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BIT 29 (1989), 48-59

ESTIMATION OF CONVERGENCE ORDERS
IN REPEATED RICHARDSON EXTRAPOLATION

EDMUND CHRISTIANSEN and HENRIK GORDON PETERSEN
Mathematics Department, Odense University, Campusvej 55, DK-5230 Qdense M, Denmark

Abstract.

Let A(h) be an approximation depending on a single parameter h to a fixed quantity 4, and
assume that 4 —A(h) = c,h** +c,h"+.... Given a sequence of h-values h, > h; > ... > h, and
corresponding computed approximations A(h;), the orders for repeated Richardson extrapolation are
estimated, and the repeated extrapolation is performed. Hence in this case the algorithm described
here can do the same work as Brezinski’s E-algorithm and at the same time provide a check -
whether repeated extrapolation is justified.

Subject classification: AMS (MOS) 65B0S.
CR G.1.0.

Keywords: Richardson extrapolation, repeated.

1. Introduction.

Let A(h) denote an approximation to a fixed quantity 4 = A(0), and assume
that the discretization error in A(h) satisfies

1) A—Ah) = ;i +cho+ ..., ky <ky <...

involving only powers in h. The powers need not be integer. We shall assume that
(1) is a convergent series for small h-values.

If the exponents k; are known, it is well known how to perform repeated
Richardson extrapolation. Extrapolation has been generalized to more general
error terms than simple powers of h. (See [1], [4] and [6] for formalism and
algorithms.) The aim of this paper is to move in a different direction. We consider
the basic form of Richardson extrapolation @), and the main goal is to compute
the order of the leading term in the error after one or more extrapolations.

If there is a constant ratio between successive h-values, then it is easy to
compute approximations to the orders successively. This is so, because each
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extrapolated value depends on onfy a single h-value, not on a pair as in the
general case. More precisely the pair is always of the form say (h, h/2), if the ratio
is 2. However, for arbitrary h-values there seems to be no general method for
computing more than the first order k,. In many applications, for example in
continuum mechanics, it is not possible to get sufficient results with a constant
ratio betwen h-values. For all practical purposes it is then sufficient to
consider only the case, when the h-values are of the form h; = ¢/i for some
constant c. We shall concentrate on this case. It should be emphasized, however,
that the algorithm presented here works equally well in the case h; +1/h; = constant,
where the analysis is much simpler.

Even when the convergence orders are known, it is always prudent and in some
cases necessary to estimate the convergence orders from the computed values
A(h;) before performing extrapolation. Extrapolation is based on the assumption
that A(h) has the form (1) and that the error term to be eliminated is in fact
the dominating source of error in A(k;) for the actual values of h;. If this condition
is not satisfied, extrapolation is at best useless. The most common reasons for
this condition to fail are the following :

(a) Several terms of different order may contribute significantly to the error for
the h-values used (“h is too large”).

(b) An expected “known” order may vanish due to special properties of the
solution. (An example is integration with the trapezoidal rule, when the inte-
grand has the same slope at both ends of the interval.)

(c) A singularity in the (unknown) solution may cause a term in the error,
which is particular to the application and not to the discretizations used
in A(h). (The paper concludes with a classical example of this.)

(d) Round-off error may be of significance relative to the discretization error.
(This will certainly be the case after several extrapolations.)

By successively computing approximations to the repeated convergence orders
the algorithm presented here can be used to check whether the remaining error
after one or several extrapolations is dominated by a term of the form ch*. The
algorithm can then eliminate this error by performing the extrapolation to an
order chosen by the user. In short, the present algorithm can in the case (1)
replace the E-algorithm in [1] with the addition that it also computes
approximate values for the repeated convergence orders. This will reveal, if for

some reason the error is not dominated by a single term of the form ch*.
*®

2. The basic result.
Assume that A(h) has been computed for some sequence of h-values

h(1) > h(2)>...>0



50 EDMUND CHRISTIANSEN AND HENRIK GORDON PETERSEN
The following notation is used :

A(i) = A(h() fori=1,2,...

h(i—1)
h(i)

k
a(i,k)=< ) fori=1,2,...

A sequence of functions f,(i, k) is defined in the following recursive way:

Sili,k)=1 fori=1,2,... and k real.

e @i, ka) oli— 1, k) = 1,(i, k)

forn=1,2,..,i=n+1,n+2...., and k real.

Jali,k) depends on h(i—n+1),..., h(i)) and ky,...k,_,. Hence f, cannot be
computed until k,_, is known (or has been estimated). The definition of f, will
be motivated in lemma 2. The interpretation is as follows: n—1 is the number
of extrapolations already performed, i is the index of h and A, and the real
value k is the order of the next error term (to be found). In the special case
(not of interest here), where the convergence orders are known to be ki=j
for j=1,2,..., the above sequence f, can be related to the recursively defined
functions g, in [1]. For example

Ja(, k) = h)™*gf 3 V.

In the definition of f, the k;’s must be different, but may occur in any order.
Corresponding to the easy case we note that if h(i+1)/h(i) is constant, then
Jali, k) does not depend on i.

We shall need the following expression for Susr:

b = 1t SRl = L) k) — o K66 — RS
@ JoniCh) = 1k 2 k) i — LIy A k) — 1

LEMMA 1. Let n>2 and ky,....k,_, (all k; distinct) be given. Then

(@) f.(,k) is invariant under permutations of (k... k,_ ).
Jali, k) = O, if k belongs to the set {k,, ... kn-1}.
(b) Assume that h(i) is of the form h@i) = c/i éor some constant c. For all fixed
k > 1 we have
Sl k) = (L=k/ky )1 ~k/ky)... (1 =k/k,— )1+ 03~ 1))
O v o 1 i 1 -
ﬁ(z,k) —f,,(l,k)(k__k1 + P +...4+ k—k,,_l)(1+0(l )

LK) fuli+1,k) = 1403G72)
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L4
Proor. The proof goes by induction on n:

(@) For n =2 the statement is obvious. The induction hypothesis is that
fii,k) is invariant under permutations of (ky,...k;—1) for j<n. Hence if a
permutation of (ky,..., k,) does not involve k,, then it follows from the definition
that f,,, is unchanged. It is then sufficient to show that an interchange of k,
and k,_, leaves f,.; unchanged. The proof of this is a tedious calculation, and
we only indicate the steps. In the definition of f, ., ,(i,k) we express f, by Ja-1
Since f,_, depends only on (k,,..., k,_,) it is now a matter of direct calculation
to check that interchanging k, and k,_, does not change the value of f, , (i, k).
This proves the invariance.

It is clear from the definition that f,.,(i,k,) = 0. From the invariance just
proved it then follows that f, (i, k) = 0, if k belongs to {ky, . ky}.

(b) We repeatedly use the expansion

(_——H, 1)k =1 +§+————k(k— D 1 069,

i 2i%

Using the equation (2) both the case n = 2 and the inductive step are now a
matter of direct calculation. n

Based on numerical computations, but without proof, we also conjecture the
following sign variation of f,(i, k). It will not be used here.

fii,ky <0, ifk¢f{ky,...k,—} and k>k; foran odd number of k;.
fiG,k)>0, ifk¢iky,...k,—} and k> k; for an even number of k;.

For n=1,2,... and i=n+1,n+2,..., let R,(i) denote the result of n
Richardson extrapolations (removing the first n terms in the error) based on
the values A(i — n),..., A(). (Same definition as in [1]). For convenience let
Ry (i) = A().

LEMMA 2. Assume that h(i) is of the form h(i) = c/i for some constant c. The
result after n extrapolations with the correct orders k, ..., k, satisfies

(Z(i, kn)j;l(l - 1’ kn)Rn— 1 (l) —f;l(i’ kn)Rn— 1 (l - 1)

&) Rall) = 20, k) oli— 1, k) — £ )
and \ .
@ A=R()= 3 cfyeslisk PG

j=n+1
fori=n+1n+2,...

Proor. The proof goes by induction on n. For n = 1 (the standard step) we
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truncate the equations (.1) applied for i and i—1
A—AMhGE—-1)) = c;h(i—1F +coh(i— 1Y +...
A—AMGE) =chGY  +chi)r +...
after 1 terfn and solve for A. The solution, which by definition is R, (i), is:
Ry() = {ali, kn)4G) — AG — D}/{ati, k) — 1.

It is now a straightforward calculation to prove (4) in the case n = 1.
The inductive assumption is equation (4). For any i > n+2 apply (4) for the
pairi—1 and i:

oo

A=RG—-1)= Y cfyssli — 1k — 1)

j=n+1

a©

A-R@= ¥ . Cifn+ 106 k().

j=n+

Multiply the equations by f, . (i, k,+,) and a(, k,. ) fa+1(—1, Kk, ) respectively.
Subtraction eliminates the term of order n+1 and yields:

_ 0 kns1)for1G—1 ks 1 )Ra() —frv 1 (s ks 1 )Ry = 1)

4 2, k1 Vo1 G= 1 ks o206 knes)

+ i ijn+ 2k j)h(i)"’.

J=n+2

This holds for all i 2n+2. By lemma 1 (b) the coefficients Jas20i, k;) are
bounded in i, and hence the first term is R,,,(i). The inductive step is
complete, B

The above lemma shows that formula (3) may be used instead of the E-
algorithm in [1] to perform the extrapolations. Our main concern, however, is to
compute convergence orders.

DeFINITION 1. Assume that n extrapolations have been performed with the
correct convergence orders k,...,k,. For i 2 n+3 we define the experimental
convergence orders k, (i) to be the solution for k to the following system of
3 equations in the unknowns A4, c,,, ang k:

(52) A= R, —2) = cpr 1 fyrali — 2,K)h(i — 2
(5b) A= Ryi — 1) =cperfossli — 1, k)h(E — 1)
(SC) A- Rn(l) = Cpt lf;l+ l(ia k)h(l)k

These equations result from applying formula (4) to the triple i—2, i—1, i and
truncating after the first term on the right hand side.
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THEOREM 1. Let h(i) be of the form h(i) = c/i for some constant c, and assume

that n extrapolations have been performed using the correct convergence orders
kl’ kz g ey k,.. Then

(@) The experimental convergence order k,.,(i), i=n+3,..., is the solution to
the following equation in the single unknown k:

(= 1L,K) frs1(i=2,k)—furi(i=1,k) _ R(i—1)=R,(i—2)
ali, k) fps1G—1,k)—for1Gk) R ()—R,(—1)

If the right hand side is positive, equation (6) always has a solution.

(6) ali, k)2

(b) If (6) has a unique solution for each positive right hand side, then
k"+1(i) - kn+1 = O(ik"* i _kn+2).

Proor. (a) Elimination of 4 and ¢, ., in the three equations (5) leads directly
to equation (6). It is convenient to denote the left hand side of (6) by LHS(, k)
and the right hand side by RHS(i). A simple inductive argument using equation
(2) shows that

LHS(@, k) -» 0 fork » — o0
LHS(@, k) » + 0 for k - + 0.

This proves (a).

(b) Recall that (6) resulted from (4) applied to the triple i —2, i—1, i and
truncated to the first term on the right hand side. We repeat this procedure
without truncating the right hand side. The result is:

(l—la kn+l)f;|+1(i_2’ kn+1)—j;|+l(i_1’ kn+1) —

) a
M) ol s ) et G=T kns 1) —for s knes)

Rii— D)= RG=2+ 3 cffursli— Lhhti— 1 = fyusli — 2kt — 2%)

—_ Jj=n+2

R()—-R(—-1D+ i ¢ifus G RDAA — £ 4G = 1, k;)h(E — 1))

j=n+2

The left hand side of (7) is LHS(,k,,,)- Denote the right side by RHS()
+ A(RHS). We claim the following two facts, which will complete the proof:

ARHS) = C itn+1 % =+27Y(1 4+ O(G7Y))

O(LHS(k)) -

= C,i (1 + O(i™Y))

The proof of these consists in tedious, but elementary calculations using
lemma 1 (b). [ ]
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[ ]

We conjecture that equation (6) has exactly one solution, if the right hand side
is positive. In fact, based on numerical computations we conjecture that the left
hand side is monotonically increasing as a function of k, but we have no proof
of this. Note that the right hand side in (6) is positive, if the error is dominated
by a term of the form ch*.

3. The algorithm.

The results of section 2 may be incorporated in an algorithm as follows :

Input k(i) and A(i) = A(h(i)) values for i = 1,.
Set n:=0.
Loop
Set n:=n+ 1.
Compute k,(i) fori=n+2,.., imax from equation (6).
Output k() fori=n+2,.., imax-
The user has the option to STOP here.
Prompt for value of k, to use in next extrapolation.
Compute R,(i) fori=n+1,.., imax from equation (3).
Output R,(i) fori=n+1,...i
End of loop.

<sImax-

- imax-

The crucial step is to enter the (preferably exact) value for k, based on the
experimental values k,(i). In typical cases the experimental values will confirm an
expected value. This will establish the presence of a dominating term of the
expected order in the error. Then we are on solid ground and may continue to
extrapolate or stop with an accurate error estimate. If the order of the
dominating term can not be easily recognized, we may try to enter an order,
which is known to be present, although it is not dominating. After extrapolation
a single term may now dominate, which will be disclosed by the k(i)-values in
the next step. This trick is based on lemma 1 (@). It is demonstrated in the
last section.

A last resort, which we do not recommend, is to enter for k, the value of
k,(inax), assumed to be the best approximation to k,. From theorem 1(b) we
know that this value will converge to k, as h tends to zero. However, for a
fixed set of h-values this procedure will only result in new numbers, not in
new information.

The above description must be supplemegted with an algorithm for solving
eq. (6). Both the Newton method and the secant method are applicable. The
Newton method will require a recursive calculation of of /ok parallel with f, so
the secant method is most easily implemented. It is also faster by the standard
rule for comparing these two methods, so in our implementation we chose the
secant method. It is a consequence of the conjecture following theorem 1 that
there is a unique simple solution. We have never observed convergence problems
for positive right hand sides. The starting guesses for k,(i) are built into the
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program as follows: k(3): 1.0, k,(n +2): k,_y+1,k,(i): kn(i—1)for i = n+3. This
always seems to work very well.

Finally a note on the implementation. In our program the f,(i, k)-values are
computed recursively exactly as defined here. This is the most elegant and con-
venient way, and the storage requirements are reduced to a minimum (h(i),
ki...ks—1,R,-1(i) and R,(i) are stored at level n). Of course, the recursion is
slow. Computing time increases by approximately a factor 6 for each n-level
Much time can be saved by storing more intermediate values (such as the
fii, k) values), but the price is elegance and more storage. The results reported
in each table in the next section have been achieved within 30 minutes on a
Maclntosh and a few seconds on a SUN, using in both cases a compiled
language, not an interpreter.

4. Two applications.

As an illustration the integral

1
J x2dx
0

is approximated by the rectangular method:

A@) =i Y= [G—1/2)4]12.

It is easy to see that the leading term in the error is of order k, = 1.5, after
which we expect to find the orders 2,4,6,... as usual for this method applied
to smooth integrands. The final result is shown in table 1. Note that the expected
exact orders are used, but only after they have been verified. It must be
remembered that after each column has been computed and listed there is an
interactive interface between the user and the program. The expected orders of
convergence are successively confirmed, and high accuracy is easily achieved and
documented.

The second application is more ambitious: The smallest eigenvalue for the
L-shaped membrane over 3 unit squares is approximated by discretizing the
Laplace operator. This eigenvalue has been computed by several methods, both
general and ad hoc (see [2] and [3]). The value i§

A = 9.63972385£5x 107°.

For the present purpose the Laplace operator is discretized by the finite
element method with piecewise bilinear functions over a rectangular uniform
grid. Because of the singularity in the eigenfunction at the re-entrant corner the
discretization error decreases quite slowly.

Table 2 shows the final output from the program. After seeing the approximated
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Table 1. Experimental convergence orders and extrapolations to order 15,2 4,6,
and 8 for the integral of /x approximated by the rectangular method. (The lower
half of the table should be placed to the right of the upper half)

Rich. order Rich.order

1/ Alh) ky 1.500000 ka 2.000000 ks

1 0.707106781187

2 0.683012701892 0.669835212361

3 0676075333609 125  0.667783121978 0.666723611018

4 0672977397006 132 0667236232289 9 0.666676794931

5 0671280085859 135 0667010577045 106 0.666669762994 366
6 0670231247722 137 0666896671247 198 0.666667915350 383
7 0669529353640 139 0666831255604  1og 0.666667263836 389
8 0669032172130 140 0666790249414 199 0.666666987394 393
9 0668664662639 140 0666762859863 196 0.666666854063 395
10 0668383841146 141 0666743662318 199 0.666666783399 396
1 0668163481710 142 0666729687585 200 0.666666743133 397
12 0667986761516 142 0666719199408 200 0.666666718833 397

Rich.order Rich. order Rich.order

1/h 4.000000 ke 6.000000 ks 8.000000 ks
1

2

3

4 0.666668406436

5 0.666666865511 0.666666728988

6 0.666666708147 527 0666666672043 0.666666669060

7 0866666678748 560 0.666666667506 .80 0.666666666839

8 0866666671027 574 0666666666855 728 0.666666666688 g
9 0666666668495 582 0666666666720 7 a1 0.666666666671  § 90
10 0.666666667523 586 0.666666666635 7.6 0.666666666668 924
1 0666666667104 590  0.666666666674 793 0.666666666667 9,39
12 0666666666906 590  0.666666666669 €07 0.666666666667 975

the re-entrant corner is of the form
®) u(r, ) = c;r*3sin2p/3) + ¢ar*sin(d¢p/3) + c,r8/3 sin(8¢/3)
+cor®Psin(2e/3) + o3y

where (r, ¢) are polar coordinates with origin at the re-entrant corner and one
boundary as axis, Hence we expect (1) to hold, but clearly more than one term
is significant. We can Now proceed in two ways: Based on (8) we can expect
(or guess) the leading error term to be of order 4/3, which is the order
provided in table 2. The next order strongly verifies the value 2 as expected (see
below) confirming the first estimate of 4/3,
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The other way to proceed heavily uses the strength of Richardson extrapolation.
If the order can be correctly estimated, then the corresponding term can be
eliminated, even though it does not dominate all other error terms. In the present
case with more than one dominating error term this implies that we can start
by eliminating the term of our choice, and not necessarily the term of lowest
order. With this version of the finite element method (bilinear elements) the
leading error for smooth eigenfunctions is known to be of order 2 (the order
inherent in the method). Hence we strongly expect the order 2 to be present in
(1). We therefore start by extrapolating to order 2. The result of this is seen in
table 3. It is now much easier to estimate the order 4/3 of the other (actually
leading) term. The results of the second extrapolation in tables 2 and 3 confirm
that the two extrapolations commute.

After eliminating the error terms of order 4/3 and 2 we are faced with the
same problem again. More than one term dominate the remaining error, assuming
still that (1) holds. We are on less solid ground theoretically when estimating the
order of the third term, but it appears to be 10/3 (looking for integer multiples
of 1/3). This is shown in table 2. It is again safer to eliminate first the term of
order 4, known to be present in this finite element discretization (see table 3).
After four rounds of extrapolation the roundoff error and lack of a dominating
term make continuation questionable. Apparently (since R4(h) is not monotonic)
the next two terms in the error are of opposite sign and of equal magnitude for h
about this size. This also makes it difficult to estimate the error after the last
extrapolation, but the accuracy obtained is comparable to the accuracy achieved
by the ad hoc methods in [2] and [3]. In table 2 the error on R; (h = 1/60)
is approximately 7 x 1078, The error on R4 (h = 1/60) is considerably smaller,
but cannot be accurately estimated.

Finally a remark on experiments with the order of extrapolation. Even with the
modest h-values used here the procedure is extremely sensitive to the extra-
polation order. If, in the above example, 1.30 is entered for k, (instead of 4/3),
then the k,(i)-values show no affinity to the value 2.0. This means that the
algorithm is very good to disclose the nature of the convergence, but also that
the extrapolation orders entered must be exact. Recall our recommendation
against using k,(in.) as extrapolation order. With care it may be used to
estimate the error.
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