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Summary. Difference solutions of partial differential equations can in certain
cases be expanded by even powers of a discretization parameter h. If we
have n solutions corresponding to different mesh widths h,, ..., h, we can
improve the accuracy by Richardson extrapolation and get a solution of
order 2n, yet only on the intersection of all grids used, i.e. normally on
the coarsest grid. To interpolate this high order solution with the same
accuracy in points not belonging to all grids, we need 2n points in an interval
of length 2n—1) h,.

This drawback can be avoided by combining such an interpolation with
the extrapolation by h. In this case the approximation depends only on
grid points in an interval of length 3h,. The length of this interval is indepen-
dent of the desired order.

By combining this approach with the method of Kreiss, boundary condi-
tions on curved boundaries can be discretized with a high order even on
coarse grids.

Subject Classifications: AMS(MOS): 65B05, 65N05, 65D0S5, 41A05; CR:G1.8.

Preliminaries

The numerical solution of a boundary value problem

Au=f on QcRV
u=g on 0Q (1)

by a suitable regular discretization of the independent variable(s) x depends
in a well predictable way on the coarseness of the discretization. Under certain

* This paper is based on a lecture held at the 5Sth Sanmarinian University Session of the International
Academy of Sciences San Marino, at San Marino, 1988-08-27-1988-09-05
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conditions the approximative solution is known to possess an asymptotic expan-
sion by even powers of the mesh width h of the discretizing grid. This fact
can be exploited to increase the precision order of the solution by Richardson
extrapolation (see Richardson [7]) from O(h?) to O(h*M) (compare Marchuk
and Shaidurov [5]).

Traditional Richardson extrapolation is possible only in those points x where
several approximations, corresponding to different values of h, are known. These
points are at most the points of the coarsest grid used, e.g. if h is taken from
the Romberg sequence, h=1,4,3%,4%, ...

Therefore, the increased accuracy by extrapolation is paid for by a reduction
of the domain. For an interpolation of the high-order solution only coarse
grid points are available, so the interpolation error can be expected to be large.
Furthermore, interpolation with the desired order of O (h?") requires 2n collinear
points in the grid, thereby restricting the largest mesh width h,; so it may
be necessary to use finer grids than would be appropriate, which increases the
computational effort. No use is made of the information in the values in fine-grid-
only points.

To exploit this information we could compute in these points values of
the coarse grid solutions, e.g. by interpolation on these grids; this, however,
leads to the same problems, viz. lack of points and high errors.

These problems impose restrictions especially on Kreiss’ method [3] for
the discretization of boundary conditions; here the numerical solution must
be interpolated with high accuracy in intersection points of the boundary with
grid lines.

Combined Interpolation by Spatial Coordinates and Discretization Parameter

We assumed for the numerical solutions u, of the boundary value problem
(1) the existence of an asymptotic expansion by h*:

up()=u(x)+ Y, h**Gi(x). @

k>0

Under suitable assumptions the functions U, can be expanded by Taylor in
the spatial coordinates. We consider only the expansion by one coordinate ¢,
e.g. on a grid line or diagonal, and have

uh(xo+t)= Z ajk tthk (3)

j k20

with ago=u(x,).

When we use (3) to approximate the value of a certain grid function u, in
a certain point (x,+¢t) all support points needed can be chosen in the neighbor-
hood of x,, so t=0(h). Therefore the order of the interpolation is determined
by the non-vanishing terms with the smallest j+2k (compare Steffensen [8]).
To achieve an order of 2N by extrapolation we must find a linear combination
of known approximations on several grids, with all terms with j4 2k less than
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2n eliminated; i.e. we have an interpolation problem in two variables (the param-
eter h and a spatial coordinate t). The terms to be approximated form the
silhouette S of the interpolating polynomial.

th—z chn—Z

h2n-4 th2n-4 t2h2n‘-4 t3h2n—4

th—ﬁ th2n~6 t2h2n—6 t3h2n—6 t4h2n—6 t5h2n‘6

th—S chn—S t2h2n—8 t3h2n-8 l4h2"_s t5h2n—8 t6h2n—8 t7h2n—8

Note that this silhouette is saturated; i.e. with every term it contains the whole
rectangle spanned by it and the lower left corner:

th**eS=V {l'.0§l.§l'c}: t'h*'es.

i:0<i<j
To prove the existence of the interpolating function, according to Bulirsch and
Rutishauser [1] one can try to arrange the available grid points t and mesh
widths h in such a way that the associated point grid is identical to the silhouette
of the polynomial; i.e. to index the points ¢t and the grids G (mesh widths
h) in such a way that

h?itteS<t,eG;.
According to [1] (Sect. 6.2.3) we have

Lemma 1. If the silhouette of an interpolating polynomial is saturated and identi-
cal to the grid associated to the support points, the polynomial exists and is uniquely
determined by its values in these points.

The normal case is to “follow the distribution of points and construct from
it the polynomial” [1]. Contrarily we here can choose from an ample set of
points to interpolate with a given polynomial, viz. a complete polynomial of
certain degree (with even powers of h only).

For the support point configuration to be saturated each h; must be a multi-
ple of h;.; so we choose the h; from the Romberg sequence. The grids are
indexed starting with the finest one, G, >G,>.... The points t, must be indexed
in such a way that

3i: 4,€G;, 4,,¢G, =k, <k,

so the points of the coarser grids come first. Such an ordering exists because
of G;o>G;,; yet it is not unique. It may be derived from the geometric ordering
by reversing the binary representation of k — 1, possibly with some points skipped
(compare Fig. 1).

The number of points on each grid must be chosen according to the silhou-
ette, namely 2(n—i) points on G;. n grids are needed.
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i Support Points
4 * *
n=2
3 * * * *
n=3
2 * * * . * * *
n=4

1 * 0 % X ko x k o ok o %

k—1 01 2 3 4 5 6 7 8 91011 12

rev(k—1) 0 8 412 210 614 1 9 513 3

Fig. 1. Indexing of support points and grids

For the cases n=2, 3, 4 and grids with mesh widths from the Romberg
sequence the sets of support points K; = G; may be chosen and ordered as indicat-
ed in Fig. 1 (*=support pointe K; = G;, - =unused pointeG,).

For n=2 the natural choice of consecutive points is consistent with the
saturation of the grid. For n = 3 points must be left out; there are several possibil-
ities, and none of them is preferable for any case. However, since saturation
is sufficient but not necessary for the existence, it is often possible to use consecu-
tive points.

It is noteworthy that since the distance of two adjacent grid points for the
Romberg sequence is h;:=h,/2" the second coarsest grid G,_, determines the
greatest distance of support points, viz. 3 meshes of the coarsest grid; so accuracy
can always be increased by adding a further grid whose extra support points
will fit between the existing ones. Furthermore, since the interpolation error

is proportional to [ (¢,—1,) this technique reduces the error.
k>1

Application to Kreiss’ Method

An application of this method lies in the approximation of boundary values
on curved boundaries which do not fit into the discretization grid. According
to a method proposed by Kreiss [3], those boundary values are approximated
by interpolation; e.g. on an axis parallel or diagonal, approximately orthogonal
to the boundary. These approximations have to be of the same h-order O(h2")
as the final solution by Richardson extrapolation is to be. To achieve this by
one-dimensional interpolation we need 2n collinear points, and the problems
described above arise: on coarse grids, points far away from the boundary influ-
ence the interpolation, thereby increasing the error; possibly there are not
enough collinear points in the grid.

Here, too, points and values from finer grids can fill the gap. On each grid
G; the function must be interpolated for ¢ in the boundary point x,, and the
value must be made equal to the prescribed boundary value. So we get a linear
system which involves points from all grids. We show that this system is block-
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triangular, with blocks corresponding to the grids, so it can be solved grid
after grid, starting with the finest one.

To prove this, it is important to know how the support values influence
the interpolation. We consider general two-dimensional interpolation on a satu-
rated point grid in an (x, y)-space (here y =h?).

Let L; (x, y) be the two-dimensional Lagrange polynomials with L (x; y)
=0,;-0y;. Kuntzmann [4] gives (with some misprints) these polynomials for
the case of regular (equidistant) grids in an explicit form, expressed by one-
dimensional Lagrange polynomials. This case is not applicable here; we have,
however,

Lemma 2. Let the associated point grid of a two-dimensional interpolation problem
in x and y have n different values of y and for 1<v=<n m, different support
points (xq, ), ...; (Xp,»> Yy)» With my>m,> ...>m,. Then the Lagrange polyno-
mials L (x, y) vanish identically for y=y,, v<k. In other words, the values of
an interpolation polynomial on a y=y, line are not influenced by support values
in (x, y,) with k>v.

Applied to Kreiss’ method, this means that support values on coarser grids
do not influence interpolation on finer grids, so the system is block-triangular.
Proof. by induction for k from n down to 1 (from coarse to fine). x™ ™1 is
the maximal power of x appearing together with y*~! in the polynomial.

Let k=n;
the polynomial L;,, 1<i<m, is

™ x—x; " y—n
Lin(x: V)= H L. n
j=1,j=i XX =1 Va TN

for this polynomial is of degree m,—1 in x and of degree n—1 in y, so it
is a candidate for the interpolation, and obviously it possesses the values of
the Lagrange polynomial. As for I<n it contains the factor (y—y,) it vanishes
identically for ye{y,, ..., Yu—1}-
The statement be valid for k+1, ..., n:

the polynomials

m, k—1

M5 228 ogigm,

j=1,#i X1 Xj =1 Y™ N

are of degree m,—1 in x and of degree k—1 in y. They have for y=y,, v<k
the values of the Lagrange polynomial and vanish identically for y=y,, v<k.
L,;, can be written as a sum of such a polynomial and Lagrange polynomials
L,, with v>k which, from induction hypothesis, vanish for ye{y,, ..., y,—1}.
This completes the proof. [J

The proof also shows that the saturation of the point grid is not a necessary
condition.

Reduction to One-Dimensional Interpolation

Since in our application of combined inter/extrapolation one of the interpolation
coordinates, namely y=Ah?, takes only fixed values (0 or y,), it is natural to
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reduce the problem to one-dimensional interpolation in the other coordinate.
To this end, we consider the one-dimensional grids belonging to the values
of y:

Let S be the saturated silhouette of a two-dimensional interpolating polyno-
mial in x and y, with support points (x,, ¥,), (X2, Y1)y ---» (X1, V2), ...; @S
before, let m, again be the number of points with y=y,, n the number of different
Yy

Let further K,:=={x,, ..., x,,,} =G, be the sets of x-coordinates for which
(x, y,)eS; from the saturation of S it follows that K, >K,> ... oK,. Let B,,
1=Zu=<v=n, be one-dimensional interpolating polynomials of the function u
in the x direction for y=y, and xeK,,ie. x=x;, ..., X, :

B,
A, B
B3 B3 Py

Then the two-dimensional interpolating polynomial IP, of u has a representation
as a linear combination of the polynomials B, ,.

The proof is constructive and inductively sets up divided differences:
n=1: The desired interpolation polynomial P, is equal to the polynomial P, .
n—1-n:

According to the induction hypothesis, the problem on the n—1 grids G,, ...,
G,_, has a solution, i.e. the interpolation polynomial IP,_, is a linear combina-
tion of the B, :

B y5)=Y Y cn) B

v=1pu=1

the coefficients c,, being dependent on y but not on x. In the points of the
grid G,, P,_; has values that in general are different from u; it can be made
equal to IP, by corrections in these points:

n—1 _
P"(x’y)=]R"1(x’y)_(]Rl—l(x’y'l)=Bm(x)>. 1_.[ —y—;_—yL
1=1 YIn =01
n—-1 v n—1 y_y
=T T (cwl) Bt —cunl0- Bl TT 222
vElae=t =1 Yn— N
+B,00- T] 222

1=1 Yn—Wi

So we get for the ¢, :

v=1
Y=
&)= ——
11=_Il W—=h

v—1

_ v—1
cuv(y)=—n y_yl ( Cﬂ).(yv)), [l=1,.-.,V‘—1.
1=1 W= A=p
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Table 1a. c,,(y,) (y,=4""")

v u

0 1 2 3
0 1
1 -1 1
2 4 -5 1
3 —64 84 -21 1
Table 1b. c,,(0)
v ©

0 1 2 3

0 1
1 1 -1 /3
2 4 -5 1 /45
3 64 —84 21 -1 /2835

The c,,(y) for different y therefore differ by a factor which depends on v but
not on u:

v—1 —
cuv(ya)= Ya YI’ #:1,...,\’- ad
Cuvs) i1 Vb=

Especially, the c,,(y) for arbitrary y are easily computed from c,,(y,):

V=W

v—1
cuv(y)=cuv(YV) n
=0 4]

=Cuv(yv)' va(y)

and the interpolating polynomial depends on values on the grid G, only via
a polynomial Q, which is independent of y:

B=Y Y cn)Pu=Y cw<y)-(z c,,v<yv>-PM)

v=1p=1 = n=t
= Z va(y)'Qv(x)'

For our application with y=h? we can without restriction set y, =1 since the
c,, are unaffected by scaling of y. For y,=4""! (Romberg) we get the values
shown in Table 1a and for y=0 the values shown in Table 1b.

Adaptation of Boundary Conditions on Coarser Grids

We have seen that the linear system resulting from Kreiss’ method is block-
triangular and can be solved grid after grid, values on grids coarser than G,
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having no influence on B, (y,). So the representation of the interpolation polyno-
mial I, by the one-dimensional polynomials Q, gives us for the boundary condi-
tion (value R) in a point x:

k
R=1Pk(yk)= chv(yk)'Qw k:1’2"--~
v=1

From this we can show by induction that for all v>1 the value of Q, on the
boundary must be zero, from which we get a condition for P, to be used
as the new discrete boundary condition on G,:

k=1:
R=P(y)=0,=P,
k—k+1:

k+1
R=PB, (+1)= ), ¢,(Vi+1):Q,=(from the induction hypothesis)
v=1
=C11Wk+1) Q1+ a4 1k 1) Qi

=R+C+1,6+1Wk+1) Qr+1
=0,+1=0 (from the above we see that ¢, ;| ., +0).

The boundary value problem (1) can be solved with the new boundary condi-
tions. The solutions can be improved by Richardson extrapolation up to O(h*"),
even though boundary interpolation on G, used only 2(n—k) support points.

Computation starts on the finer grids so that the finer solutions are available
for interpolation on the coarser grids. The same savings in points are possible
as for extrapolation towards h— 0 (compare FoBmeier [2]). For any desired
order of convergence, it is sufficient to use support points from an interval
of length 3h,. For instance, to achieve an order of O(h®), only the points

G; * *
G, * ok % %
G, TR
are required, instead of

G, * * * * *

G, * ok k% x %

G, * K K K ok X

0 3h, Shy

Comparison to Defect Correction

According to Pereyra et al. [6] the accuracy of a difference solution for a partial
differential equation can be increased also by defect correction. To this end,
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the defect of a numerical solution is determined with a high-order discretization,
and a correction is computed with a method of lower order. This procedure
approximates a solution whose error possesses the (higher) order of the defect
discretization.

As an advantage versus extrapolation, defect correction operates on a single
grid. Futhermore, the numerical solution need not have an error expansion;
without one, however, it is normally not possible to give a higher-order discreti-
zation, so this advantage is not practically significant.

On the other hand, defect correction has two major drawbacks:

a) The high order solution can be computed on the whole domain, but
not on parts of it. If it is desired only in a few points, the computational effort
is disproportionate.

b) The higher-order discretization necessary to determine the defect normally
for each point uses values from a somewhat extended neighborhood, e.g. in
a distance of 24 or even 3h. For points near the boundary some of these values
are unknown and have to be approximated since an error in these points would
not only influence the solution locally but pollute it on the whole domain.

c) The effort for the higher order discretization grows with the dimension
of the problem. Contrarily, interpolation for points on grid lines or diagonals
can be one-dimensional. Especially, boundary interpolation for the Kreiss meth-
od is always possible in one dimension.

Numerical Examples

The following examples were carried out on a Hewlett-Packard HP 9000/800
computer in double precision. The machine uses IEEE standard floating point
arithmetic. Programs were written in the C programming language.

1. The first example is:

Adu(x,y)=0 on Q,
u(x,y)=g(x,y) on 0Q, (P1)

with

g(x, y)=sin x-sinh y
Ql =(07 1) X (05 1)‘

The exact solution of the problem is equal to g. The problem was solved using
standard five-point discretization on grids with K=28/16/32/64 meshes, and the
solutions were interpolated by one-dimensional polynomials in the point (0.49;
0.50). Two different techniques were compared:

a) ug was interpolated with degree 8 on all grids (which is possible because
Q is the unit square, so all points in the 8 x 8 grid can be used for interpolation);
the results were extrapolated for h — 0 (Richardson).

b) The interpolation polynomials P,,, as defined above, were formed and
combined using the coefficients from Table 1b.
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h = 1/128 (9859 internal points)

* K *
* 0 0 O %
* O 0 O x
* O 0 0 O 0O %
* O O 0 O O %
* 0 0 0 0 0O
LR )
h=1/8

(21 internal points)

h=1/4
(one internal point)

Fig. 2. The egg-shaped domain £, (*=point near the boundary — difference operator not applicable,
o =internal point — difference operator applicable)

Table 2. (P1, Q,)

4 | 11,1
8 | 27,02 221 13,06

16 | 68,03 3.5,0-5 o 1.0,6-7
32 | 17,03 23106

The results compare with the exact value u,, as follows:

u,,=2.3001633502186
gy =2.300163350301
upy=2.300163 350300

The error of method b) is a little smaller, owing to the reduced support of
the interpolation polynomials on the coarser grids. The main advantage, how-
ever, is that method b) would have been applicable even if the domain Q would
have been to small to offer enough support points for method a).
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Table 3. (P1, 2,)

8 | 30,02
16 [ 75,03 200 32,08

v — 5.0,0-10
64 | 47,04 13107

Traditional Kreiss Method:

16 |7.5,4-3
23,06

32 [ 19,03 |71 31,08
1.500-7

64 | 47,04 1°

Table 4. (P2)

4 | 048 14569553504

0482122 6078154
8 0481 9561946991 04821230144 624
04821229 890470 048212301442 22
16 | 04820 812904600 048212301442 28
048212301 28368

32 | 04821 125822426

2. The second example has the same solution and boundary conditions but
is defined on the roughly egg-shaped domain

Q,={(x,y)e[0,1] x [0, 1]|(y —3)*-(1 + x)+(x—$)*<0.24} (see Fig. 2).

If Q, is discretized with a mesh size h=1%, corresponding to a mesh number
of K=4 in the unit square, the grid contains only one inner point (see Fig. 2).
Yet with values from the grids with K =8, 16, and 32, the boundary conditions
can still be approximated with O (h®). The polynomials used for boundary inter-
polation on the four grids were of degree 2, 4, 6, and 8 respectively. (Degrees
of 1/3/5/7 would do but give higher errors.) Table 2 shows the maximum norm
of the error of the computed and the extrapolated solutions. The gain in accuracy
is evident.

Table 3 shows the analogous figures for grids with mesh numbers 8/16/32/64
and, for comparison, the results of the traditional Kreiss method, applicable
only for K=16/32/64. (For K=4/8 there are not enough points.) Even though
the two methods are of the same order, the improved method shows clear advan-
tages after the second extrapolation step (for O(h®)). Here on the coarser grids
both the degree of the interpolation polynomial and the maximum distance
between support points are smaller: for K=16 with degree 4 the distance is
only 4, opposed to 4 with degree 8. Both factors contribute to smaller error
bounds for the interpolation, which here results in a reduction of the error
by a factor of about 40 in the maximum norm.
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Fig. 3. The solution of example 3

3. The third example is defined on the same domain Q,, the equation is:

Au(x,y)=1 on Q,
u(x,y)=0 on 09Q,. (P2)

The traditional Kreiss method with boundary interpolation of degree 8 on grids
with mesh numbers 32/64/128/256 yields the value in the point (3, 1) to be

about
u(3,4)~0.048212301442029

Table 4 shows how the new method approximates this value by solutions for
K =4/8/16/32 and their extrapolates. Acurate figures are shown in larger print.
Again, convergence is clearly as predicted. Figure 3 shows the solution by con-
tour lines with a distance of 0.005.

The examples show that the method allows the computation of extremely
accurate solutions using rather coarse grids and a fairly simple interpolation
and extrapolation technique. For curved boundaries, it may be difficult to find
a competitive alternative.
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