries
x=1and y =1 (see [8, 10]). We are interested in e-uniform numerical methods that
resolve the boundary layers. One approach is using layer-adapted highly nonuniform
meshes.

Problem (1.1) is discretized using the standard first-order upwind scheme

LNuN = (=e(82 + 62) + b1, Dy + boij Dy +cij)uyy = fij  inQV,

1.3
(+5) upy =0 on 0QN.
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Here &2, 62, D, D, are the standard finite-difference differentiation operators; see
notation (2.1). Note from [11, 8, 10] that this scheme satisfies the maximum principle.

We discretize on the mesh QY = &, vy X Gy n = {(z4,y;) €Q: 4, =0,...,N}
that is the tensor-product of two equal piecewise-uniform meshes. Each of these one-
dimensional meshes @, v is constructed by dividing each of the subintervals [0, 1 — o]
and [1 — 0,1] into N/2 equal subintervals of width H and h, respectively:

(14) 2=y = iH for i=0,...,N/2, where H=2(1-0)/N,
A TEYT U (1-20) 44k for i=N/2,...,N, where h=25/N.

Shishkin [13] was the first to suggest such piecewise-uniform meshes for problems
like (1.1) with the mesh transition parameter ¢ := min{(2/8)eln N, 1/2}. For sim-
plicity we assume that

(1.5) e<CN1,

which is not a restriction in practical situations. This assumption implies that

(1.6) o:%slnN.

Note also that N™! < H < 2N—! and

(1.7) ﬁ - é N 1in N, e B—zns2)/e — —B(—yny2)/e — —Bo/e _ N—2
£

Further, let 0QY be the set of mesh points on the boundary, i.e., 9QY = QN N 9Q,
while QY = QM\9QY is the set of the internal mesh points.

Thus the domain € is dissected by the transition linesz =1 —-candy=1—¢
into four parts

Qy:=[0,1—-0] x (1 —0,1], Q2 :=(1—0,1] x (1 —0,1],
Qo :=1[0,1—0] x[0,1-0], Q) =(1-0,1]x1[0,1—0].

The restriction of the mesh QV to each of them is a rectangular uniform mesh.

Remark 1.1. The analogue of QV for 3; # 3, is the tensor-product rectangular
mesh @y, N X &y, N, Where oy, Hy, hy, W, N, for k = 1,2, are defined similarly to o,
H, h, @, n with ) used instead of §; see, e.g., [8, p. 101].

The paper is organized as follows. Most of the notation is collected in section 2. In
section 3 we analyze a decomposition of the true solution into an asymptotic expansion
of order one and its residual. This decomposition and our estimates of its components
require fewer compatibility conditions than in earlier publications [13, 7].

In section 4 we present a certain error expansion for the upwind scheme (1.3)
on the Shishkin mesh (1.4). Shishkin [13] gave an e-uniform almost-first-order esti-
mate of the error in the discrete maximum norm, which was slightly improved in [5,
Remark 3.3] to

Huf}] —u(z,y;)] < CN~'InN.
We decompose the error into a sum of continuous almost-first-order terms and the
almost-second-order residual (Theorem 4.1). This error expansion is applied in sub-
section 4.1 to obtain maximum-norm error estimates for the Richardson extrapolation
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technique, and in subsection 4.2 to derive bounds on the errors in approximating the
derivatives. Section 5 is devoted to the proof of Theorem 4.1.

Similar error expansions were constructed in [9, 4] for one-dimensional convection-
diffusion problems. These error expansions were used there to analyze the Richardson
extrapolation technique. We mainly follow the analysis in [9], extending it to the two-
dimensional problem. In subsection 4.2 we obtain a two-dimensional analogue of the
one-dimensional estimates [1, 3, 4]. We follow the approach of [4], where, to analyze
a defect correction method, the error expansion was also used to obtain bounds on
the differences of the error in two adjoining nodes.

Richardson extrapolation applied to singularly perturbed problems was also stud-
ied in earlier publications of Shishkin [12, 14], where e-uniform maximum-norm er-
ror estimates were obtained for a one-dimensional parabolic problem and a two-
dimensional elliptic problem in an infinite strip.

Numerical results supporting our theory are presented in section 6.

2. Notation. Throughout the paper we use the following notation. Let k be a
nonnegative integer and a € (0, 1]. The standard notation C*(Q) is used for the space

of functions whose derivatives up to order k£ are continuous on €2, with the norm

e = > > nax

0<I<k i+j=I

aiJrj
aay”)’ '

As usual, we simply write C(2) and ||v|| when k = 0. The notation C*%(Q) is used
for the space of Holder continuous functions with the norm

|v(z) — v(a)] ‘ o+ H
v = sup o, v = ||v||, + E —— ,
H H(),a w2/ €Q, ot ||I _ x/Hg H Hk,a H Hk it 8mzayj 0.0
where || - || is the Euclidean norm in R2. Further, we shall use the notation C'*(Q)

when o = 1, and C1*(Q) only when a € (0,1).

Let v be a discrete function defined on QY C QN. By |[v]|gn = maxgy |vij| we
denote the discrete maximum norm of v on QV. Sometimes we shall simply write |[v]|
when QY = QN

The finite-difference operators are defined in a standard manner by

_ D vitr; — Dyvig

B Vi — Vi1
h/::l"_a?'— , D [ M’ 62'U = B
o i i i—1 x Vij hi T (hi + hit1)/2
’ _ Vij — Vij-1 2 Dy vij+1 = Dy vij
hj =y —yj-1, Dy vij = ————, 6yvij =

h; (hj + hjt1)/2

Here v;; is any discrete function. Note that when it is clear that v(x, y) is a continuous
function, we shall sometimes use the notation v;; := v(z;,y;), while when it is clear
that v;; is a discrete function, we shall sometimes use the notation v(x;,y;) = v;j.

For an arbitrary Q C Q and arbitrary constants a, b on QN define the function

L. 0. _ a for (:E“y]>€(27
Eij(a, 4 b) = { b for (zi,y;) € QV\C.

We shall also use other similar notation, e.g., &;(a,i < N/2; b).
Throughout the paper, C, sometimes subscripted, denotes a generic positive con-
stant that is independent of € and any mesh used.
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3. Decomposition of the solution. In this section we decompose the solu-
tion into an asymptotic expansion of order one and its residual. We estimate the
components of this decomposition and their derivatives.

THEOREM 3.1. Let o € (0,1), and 8 be from (1.2). Suppose that f € C>1(Q)
and satisfies the compatibility conditions

(3.1a) f(0,0) = f(0,1) = f(1,1) = f(1,0) = 0,

)
(3.1Db) (i)y (0,0) = (Z;)x (0,0),
)

(3.1¢) <bll (blgx _ bg(% —c> [lﬁ] 0.0)= (i)z (0,0).

Then the boundary-value problem (1.1) has a classical solution u € C**(Q), and this
solution can be decomposed as

UZ(UQ+U0+w0+Zo)+E(U1+U1+’LU1+21)+52R,

k k

where ug € C31(Q), uy € CHH(Q), aaTkvl’ %wl € CHY(Q) for k >0, 2 € C3(Q),
R e CHY(Q), and

(3.2) |luollz,1+lull1,r < C,  up(x,0) = ug(0,y) =0, uo22(0,0) = ug,yy(0,0) =0,

’Uo(xay) = 7”0(15y)eibl(Ly)(liz)/Ea wo(x7y) = 7“‘0(1" 1)67172(9:’1)(17:”/87

(3:3) —b1(L,1)(1—z)/e—b2(1,1)(1-y)/e
ZO(xay) :u()(lal)e e 2 3

< Ce—ke—BU-a)/e

)

8k
[

1,1,[0,1
(3.4a) ok [0.1]
ka1(~,y) < Ce ke PO-v)/e for 0 <k <3,
Ay 1,1,[0,1]
3k+m
(3.4b) ‘(%U’“(?ymzl(x’ y)‘ < O~ htm) g=Bl(—2)+(1-y))/e for 0<k+m<3,
(3.5) IR <C,  |LR(z,y)| < C(1+e e PUmm)/e 4 emle=Bl-v)/e),

_ Remark 3.1. In (3.4a) by || %vl (w,-)[l1,1,j0,11 We denote the norm of the function
2v1(z,y) as a function of the variable y in the space C*+1[0, 1] of Hélder continuous
functions. The second line in (3.4a) should be understood similarly.

Remark 3.2. Note that C11(Q) = W2°°(Q), and for any function in C'!(Q)
its second partial derivatives exist almost everywhere [2, pp. 151, 154]. Hence, since
R € CH1(Q), in (3.5) the second inequality is to be understood in the sense that it
holds true almost everywhere.

Remark 3.3. Shishkin [13, Theorem III.2.1] decomposed the solution into a
smooth part and a layer part so that the layer part lay in the null space of L. A
similar decomposition was constructed by Linf} and Stynes [7]. They presented a full
analysis and the explicit compatibility conditions. The solution was decomposed into
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an asymptotic expansion of order one and its residual. Then the residual was com-
bined with the smooth part of the solution so that the layer part “almost” lay in the
null space of L. Note that the hypotheses of our theorem are weaker than those of
[7, Theorem 5.1]. In particular, since we do not combine the smooth part with the
residual 2R and do not estimate the derivatives of the latter, our decomposition is
useful only for small values of ¢, e.g., under our assumption (1.5), but we require fewer
compatibility conditions at the corner (0,0).

Proof. We mainly follow the proof and the notation of [7, Theorem 5.1], but omit
certain parts of this proof that are unnecessary for our decomposition, and combine
certain terms in a different manner.

By [7, Lemma 2.1], the compatibility conditions (3.1a) combined with f € C31(Q)
imply that u € C>%(Q).

We decompose w as in [7]. Thus, ug and u; are the solutions of the reduced
problems [7, (5.2)]. Note that the boundary conditions ug(z,0) = u(0,y) = 0 for g
yield ug 32 (0,0) = ug,,,(0,0) = 0 in (3.2), while the first estimate in (3.2) is obtained
applying [7, Theorem 4.1] twice. First, ug € C*1(Q) since f € C*(Q), while (3.1)
implies the compatibility conditions [7, (4.8a), (4.8b), (4.8¢)]. Second, u; € C*(Q)
since Aug € CH(Q), while the compatibility condition Awug(0,0) = 0 corresponds to
[7, (4.8a)].

Furthermore, v; and w; are given explicitly by [7, (5.11b), (5.15b)], while z is
the solution of the problem [7, (5.17b), (5.17¢c)]. By [7, Lemma 5.2], the compatibility
condition f(1,1) = 0 implies that there exists z; € C3(Q) satisfying (3.4b).

Estimates (3.5) are derived similarly to [7, (5.31)] and the argument that follows
it. Note that in [7] R € C*%(Q), while we have R € C*!(Q); see Remark 3.2. The
first estimate in (3.5) follows from the second by the maximum/comparison principle
extended to functions in the Sobolev space W12(Q) (see [2, section 8.1]). 0

4. Error expansion and its applications. In this section we present an ex-
pansion of the error of the upwind scheme (1.3) on the Shishkin mesh (1.4), (1.6)
into a sum of continuous first-order terms and the second-order residual. This error
expansion is applied in subsection 4.1 to obtain e-uniform maximum-norm error es-
timates for the Richardson extrapolation technique, and in subsection 4.2 to derive
bounds on the errors in approximating the derivatives.

THEOREM 4.1. Suppose that (1.5) and the conditions of Theorem 3.1 are satisfied.
Let u™ be the solution of the discrete problem (1.3) on the mesh (1.4), (1.6). Then

h
(4.1) uf\jf —u(zy,y;) = HO(xi,y;) + (5) U(xi,y;) Jng,

where ®(x,y) and ¥(z,y) are defined in terms of ug, vo, wo, and zg from Theorem 3.1,
and p(z,y) € CH1(Q) such that
(42) ||<10H1,1 S Ca

as follows:

®(z,y) = p(z,y) — (1, y)e DI/ — (g 1)et2(m DU/

(4.3) F (1, 1)e 1 WD) /e=ba(L,)(1=y) /2,
b2 (1, +b3(1,1
W(a,y) = 11— ) UL LEHL D)
4.4
o (332, 1w + 831, 1z0)

+e'(1-y)

2 )
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while the residual Rf}] satisfies
(4.5) IRY| < ON72£;(1,Q; In® N).

Proof. The whole of section 5 is devoted to the proof of this theorem; see also
Remark 4.1. 0
Remark 4.1. A careful inspection of the proof of Theorem 4.1 shows that

LV — ) = g P10 ;L b20.4y)
+ <h> |:5b1 (’UO,JJ:L’ + ZO,a:m) + Eb2(w0,yy + ZO,yy)

e 2 2

+...,

where . .. denotes the terms whose contribution to the error is of almost-second order;
see (5.1), (5.2), (5.7), (5.16), (5.18). The standard approach is to define the auxiliary
continuous problems

(bruo,za + b2“0’yy) i

(4.6a) L® = 3 nQ, & =0ond,
T, b xrxr rxr T,

(4.6b) LY, = b1 (vo, 2+ “0.00) in ¥, =0 on 01,
_ b _

(4.6¢) LUy =S 2(“’04“3 *w) 0 By = 0o 00,

and derive the error expansion
_ A\ _
ull —u(zi,y;) = HO(xi,y;) + <6> (W1 (@i, y;) + Walwg, yy)] + -,

where ... denotes almost-second-order terms; see, e.g., [9] for the one-dimensional
case. Our proof mainly follows the analysis of [9], extending it to the two-dimensional
case, but, as we shall see, the solutions of the two-dimensional auxiliary problems (4.6)
are only in C'1®() since the first-order compatibility conditions are violated. Since
the solutions of (4.6) do not exhibit enough smoothness for our analysis, our error
expansion (4.1) uses their asymptotic expansions of order zero; see Remarks 4.2-4.4.
Remark 4.2. ¢(x,y) used in Theorem 4.1 is the solution of the reduced problem

(bruo,zz + batig yy)
2

(4.7) bipg +bapy +cp = nQ,  oz,y)=0 ifx=00ry=0,

where ug is from Theorem 3.1.

Remark 4.3. ®(x,y) in (4.3) is an asymptotic expansion of order zero for the
solution ®(z,y) of problem (4.6a). We chose to use ®(x,y) instead of ®(x,y) since,
as we shall prove in Lemma 5.7, ®(z,y) € C%(Q), while by [7, Lemma 2.1], we
have ®(z,y) € C1*(Q) for a € (0,1). Note that generally ®(x,y) ¢ C*(Q) for any
a € (0,1), since the right-hand side (b1uo 2z + bauo,yy)/2 does not generally vanish at
(1,1) and thus does not satisfy one of the compatibility conditions.

Remark 4.4. Decompose W(z,y) in (4.4) as U = (U; + ¥;) + (Uy + Uy); see
(5.8) for details. Note that Wy (x,y)+ ¥, (z,y) and Wy(z,y) + Ua(z, y) are asymptotic
expansions of order zero for the solutions ¥ (x,y) and Wy(x,%) of problems (4.6b),
(4.6c). By (3.3), one can easily check that W, ¥, ¥y, and Wy are chosen so that

bl(Ly)EUO,xm o b1(17 1)520,1;1:

_5\111,193 + bl(la y)\Ill,a: = f7 _E\ill,:vz + b1(17 1)@1,1 - f»
ba(zx, 1)ev ~ - b1(1,1)ez
CeWayy + ba(e,1)Ws, — w gy + ba(1, 1), = w
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Remark 4.5. If $1 # (2 and the mesh Wy, n X Wy, v described in Remark 1.1 is
used, then we have a slightly different error expansion:

ugy — u(wi,y;) = Hi®1(xi,y;) + Ha®a(ws,y;)

(2 ot ) + (%) 102+ Bal(on) + R

Here ¥, + \ill and Wy + \ilg are the first and the second terms on the right-hand side
in (4.4)—see Remark 4.4 and (5.8)—while ®; and @ are defined by (4.3) with ® and
@ replaced by @ and ¢y, for k = 1,2. These functions ¢; and @y are the solutions of
the reduced problem (4.7) with the right-hand side (b1ug,zz + bouo,yy)/2 replaced by
biug z5/2 and boug /2, respectively.

4.1. Richardson extrapolation. Now we shall see that the error expansion
given by Theorem 4.1 immediately implies e-uniform maximum-norm error estimates
for the Richardson extrapolation technique.

In this subsection for the mesh QY we shall use the slightly different notation
Q(,, N =N = Wo,N X Wg,n. We shall also use the tensor-product rectangular mesh
QO-’QN = Wo2N X We2N = {(f“gj) eN: 1,j= 0,,2N} Here Wo2N is a
piecewise-uniform mesh with the meshsizes h/2 and H/2 obtained uniformly bisecting
the original mesh @, n. Note that @, 2n is also described by (1.4) with the same mesh
transition parameter o (1.6) and N replaced by 2N. The two rectangular meshes are
nested; i'e'a QU,N = {(Ilayj)} C QU,QN = {(-’img])}’ and (xiayj) = (:Z'Qiang)~

Let a3 = u*N(Z;,7;) be the solution of the discrete problem (1.3) on the mesh
Qs on. Then under the conditions of Theorem 4.1, in addition to (4.1) we have

“ON/~ ~ . 1 . 1 /h - ~ -
UQN(?Ei,yj) - U(.Tz,y]) = §H(b(xzay])§ (5) \Il(xlay]) + R2N(xlay])

Hence

and we arrive at the following.
COROLLARY 4.2. Under the conditions of Theorem 4.1, we have

‘[QQQN(xi,yj) - uf\;] —u(zi,y;)| < CNT2E;(1,Qo; In? N)
_c N2 in QN N Q,
N2I®N in QM\ Q.

Thus, while the two computed solutions uf\j and ﬂ?JN are almost-first-order ac-
curate, their linear combination [2a2™(z;,y;) — uf}’] is almost-second-order accurate
e-uniformly.

4.2. Approximation of derivatives. In this subsection we apply the error
expansion given by Theorem 4.1 to derive bounds on the errors in approximating the
derivatives of the true solution by divided differences of the computed solution.

COROLLARY 4.3. Under the conditions of Theorem 4.1, we have

Nt in QN N Q,
(4.8a) |D;eg‘ + |D;u£\]]- — Uy (wi_1/2,95)| < C N-'n*N in (_ZN N Qs
N_lth/E in QVN (Ql @] ng),
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N1t in QN N Q,
(4.8b) ’Dy_eﬁ\” + ‘Dy_uf}/ —uy (i, yj_12)| < C N~'In?’N  in QN Ny,
NﬁllnN/é‘ m QNQ(QQUQH),

where eg = uf}' —u(z;,y;) is the error, while x;_y /5 and y;_1 /2 are the midpoints of
the segments [x;_1, ;] and [y;—1,y;].

Proof. Since (4.8a) and (4.8b) are similar, we shall prove only bound (4.8a).
By Theorem 3.1 and (1.5), (2.1), (1.4), the second inequality (4.8a) follows from the
bound on |D; e[, so we need prove only the first bound (4.8a).

By Theorem 4.1, we have

- N - hy - ~-pN

(19) Dl = HD;8(ws,15) + () Dy 0o 5) + DR,

First, using (4.5), (2.1), (1.4), we get estimate (4.8a) for [D; R}Y|.

Further in this proof and later throughout the paper, we shall use the inequalities

e N1 — z)e y-2)/e < Ce—Bll-w)/c
(4.10) e1(1 — yle-t@D(-/s < Ce=BU-)/z.

Define

) . “1(1 — y)b2(z, 1
B(r.9) = ple.y) — gl e OO/ (e y) = S L2000 DuolEy),

Since |D; @;;| < maxg |®,|, then by (4.2) we have |D; ®;;| < C. This implies esti-
mate (4.8a) also for |HD; ®].

Similarly, we get | D, \illj| < C. Note that in QyUQ; we have the sharper estimate
|D;¥,;| < ON~2, since (3.3) and (1.7) imply that maxg, g, | V.| < CN~2. Hence,
|(h/e)D; ®;| also satisfies inequality (4.8a).

We proceed similarly with Dy (® — ®);; and D, (¥ — ¥);;. Using (4.3), (4.4),
(3.3), we obtain |D; (& — )| + |D; (¥ — ¥);;| < 1/e. However, in Q5 U Qy we
need sharper estimates. By (2.1), we have |D; (® — ®),;| < (2/H) maxg, 0, | P — B|.
Combining this with (3.3), (1.7), we get |D; (® — ®);;| < CN~!in Qg UQ,. Similarly,
|D; (¥ —0);;| < CN~'in Qo UQy. Hence, |[HD; (® — ®),;| and |(h/e)D; (¥ — ),
also satisfy inequality (4.8a).

Combining the estimates that we derived for the right-hand terms in (4.9), we
obtain the first bound (4.8a). This completes the proof. O

5. Proof of Theorem 4.1.

5.1. Discrete maximum/comparison principle and its corollaries. In this
subsection we state the comparison lemmas that will be used to prove Theorem 4.1.

It is well known that the upwind scheme (1.3) satisfies the discrete mazimum/
comparison principle, which implies the following comparison lemma.

LEMMA 5.1. Let QN be a connected submesh of Q.

(i) If |LN’UZ'j| S LNB,‘J‘ m QN and |’Uij| S Bij on OQN, then ‘Uij| S Bij m QN.

(it) If vi; = 0 on IOV, then ||v]lay < B~ LN V|| gn -

(iti) If LNvij = 0 in QN, then |[vllgx < [|v]lsan -
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Proof. See [11, Chapter IV] and [8, Chapter 13]. 0

The following three lemmas follow from Lemma 5.1(i). We defer their proofs to
Appendix A.

LEMMA 5.2. If LNv;; = 0 in QN and |v;;| < e P17/ on 9OV | then |v;;| <
CN~2 fori < N/2.

LEMMA 5.3. (i) If [LNv;| < e PU=2/e in QN and vi; = 0 on OQV, then |v;;| <
CN=1in QN and |v;j| < CN~2 fori < N/2.

(ii) If |ILNv;| < Eij(e te PO/ i > N/2; 0) in QN and v;; = 0 on OQV, then
|’Uij| < Cgij(N_l,Z' < N/2, 1)

(iif) Let |LNv;;| < e~te=PU=2)/e for i > N/2, where v;; is defined for i =
N/2,...,N, j =0,...,N, and v;; = 0 on the boundary of this submesh, i.e., if
i=N/2,N orj=0,N. Then |vi| <C fori> N/2.

Remark 5.1. Clearly, the analogues of Lemmas 5.2 and 5.3, with z, i replaced by
Y, 7, also hold true.

LEMMA 5.4. If [LNv;;| < &;(0,Q0; 1) and vi; = 0 on 9QN, then |v;;| <
Ce 8ij(1,f_20; lnN) < CN—! gij(l,QO; th)

5.2. Error and truncation error. We shall derive a representation of the error

N N
ey = Uy — u(Ti, y;)-
One can easily check that LNeg = —LNu;; + (Lu);; =: ri;[u]. Here for the truncation

error we have used the notation

(5.1) rii[v] == —LNvi; + (Lv)y.

Recalling the decomposition of u given by Theorem 3.1, we have

(5.2) LNeN = rlug + vo + wo + 20] + erfuy +v1 + wy + 21] + %r[R).

Furthermore, we study the contributions to the error of each of the right-hand side
terms separately.
In this section and the related appendices we shall use the notation

53 Lyv := —evgy + b1 (x, y) Vs, Lov := —evyy + ba(x, y)vy,
' LYv = —e82v + by (z,y) Dy v, LY v := —eb62v + ba(z,y) D, v,
(5.4) i) = =LY vy 4 (Lav)ij, 1o)== =L vy + (Lav)ig,

sothat L =Ly + Lo +¢, LN = LV + LY + ¢, and r[v] = r1[v] + ra[v].

5.3. Contribution of €?7[R] in the maximum norm. The contribution to
the error of this component of the right-hand side in (5.2) is described by the following
result.

LeEMMA 5.5. If LNw;; = ri;[R] in QF, where R is from (3.5), and w;; = 0 on
OOV | then ||w|| < CeIN~L.

Proof. Obviously,

(5:5) [w[| < flw + B[ + || B]-

Since ri;[R] = =LY R;; + (LR);j, we have L™ [w+ R];; = (LR);;. Recalling (3.5) and
applying Lemmas 5.1(ii), 5.3(i), and 5.1(iii), we get

w4+ R|| < C(1+e *N71) + max |R;|.
BN
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Combining this with (5.5), (3.5) and observing that (1.5) implies 1 < Ce ™ 1N~! we
complete the proof. 0

Remark 5.2. The proof of this lemma does not use any estimates of the deriva-
tives of R and thus allows us to use a decomposition of the solution requiring fewer
compatibility conditions; see Remark 3.3.

Now, by (1.5), we have the following.

COROLLARY 5.6. If LNv;; = 2ri;[R] in QF, where R is from (3.5), and v;j = 0
on OQN, then |v| < CN~2.

5.4. Contribution of r[ug]. The contribution to the error of this component
of the right-hand side in (5.2) is described by the following two lemmas.

LEMMA 5.7. (i) The reduced problem (4.7) has a solution p(z,y) € C11(Q) such
that ||p|l11 < C, and thus ®(z,y) from (4.3) using this function ¢ is also in CH1(€).

(ii) If w satisfies

(bluO,mz'i_quO,yy)ij . QN
m

(56) LN’LUij = D) ) Wiy = 0 on 8QN,

|wij - @(xl,y])| S CN_l gij(]-aQO; In N)

Proof. (i) Note that ¢ is the solution of the reduced problem (4.7) with the
right-hand side (biug 2z + bauo,yy)/2, which, by (3.2), is in C*!(Q) and vanishes at
the corner (0,0), i.e., satisfies the compatibility condition [7, (4.8a)]. Hence, applying
[7, Theorem 4.1], we have ¢(z,y) € CH1(Q). This implies that ®(z,y) € C11(Q).

(ii) This part of the proof is given in Appendix B. a

LEMMA 5.8. IfLNvij = 75{uo] in QN where ug is from Theorem 3.1, and 15 =0
on 00N, then

|’U7;j — H‘P(l’w yj)‘ S CN_2 51']'(]—7 Q(); 11’1 N)
Proof. Recalling (5.1) and using Taylor series expansions and (3.2), we obtain
|7"ij [’LLO] — (hibluo,m + hijUO’yy)ij/2’ < C(EN_I + N_2)||’U,0H3 < CN_2.
Furthermore, since h; = h; = H for (z;,y;) € Qo, we have

(5.7) |rijuo) = H (b1uo,za + bato,yy);,] < CINT'E5(0,Q0; 1) + N72).

Combining this with LN(vij — Hw;j;) = rij[uo) — H(b1uo 2z + ot yy)ij, where w;; is
from Lemma 5.7, we get

|LN(U”‘ - Hwij)’ < C[Nil Sij(O, Qo; 1) + N72].
Now, applying Lemmas 5.4 and 5.1(ii), we have
‘Uij - Hw¢j| < CN~—2 gij(l,QO; In N).

By Lemma 5.7, this yields the statement of the lemma. 1]
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5.5. Contribution of r[vg + wo 4+ z¢]. Now we shall study the contribution
to the error of the component r[vg + wg + zo] of the right-hand side in (5.2).

The main result of this subsection is the following.

LEMMA 5.9. If LNvij = rijlvo + wo + 2o] in QN where vy, wo, 2o are from
Theorem 3.1 and v;; = 0 on OQY, then

h _
Vij = () U(zi,y;)| < CN72 E;(1,Qo; In® N),

3

where U is from (4.4).
The whole subsection is devoted to the proof of this lemma.
Decompose ¥ from (4.4) as ¥ = Uy + Uy + Uy 4+ Uy, where

Uy (z,y) = e'(1- x)b%(l,y)v07 \ifl(x y) = e (1 —2)b3(1, 1)z
(5.8) » 2 ’ By 2 ’
Uy(r.y) = (1-— y)QbQ(x, 1)w07 (e y) = © (1— y2)b2(1, Lz

Regarding the components of this decomposition, see Remark 4.4.
Now decompose v from Lemma 5.9 as v;; = V;; + W;; + Z;;, where

< CN~2on 00",

(5:92) LNV =rfue] m QY V(h>\ﬂ

(5.9b) LYW = r[wo] in QV, W — (Z) Uy| < CN~2o0n 00V,

< CN~2on 00",

(5.9¢)  LNZ =r[z)in OV, Z— <’;> (T + Ty)

Note that such a decomposition of the boundary condition v;; = 0 on OOV is possible.
Indeed, if x = 1 or y = 1, we have ¥y (z,y) + Ui(z,y) = Ya(z,y) + Va(x,y) = 0,

while if z = 0 or y = 0, we have [¥;| + |[Ua| + |y | + [¥s| < Ce™2 < CN~2. Hence,
|\IJ1 + Uy + Uy + \I/2| < CN~2 on 9QN.

Since (;,y;) € Qo if both i, j < N/2, Lemma 5.9 follows from (5.10):

N
(5.10&) Vii — <Q) \Ill(xi,yj) < CN_2 gij (1112 N,t1 > ?; 1) ,
h -2 2 N
(510b) Wij — g \Ilg(xi,yj) <CN g” In N,] > 5; 1],
- - N
(510C) Zz — (Z) [\Ill(xi,yj) + \I/Q(in,yj)] S CN_2 g”] (1112 N, Z,] > 5, 1) .

Further, we shall prove that (5.10) follows from the following two lemmas.
LEMMA 5.10. For V, W, Z from (5.9) we have

N
(5.11a) Vil <CN™2 fori< 5
P . _ N
(5.11b) Wijl <CNT2 forj < <,
N N
(5.11c) |Zij| <ON™2 if i<5 o j<o
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Proof. We defer the proof of this lemma to Appendix C. O

Define the auxiliary discrete functions ¢y ;; for ¢ = N/2,...,N, j = 0,...,N;
¢2,ij for i = 0,...,]\77 ] = N/Z,,N, and il,i]ﬁ ZLQJ']' for ’L,j = N/Z,,N as
follows. Let them satisfy the discrete equations

2
b ij . _N
% fomzL,,,,N_l,j:5+1,...,N—1,
ebr20.0n)ij
2
2

N
(5.12a)  (LN)ij = fom‘=5+1,...,N—1,j=1,...,N—1,

(5.12b)  (LVepa)i; =

(5.12¢)  (LN4)y = ,

N
forij="7+1...,N~1

- N
(5.12d)  (LN4y)s; = fori,j=2+1...,N—1

)

and the following conditions on the boundaries of the submeshes, where they are
defined:

N
(5133“) wl,ij = \Ijl(xiayj) if @ = 57 N Orj = 07 N7
N
(513b) '(/)2’1‘.]‘ = \Ifg(xi,yj) if i = O7 N OI‘j = 5, ,
- - N N
(513C) ¢k,ij = \Ilk(:ci,yj) if 7= 5, N OI‘j = 5, N, k= 1,2

LEMMA 5.11. For iy, ¥a, 9n, 1 defined by (5.12), (5.13) and ¥y, Uy, Uy, U,
from (5.8) we have

h . N
(514&) |w1,ij —\Ill(xi,yj)| S C <€> fO?”’L: 5+1,...,N,
h . N
(514b) |1/J2,ij - lI/Q(xZayj)l <C ([_:) fO’Fj = E +1,. aNa
~ ~ h .. N
(5.14c¢) [Vn,i5 — Ui(zi,y;)| < C - fom,yz;—i—l,...,N, k=12
Proof. This lemma is proved in Appendix C. ]

LEMMA 5.12. Estimates (5.10) follow from Lemmas 5.10 and 5.11.

Proof. To get the statement of this Lemma, it suffices to prove that

(a) estimate (5.10a) follows from (5.11a) and (5.14a),

(b) estimate (5.10b) follows from (5.11b) and (5.14b),

(c) estimate (5.10c) follows from (5.11c) and (5.14c).

(a) By (5.8), (3.3), (4.10), (1.7), we have |¥;(z;,y;)| < CN~2 for i < N/2.
Combining this with (5.11a), we get (5.10a) for ¢ < N/2. Since we have (5.14a), then
to obtain (5.10a) for ¢ > N/2, it suffices to prove that

h R\ > N
Vij — () Y145 <C <) fori > —,
€ € 2

where 9 is defined by (5.12a), (5.13a). Recalling the notation (5.4) and using Taylor

(5.15)
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series expansions and (3.2), (3.3), for ¢ > N/2 we get

(5.16) h(blgw < Oh2€736*[‘3(1711‘+1)/6’

71,i5[vo] —

|ra,i5lvol| < (26 + b2,z'jN_1)yrg[%§] 00,4y (i, y)| < ON~FemPUmm/e,

Note that, by (1.7), (1.5), we have N~ < Ch?c™3 and e P—i+1)/e < Ce=Bll=mi)/e
while LNV — (h/e)i1] = r1[vo] + r2[vo] — hb1vo 2z /2. Hence,

i (o]

Note that (5.9a), (5.13a) imply |V — (h/e);| < CN~2 on 9QY, while (5.10a), (5.13a)
imply [Vij — (h/e)¥r,i5] = [Vij — (h/e) 1 (zi, y;)| < CN 2 for i = N/2. Now, applying
Lemmas 5.3(iii) and 5.1(iii), we obtain (5.15). This completes part (a) of the proof.

(b) This part of the proof is analogous to part (a).

(c) Since this part of the proof is similar to part (a), we skip certain details. By
(5.8), (3.3), (4.10), (1.7), we have |¥y(z;,y;)| + |Ta(zs,y;)| < ON~2if i < N/2 or
j < N/2. Combining this with (5.11c), we get (5.10¢) if ¢ < N/2 or j < N/2. Since
we have (5.14c), then, to obtain (5.10¢) for 4,5 > N/2, it suffices to prove that

h\? N
§C<) fori,j > —.
€ 2

Note that LN[Z — (h/e)(d1 + 2)] = (r1[z0] — hbi20,42/2) + (r2[20] — hbaz 4y /2).
Hence, using Taylor series expansions and (3.2), (3.3), for i,j > N/2 we get

hbi120 0o hbsz
(rl [zo]—“*+r2[zo]—22°*/y)

2
<C (h> e le PU=m)le fori> %
€

(5.17)

A\ - _
Zij — <€) (V1,45 + 12,i5)

(5.18) <Ch2e=3(e Pl ey o=BU-vi)/e)

2

ij

which yields

AYER A% Ve By,
‘LN {Zij - < ) (V1,45 +1/12,ij)H <C (€> el (e PU—mi)/e 4 =B —vs)/e),

€

Combining this with the boundary conditions from (5.9¢), (5.10¢), (5.13¢) and apply-

ing Lemmas 5.3(iii) and 5.1(iii), we obtain (5.17). This completes the proof. |
Proof of Lemma 5.9. By Lemmas 5.10, 5.11, and 5.12, we have (5.10), which
yields the statement of Lemma 5.9. |

5.6. Contribution of er[u; 4+ v1 + w1 + z1]. The contribution to the error
of this component of the right-hand side in (5.2) is described by the following lemma.

LEMMA 5.13. If LNvij = erij(ur +v1 +wi + 2] in QN where uy, vi, wi, 21 are
from Theorem 3.1, and vi; = 0 on OQV, then

lvij| < ON72 &;(1,Q0; InN).

Proof. Since this result is very close to the well-known theorem by Shishkin
[13, Theorem 2.3], [8, Theorem 13.2], while the argument is standard, we shall only
sketch the proof. Note that it simplifies the argument that the truncation error in
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the right-hand side is multiplied by €. By (3.2), (1.5), we have |er[ui]| < CeN~! <
CN~2. By (3.4), (1.7), we get |eryi;[v1 + 21]| < C(h/e)e A=)/ for i > N/2,
and |ery ;j[v1 + 21]| < Ce PA=Tir1)/e < ON=2 for i < N/2. The term ers[w; + 21]
is estimated similarly. We have to be careful with Taylor series expansions of vy
and w; since %vl and g—ykkwl are generally in C11(Q). By (3.4a) and Remark 3.1,
we estimate as follows:

|ra.ij[va]| < Cl|vs (a5, ')H1,1,[o,1] < CerPmmlE,

|r17ij [le S Cle(',yj)Hl,l,[O)l] S Oeiﬁ(lfyj)/&"

Combining our estimates of all the components of the right-hand side and applying
Lemmas 5.1(ii) and 5.3(i),(ii), we get the statement of the lemma. 0

5.7. Proof of Theorem 4.1. The statement of the theorem is obtained by
recalling (5.1), (5.2) and combining Corollary 5.6 and Lemmas 5.8, 5.9, 5.13. 0

6. Numerical results. In this section we present numerical results illustrating
our estimates for the Richardson extrapolation technique (Corollary 4.2) and on the
errors in approximating the derivatives (Corollary 4.3).

We study the performance of the upwind scheme and the Richardson extrapola-
tion technique when applied to the test problem from [6] in which b; = 2, by = 3,
c=1,

u(z,y) = 2sing (1 — e~ 2072)/8) 42(1 — ¢=30-V)/5),

and the right-hand side f is chosen so that (1.1) is satisfied. This problem was solved
numerically using the upwind scheme (1.3) on the tensor-product piecewise-uniform
Shishkin mesh from Remark 1.1 with g, = 1.9, 85 = 2.9.

In Table 6.1 we present the errors before and after the Richardson extrapolation.
The odd rows contain the maximum nodal errors e™ := [|u} — u(2;,y;)| in the speci-
fied subdomains of €2, while the even rows contain the rates of convergence computed
by the standard formula 7(e”) = log,(e’V /e?V). Clearly, the Richardson extrapola-
tion technique decreases the nodal errors and increases the rates of convergence. Note
that the errors are very similar for € = 1076 and & = 10~%, which confirms that our
estimates are e-uniform. The rates of convergence are slightly worse than predicted
by Corollary 4.2. However, since our rates of convergence are consistent with those
for the analogous one-dimensional problems [9, 4], we expect the rates of convergence
to increase as N increases, similarly to [9, 4].

TABLE 6.1
Mazximum nodal errors before and after Richardson extrapolation.

e=10"° e=10"8
Before extrapolation | After extrapolation | Before extrapolation | After extrapolation
N Qo AN\ Qo Qo AN\ Qo Qo O\ Qo Qo O\Qo
32 | 4.944e-2 1.430e-1 | 1.069e-3 | 1.404e-2 | 4.944e-2 1.430e-1 | 1.069e-3 | 1.404e-2
0.901 0.623 1.727 1.265 0.901 0.623 1.727 1.265
64 | 2.649e-2 9.288e-2 | 3.230e-4 | 5.842e-3 | 2.649e-2 9.288e-2 | 3.229e-4 | 5.842¢-3
0.944 0.690 1.782 1.412 0.944 0.690 1.782 1.412
128 | 1.377e-2 5.759e-2 | 9.388e-5 | 2.195e-3 | 1.377e-2 5.759e-2 | 9.391e-5 | 2.195e-3
0.978 0.748 1.832 1.517 0.978 0.748 1.832 1.517
256 | 6.990e-3 3.429e-2 | 2.638e-5 | 7.669e-4 | 6.990e-3 3.429e-2 | 2.638e-5 | 7.669e-4
0.991 0.790 0.991 0.790
512 | 3.518e-3 1.984e-2 3.518e-3 1.984e-2
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TABLE 6.2
Mazimum nodal errors in approrimating the derivatives.

1Dz u™ — ugl] 1Dy u™ — uyl
e=10"96 e=10"8 e=10"°6 e=10"8
N QO QQ QO QQ Qo 91 QO Ql

64 | 3.841e-2 | 8.811e-2 | 3.841e-2 | 8.811e-2 | 5.199e-2 | 1.819e-1 | 5.199e-2 | 1.819e-1
0.938 0.711 0.938 0.711 1.001 0.811 1.001 0.811
128 | 2.005e-2 | 5.384e-2 | 2.005e-2 | 5.384e-2 | 2.598e-2 | 1.037e-1 | 2.598e-2 | 1.037e-1
0.961 0.764 0.961 0.764 0.991 0.824 0.991 0.824
256 | 1.030e-2 | 3.171e-2 | 1.030e-2 | 3.171e-2 | 1.307e-2 | 5.856e-2 | 1.307e-2 | 5.856e-2
0.974 0.805 0.974 0.805 0.996 0.838 0.996 0.838
512 | 5.241e-3 | 1.815e-2 | 5.241e-3 | 1.815e-2 | 6.554e-3 | 3.277e-2 | 6.554e-3 | 3.277e-2

TABLE 6.3
Maximum nodal errors in approzrimating e-weighted derivatives.

e||Dz u — ugl] el|Dy u® —uy||
e=10"96 e=10"8 e=10"°6 e=10"8
N [N Q12 9 Q12 Qo Q12 Qo Q12

64 | 2.524e-1 | 3.115e-1 | 2.524e-1 | 3.115e-1 | 3.739e-1 | 4.661e-1 | 3.739%e-1 | 4.661e-1
0.475 0.517 0.475 0.517 0.479 0.521 0.479 0.521
128 | 1.816e-1 | 2.176e-1 | 1.816e-1 | 2.176e-1 | 2.684e-1 | 3.248e-1 | 2.684e-1 | 3.248e-1
0.616 0.641 0.616 0.641 0.618 0.644 0.618 0.644
256 | 1.185e-1 | 1.395e-1 | 1.185e-1 | 1.395e-1 | 1.749e-1 | 2.079e-1 | 1.749e-1 | 2.079e-1
0.712 0.728 0.713 0.728 0.714 0.729 0.714 0.729
512 | 7.233e-2 | 8.427e-2 | 7.233e-2 | 8.427e-2 | 1.066e-1 | 1.254e-1 | 1.066e-1 | 1.254e-1

Tables 6.2 and 6.3 are clear illustrations of Corollary 4.2. In these tables we
present the maximum nodal errors in approximating the derivatives and their rates
of convergence computed as in Table 6.1.

In summary, our numerical results confirm our theoretical results.

Appendix A. Proof of Lemmas 5.2, 5.3, and 5.4 from subsection 5.1. If
the conditions of Lemma 5.1(i) are satisfied, we say that B;; is a barrier function for
v35. Define the auxiliary discrete functions

B\ N2 7\ —(V/2=i) N
2(1+O;> (1+a€) =0, >

2(;>+0—(N—i)h, i

It is assumed here that {z;}}¥, are the nodes of the mesh (1.4), (1.6). Furthermore,
we shall use B; and B; normalized in different manners as discrete barrier functions.

LEMMA A.1. For any positive « the discrete function B; from (A.1) is such that
e~o1-zi)/e « By < CE(N2/P § < N/2; 1) and (€62 + aD;)B; > 0.

Proof. The lower bound for B; follows from the inequality e~* < (1+¢)~!, which
holds true for ¢ > 0, with ¢t := ah;/e. The upper bound for B; is obvious for ¢ > N/2.
For i < N/2, it follows from (1 +¢)~* < e~*+**| which we have for t > 0. Setting
t = ah/e, we get B; < 2(14ah/e)~N/2 < 2¢=oo/e+(@h/9)*N/2 Fyrther, (1.7) implies
e—0/e < N—2¢/B and e(ah/e)*N/2 < e. This proves the upper bound for B;.
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The second inequality is checked using (1.4) and (2.1). In fact, (—e62+aD;)B; =
0 for i # N/2 and (—&b62 + aD;)B; > 0 for i = N/2. O

Proof of Lemma 5.2. Use B; from Lemma A.1 with o := 3 as a barrier function
for Vij - Note that LNBZ‘ > (bl,ij — ﬁ)l)x_.BZ > 0. 0

LEMMA A.2. The discrete function B; from (A.1) with o := /2 is such that
B; < CEN~Yi < N/2; 1) and LN B; > Ce PU-%)/€(N,i < N/2; e71).

Proof. This lemma follows from Lemma A.1. The first property is obvious. To
prove the second, note that LNB; > (b1,; — 8/2)D; B; > (3/2)D; B;. By (2.1),
(1.5), (1.4), calculations show that D, B; = (h; + 2¢/8)"'B; and (h; + 2¢/8)~! >
CE(N,i < N/2; e71). Recalling that B; > e~ (8/2)(1=2i/e) > ¢=B1=2:/¢) we complete
the proof. ]

Proof of Lemma 5.3. This lemma follows from Lemma A.2.

(i) By (1.5), use CN~1B; as a barrier function for v;;.

(ii), (iii) Use C'B; as a barrier function for v;;. |

Proof of Lemma 5.4. By (1.4), (1.6), for the discrete function B; defined in (A.2)
we have 0 < B; < Ce &;;(1,i < N/2; InN). Combining this with the analogous
estimate for B; and (1.5), we get

0 < Bz +B] S 05 gij(l,Qo; IHN) S CNil Eij(l,Qo; th)

By (2.1), (1.4), calculations show that D B; = 1 for i > N/2, while D B; > 0 for
i < N/2. In particular, D By/s = 2(1 + 8H/e)~'. Further, LNB; > by ;; > 3 for
i > N/2, while LN B; > (—62 4+ 8D;)B; = 0 for i < N/2. For i = N/2 we also have
LN B; > 0, which follows from

LNB; > (—e62+ 8D, )B; = [B+2e(h+ H) '|D, B; — [2e(h+ H) '] D; Biy1,

where i = N/2. These imply that LNB; > 3 &;(0,i < N/2; 1). Combining this
estimate with its analogue for LY B;, we obtain

LN(Bl -+ BJ) > ﬁ Eij(O,Qo; 1)
Hence, (B; + B;)/ is a barrier function for v;;. d

Appendix B. Proof of Lemma 5.7(ii).
Proof. Note that (4.3) implies that ®(xz,y) = 0if © = 1 or y = 1. Further,
|®(x,y)| < Ce < CN~! on 99Q. Hence,

(Bl) |’LUij - q)zj| < CNil on 6QN

To study LY (w— ®), note that, by (4.7), (5.6), we have LN w;; = (b1py +batpy +cp)i;-
Hence

(B.2) LN (w = @) = (bips + bapy + cp — LV ) + LY (0 = @).

Using Taylor series expansions, (1.5), and (4.2), which was proved in Lemma 5.7(i),
we obtain for the first term on the right-hand side that

(B.3) |(brpz + b2y + ep)ij — LV i3l < C(N"' +e)lplhn <ON1
To estimate L™ (p — ®), we define
Oy (z,y) = (L, y)e VAT Py (a,y) 1= p(z, 1) B0/
Bra(w,y) = (1, )ebr DD /e=ba(LD(=y) /e
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so that ¢ — ® = &1 + &y — P15, Thus, recalling the notation (5.3), we have

LN (p— @) = LV (D) — B1p) + LY (g — B19) + LY Dy + LYV Dy
—+ C((I)l —+ (I)Q — (1312).

(B.4)
For i < N/2, using (1.3), (2.1), (1.4), and (1.7), we obtain
(B.5) |LY (@) — ®19);5] < CNe Fl-m/e < ONe=Blo=h/e < ON—L,
Consider i > N/2. First note that

—e®1 gz +01(1,9)P1, =0, —e®19 gz + 01(1,1) P12, =0,
while the left-hand sides here are slightly different from L, ®; and L;®;5. Hence,

LY (@1 = @12)i5 = (L7 — L1)(®1 — Pr2)ij + [ba(i,y5) — b1(1,9)] 1 e (24, 95)
— [b1(@is yy) — b1(1, 1)]P12,0 (w4, y5)-
Using Taylor series expansions to estimate the first term on the right-hand side, and
the inequalities by (x,y) — b1(1,y)| < C(1 — ) and |by(z,y) — b1(1,1)| < C[(1 —z) +
(1 — y)] combined with (4.10) to estimate the other terms, we obtain
ILY (@1 — ®12)| < C(he 2ePU-mirn)/e 4 o=Bl-ai)/ey < O(he=2ePMe 1 1)e~Bl-T)/e,

Combining this with (B.5) and noting that, by (1.7), (1.5), he=2 > C and /¢ < C,
we get

h N
(B.6) |LY(®) — B1a)ij| < C K€> & <Eleﬁ(1“)/5,i > 5 0) +N1] .
Furthermore, one can easily see that

(B.7) |LY @145 < C|lpll1,1e”PEmm)/e < CemPllmm/e,

Combining (B.4) with (B.6), (B.7), and their analogues for LY (®3 — ®15) and LY &,
and then with (B.2), (B.3), we finally get the estimate

‘LN(w - (I))z]| < C |:<];,) gi' <5_1e_ﬂ(1_$i)/57i > %’ O)

+ (h> Eii (5166(1%’)/5,]’ > ﬁ; 0>
€ 2

+ e—ﬁ(l—ﬂfi)/f + e_ﬁ(l_yj)/g + N_1:| .
Combining this with (B.1) and applying Lemmas 5.1(ii),(iii) and 5.3(i),(ii), we obtain
h .. _N h 1 ._N -
‘wij _(I)ij| S C |:<€> 5: (N l,Z S 5; 1> + <€> gij <N 1,] S 5; 1> + N 1:|
h -1 4 —1
<C z gij(N , Qo; 1)+N .

By (1.7), this yields the statement of Lemma 5.7(ii). O
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Appendix C. Proof of Lemmas 5.10 and 5.11.
Proof of Lemma 5.10. (a) Obviously,

(C.1) VI <V + ol + [vol,

where vy is defined in (3.3). Since 7[vg] = —LNvg + Lvg, we have L[V + vg] = L.
One can easily check that —evg gz + b1(1,y)vo, = 0 holds true and implies that
Livg = [b1(z,y) — b1(1,y)]vo,». Combining this with |b1(z,y) — b1(1,y)] < C(1 —x)
and (4.10), we get |Livg| < Ce P12/ while |(Ly + c)vg| < Ce P1=)/¢ Hence,
|Lvo| < Ce=PU=)/¢ which yields

’LN[V—FU(ﬂ”} é Ce_ﬁ(l_wi)/a in QN~

Combining this with the boundary condition
h
|(V + UO)ij| S (E> ‘\11171;j| + ON72 + |’U0,ij| S O(Giﬁ(lizi)/a + Nﬁz) on 8QN,

and applying Lemmas 5.1(ii), 5.2, 5.3(i), we get |(V + vp)i;| < CN~2 for i < N/2.
Combining this with (C.1), (3.3), and (1.7), we complete part (a) of the proof.

(b) This part of the proof is analogous to part (a).

(c) Since this part of the proof is similar to part (a), we skip certain details.
Again, we have |Z| < |Z + 2| + |20|, where 2 is defined in (3.3), which implies
LN[Z + 2] = Lzg. Further, —e2¢ 45 + b1(1,1)20, = 0 and —ezg 4y + b2(1,1)z0 = 0
imply Lzg = [b1(z,y) —b1(1, 1)]20,0 + [b2(z, y) —b2(1, 1)]20,y + c20. By (3.3), this yields
|Lzo| < Ce Ald-2)+1=v)l/e  Hence, |LN[Z + Zo}ij‘ < Ce Al-zi)+-yj)l/e iy QN
while |(Z + 2)ij| < C(ePlA=z)+(=vi)l/e 4 N=2) on 9QN. Applying Lemmas 5.1(ii),
5.2, 5.3(i), we get [(Z + z0)ij| < CN~2 for i < N/2, and |(Z + z0)i;| < CN~2 for
j < N/2. Combining these two estimates, we proceed similarly to part (a). 0

Proof of Lemma 5.11. (a) By (5.13a), we have 1) — U1 = 0 on the boundary of
the submesh {(z;,y;) : ¢ =N/2,...,N, j=0,..., N} where 9 is defined.

In this part of the proof we consider only ¢ > N/2. Recalling the notation (5.3),
we introduce the following decomposition:

LY (ihy = Wy) = (LN — Ly 0y) = (LYW — Ly 0y) — (Ly + )Wy
Using Taylor series expansions and (5.8), (3.3), (4.10), we have
LN, — L0 | < Che2e7A0mmr)/e (LY 4 )W, | < CePUm)/e,
In addition, we claim that
(C.2) [LNpy 55 — (L104) 5] < Cem POz,
Since (1.5), (1.7) imply that he=2 > C and e P -i+1)/e < Ce=BU=2)/2 we have
[N ¢y = 01)5| < C(hfe) e le Pmm/e,

Further, by Lemmas 5.1(iii) and 5.3(iii), we get 11,5 — W1 (2, y;)| < C(h/e + N72),
which yields statement (a) of the lemma.
To prove our claim (C.2), it suffices to check that

bl (fE, y)EUO,zm

(C.3) — L0, | < CePl-)/e,



ERROR EXPANSION FOR A TWO-DIMENSIONAL UPWIND SCHEME 1869

By Remark 4.4, we have —eWU1 4o + b1(1,y) U1 5 = b1(1,y)evo 45 /2, which implies

Lywy = V0 gy 1) (TR ).
Furthermore, using (3.3), (4.10), and |b1(z,y) — b1(1,y)| < C(1 — x), we obtain (C.3)
and thus complete part (a) of the proof.

(c) This part of the proof is slightly different from part (a); namely, we have to
estimate Lév\ill more carefully. Note that we consider only ¢,j > N/2 in part (c). Us-
ing the notation (5.4), we have LY W| = —ry[W] — LyW,. Further, (5.8), (3.3), (4.10)
imply that ‘Lg\ifﬂ < Ce_ﬂ(l_x)/s and |’I"27ij [\ifl” < OhE_Qe_B(l_y.7'+1)/5. Combining
these two estimates, we proceed as in part (a).

(b), (d) These parts of the proof are analogous to parts (a) and (c), respec-

tively. 1]
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