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Abstract

The extrapolation of results obtained on a series of 3 succeeding grids with halved mesh size is tested as a variant of the multi-
grid approach for solving the Laplace and Poisson equations in 2D. Based on corresponding experience with BEM for electric [1]
and magnetic [2] field problems a pure power law is applied instead of the famous Richardson extrapolation [3]. On those grid
points, which are common to all 3 grids, the potential values are extrapolated to an arbitrary fine discretization. On the points of
the finest grid in between those of the coarser ones the potentials then are obtained by only few iterations to perform the
interpolation. Both, the common 5-point discretization and the famous 9-point discretization by E. Kasper [5] are investigated
and compared with respect to the possible win of accuracy by extrapolation. As an interesting result of this kind of extrapolation,
the accumulated local discretization errors of the 5-point discretization are partially cured and the high accuracy by the 9-point
formula of Kasper makes extrapolation inefficient. Like for classical MG (multi grid) [6] the acceleration of potential
calculations on grids of large size is substantial. © 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In order to perform numerical calculations for continuous operators like integration, differentiation, or solving
ordinary or partial differential equations it is first necessary to discretize the function and use difference equations
for differential operators. This is always associated with a loss of accuracy, which is reduced by smaller and smaller
steps of discretization. Even fastest computers with largest memory are easily driven to their limits by using finer
and finer steps. As a way out, extrapolation of calculations obtained with different size of discretization to an
arbitrary fine discretization will recover some of the accuracy lost. This has been first introduced by Richardson [3]
in 1910 and only in the last decade been used for the improvement of solutions with the boundary element method
(BEM) [1,2,7,8,9]. In this paper the extrapolation method will be applied to the classical finite difference method
(FDM) of solving partial differential equations. The spherical condensor is used as a test bed, because the solution is
known analytically. The axisymmetric 2D discretization produces first derivatives, which reduce the accuracy [4]
allowing to judge the merits of the procedure. Other work on the study of the accuracy of numerically calculated
fields [1, 10] or ray tracing [11, 12] also make use of this test bed.
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2. Numerical procedures

In order to perform extrapolation, fully converged solutions are needed. Grid sizes of 32x32, 64x64, and
128x128 are chosen. Here fully converged solutions are obtained by iterating on a potential map first filled with the
exact solution. For problems with an unknown exact solution, a full converged solution may be obtained by iterating
sufficiently often or by using the multigrid algorithm. In those grid points, which belong to all 3 grids (these are the
points on the 32x32 grid lines) extrapolation is then performed. The 3 hierarchical grids automatically obey the
relation of a constant refinement factor, which allows for a very simple extrapolation formula, using the power law
[1,2]. Finally the extrapolated potentials on the coarse 32x32 grid are interpolated to the finest 128x128 grid and
compare with the exact solution. The interpolation is done by 16 iterations on the 128x128 grid , while the potentials
on the 32x32 grid lines are kept constant.

3. Extrapolation of potentials obtained by a 5-point discretization

The 5-point discretization for axisymmetric problems is well explained in textbooks and in ref. [4]. It uses the 2
neighbouring grid points vertically and the 2 ones horizontally to provide a difference equation as an approximation
for the Laplace solution for the central grid potential. This is the most common procedure in FDM programs and
used e.g. in EGUN and IGUN [13]. The result is shown in Fig. 1. From 32x32 to 64x64 to 128x128 grid the errors
are falling by a factor 4, as predicted by theory. Extrapolation then improves the maximum error by a factor of 12.7,
which otherwise could only be obtained on a 407x407 grid, needing about 2063 times more computation time.
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Fig. 1: Potential errors for half of a spherical condensor by 5-point discretization.
Upper row : potential errors on 32x32, 64x64, and 128x128 grid.

Lower row — left: potential errors by extrapolating the solutions on 32x32 grid.
— b right: interpolation of extrapolated potentials on 128x128 grid.
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4. Extrapolation of potentials obtained by a 9-point discretization

The 9-point discretization for axisymmetric problems has been developed by E. Kasper [5]. It uses all
surrounding 8 neighbouring grid points to provide a difference equation as an approximation for the Laplace
solution for the central grid potential. This procedure is difficult to program for grid points, where one or more of
them are outside of the computational domain. This is one reason that it has not become more popular. The result for
the potential errors and the extrapolation as well as the interpolation is shown in Fig. 2. The errors on the 128x128
grid are below 1.2x10™"°, which firstly is amazing, but secondly shows a very odd behaviour on extrapolation (Fig. 2
lower row, left). Obviously the efficient improvement of accuracy on the hierarchical grids by Kasper’s formula do
not give a smooth enough local variation of the potentials that extrapolation can be beneficial. Also remarkable is
the fact that the 9-point discretization is showing an error reduction by a factor of 20 from the coarser grid to the
next finer one, due to the use of higher order corrections.
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Fig. 2: potential errors for half of a spherical condensor by 9-point discretization.
upper row : potential errors on 32x32, 64x64, and 128x128 grid.
Lower row — left: potential errors by extrapolating the solutions on 32x32 grid
- right: interpolation of extrapolated potentials on 128x128 grid

5. Conclusions

Extrapolation to arbitrary fine discretization is useful for 2D FDM methods only for 5-point discretization. Here
the win in computing time at comparable accuracy for a spherical condensor amounts to more than 2000. For 9-
point discretization extrapolation does not make sense.
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