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This paper reviews the problems and successes of computing turbulent flow. Most of the flow pheno- 
mena that are important to modern technology involve turbulence. Apart from pure academic interest, 
there is therefore a practical need for designers to be able to predict quantitatively the behaviour of 
turbulent flows. The review is concerned with methods for such computer predictions and their 
applications, and describes several of them. These computational methods are aimed at simulating 
either as much detail of the turbulent motion as possible by current computer power or, more com- 
monly, its overall effect on the mean-flow behaviour. The methods are still being developed and some 
of the most recent concepts involved are discussed. 

The basic points to be made are: 

• Turbulence computations are needed for practical simulations of engineering, environmental, bio- 
medical, etc. processes. 

• Some success has been achieved with two-equation models for relatively simple hydrodynamic 
phenomena; indeed, routine design work can now be undertaken in several applications of engin- 
eering practice, for which extensive studies have optimized these models. 

• Failures are still common for many applications particularly those that involve strong curvature, 
intermittency, strong buoyancy influences, low-Reynolds-number effects, rapid compression or 
expansion, strong swirl, and kinetically-influenced chemical reaction. New conceptual develop- 
ments are needed in these areas, probably along the lines of actually calculating the principal 
manifestation of turbulence, e.g. intermittency. A start has been made in this direction in the 
form of 'mult i- f luid'  models, and full simulations. 

• Although some of the latest concepts hold promise of describing some of the most important 
physical consequences of turbulence, they have not yet reached a definite stage of development. 
From this point of view, the older and simpler methods can still be recommended as the starting 
point (and sometimes the finishing point) for engineering simulation. 

Despite the relative novelty of the subject, the relevant material is already too much to be reviewed 
in a single paper. For this reason the author confines attention to what he considers the better-estab- 
lished or more promising models. No disrespect is therefore implied for the models that are scarcely -- 
or not at all -- mentioned. Extensive use has been made of the published literature on the topic and in 
particular of two recent reviews by Reynolds and Cebeci I and by Kumar. 2 Extensive use is also made 
of the work of Spalding and of the recent work of Malin. Turbulent heat and mass transport are not 
explicit ly covered in this review; the interested reader is directed to the review by Launder. 3 Further 
details on turbulence models may also be found in the lecture course by Spalding. 4 The review con- 
cludes with a summary of the advantages and disadvantages of the various turbulence models, in an 
attempt to assist the potential user in choosing the most suitable model for his particular problem. 
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Introduction 

The partial differential equations for turbulent physical 
systems 

Turbulence is the most complicated kind of  fluid 
motion, making even its precise definition difficult. A 
fluid motion is described as turbulent if it is rotational, 
intermittent, highly disordered, diffusive and dissipative. 

It is generally accepted s that turbulence can be described 
by the Navier-Stokes momentum-transport equations 
(the second-order Chapman-Enskog approximation to the 
Bolzmann equation for molecular motion), which express 
the conservation of  momentum fo r  a continuum fluid with 
viscous stress directly proportional to rate of  strain. This 
description is the simplest that can be imagined. According 
to this principle, the 'Eulerian' equations governing the 
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dynamics and heat/mass transfer of a turbulent fluid can 
be written as follows, in Cartesian tensor notation, and 
using the repeated-suffix summation convention: 

• Mass conservation: 

ap a 

--at + ~xi (pui) = 0 ( 1 )  

• Momentum conservation for the Xg-component of velo- 
city, u t, in 'divergence' form: 

apu t apuiu i ap 
- -  + = - -  - -  + a ° l J  + F /  ( 2 )  

at ax/ ax~ ax i 

• Scalar conservation (e.g. enthalpy, h, concentration, C, 
etc): 

+ a , ,u ,  = _ a  u a , ,+  

at axi ax i ax l ] at axg 

(where for ¢ = C, the second and third terms on the rhs 
should be excluded). 

Here F/is the xi-component of body force (for instance in a 
gravitational field F/= pgg where gi is a component of the 
gravitational acceleration), p is the instantaneious density, 
~b is a scalar quantity, F~ is the diffusion coefficient of ~b, 
S~ is the volumetric source/sink term, and o¢ the stress 
tensor components (stress due to deformation and bulk 
dilatation). Equation (2) applies generally, whatever the 
constitutive law for oq, even if the mean velocities in tur- 
bulent flow are concerned, provided that then og/includes 
apparent turbulence (Reynolds) stresses. 

For Newtonian fluids, the instantaneous deformation 
stress is: 

{aug aul~+ auz 
Oil =/2 ~ X l  + (/ab -- ~a P) 6 ii - -  (4) 

axi /  Oxt 

where 6//. is the Kronecker delta, and/a b is the bulk viscosity 
of the same order as p.6 In the most general case aog//ax/is 
very complicated. 7,s In Newtonian fluids og/= off, so oti 
is a diagonally-symmetric tensor. Finally, an equation of 
state (single-component fluid) relates pressure to density 
and temperature: 

p =p(p ,  T) (5) 

where p, T, are the instantaneous values of density and 
absolute temperature, respectively. 

Fortunately, viscosity does not usually affect the larger- 
scale eddies which are primarily responsible for turbulent 
mixing, with the exception of the 'viscous sublayer' very 
close to a solid surface. Furthermore, the effects of 
density fluctuations on turbulence are small if, as in the 
majority of practical situations, the density fluctuations 
are small compared to the mean density, the exception 
being the effect of temporal fluctuations and spatial 
gradients of density in a gravitational field. Therefore, 
one can usually neglect the direct effect of viscosity and 
compressibility on turbulence. It is also important to note 
that it is the fluctuating velocity field that drives the 
fluctuating scalar field, the effect of the latter on the 
former usually being negligible. 

Equations (1)-(5) cons, itute the mathematical repre- 
sentation of fluid flows, under the assumptions 9 that the 
turbulent fluid is a continuum, Newtonian (equation (4)) 
in nature,'and that the flow can be described by the Navier- 
Stokes (NS) equations. 
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For turbulent flows, equations (1)-(5) represent the 
instantaneous values of the flow properties. The equations 
for turbulence fluctuations are obtained by Reynolds de- 
composition which describes the turbulent motion as a 
random variation about a mean value: 

=¢~ + ¢' (6) 

where the mean value ~ is defined ~° as: 

$ = ( ¢ , w ) =  I ¢ ( x g - - ~ t , t - - t l ) w ( ~ g , q ) d  Q (7a) 

D 

with the weighting function w normalized as: 

fW(~g, tl)da (7b) 1 

D 

where Q denotes the set (~i, ta) over the domain D. 
The averaging procedure can be either temporal (i.e. 

time-averaging) or Favre (i.e. mass weighted) avaraging. 1~ 
The latter appears promising for flows with variable den- 
sity, leading to all double correlations with density fluctu- 
ations vanishing, by definition. Favre-averaged quantities, 
however, are not easily comparable with experimentally 
measured quantities, which are normally time-averaged. 

The weighting function for the temporal averaging can 
be expressed as: 

~(~i) 
w =  , I t l l < A t  

At 

= 0, IqJ > At (8) 

with the averaged quantity having the form: 

t t +  A t  

_.1 f ~, 6 = ~ ¢ d t and = 0 (8a), (8b) 

t l  

Using equations (6) and (8), equations (1)-(5) can be 
manipulated to derive the following equations: 

Mass conservation: 

a~ +apuj= o (9a) 
a t ax i 

o r  

a: a:~ , , 
- - +  ~-O, p u  I ~ p ~ ( f o r  weak density 
at ax i fluctuations) 

Momentum conservation: 

(9b) 

a F T  a ~  _ , , 
- -  + + apui u i lax i 

at axj 

ap 8 
= - - - +  [~s~i + (u~- ] u)s,a~i] 

axi ax i 

t i t t i t - -  t t t -  1 

a z + a p u t u i F - - +  |+J} 
ax i axj ax i J 

where: 

(aT+ a~'~ aT au/ 
~ - -  ~ 0  Sil=\~x~ ~xi) ;all aXl;aX] 

(10) 
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Scalar conservation: 

afi  + + a ui'¢' 

at ax i ~x i 

' ' + 
+ (p ui + (1 i )  

# 

I 

Thermal equation of state (single-component gas): 

p =-.RFT=R(~T+ p'T') (12) 

Equations (9) -0  2) are the first step towards lnodelling, 
as the averaging process itself masks some detailed charac- 
teristics of turbulence. 

Some useful concepts 
Before discussing the turbulence models a very brief 

description of some concepts is provided. The main 
characteristic of turbulence is the transfer of energy to 
smaller spatial scales across a continuous wave-number 
spectrum, e.g. a 3D, nonlinear process. A useful con- 
cept for discussing the main mechanisms of turbulence 
is that of an 'eddy'. 12-~4 An eddy can be thought of as a 
typical turbulence pattern, covering a range of wave- 
lengths, large and small eddies co-existing in the same 
volume of fluid. The actual modes of turbulence are eddies 
and high-vorticity regions. By analogy with molecular 
viscosity, which is a property of  the fluid, turbulence is 
often described by eddy viscosity as a local property of the 
fluid, the corresponding mixing length being treated in an 
analogous manner to the molecular mean-free path derived 
from the kinetic theory of gases. This description is based 
on erroneous physical concepts but has proved useful in the 
quantitative prediction of simple turbulent flows. 

The eddies can be considered as a tangle of vortex ele- 
ments (or lines) that are stretched in a preferred direction 
by mean flow and in a random direction by one another. 
This mechanisnl, the so-called 'vortex stretching', ultimately 
leads to the breaking down of large eddies into smaller 
ones. This process takes the form of an 'energy cascade'. 
Since eddies of comparable size can only exchange energy 
with one another, ~2 the kinetic energy from the mean 
motion is extracted from the largest eddies. This energy is 
then transferred to neighbouring eddies of smaller scales 
continuing to smaller and smaller scales (larger and larger 
velocity gradients), the smallest scale being reached when 
the eddies lose energy by the direct action of viscous 
stresses which finally convert it into internal thermal 
energy on the smallest-sized eddies) 4 It is important to 
note that viscosity does not play any role in the stretching 
process nor does it determine the anaount of dissipated 
energy;it only determines the smallest scale at which 
dissipation takes place. It is the large eddies (comparable 
with the linear dimensions of the flow domain), charac- 
terizing the large-scale motion, that determine the rate 
at which the means-flow kinetic energy is fed into turbu- 
lent motion, and can be passed on to smaller scales and be 
finally dissipated. The larger eddies are thus mainly res- 
ponsible for the transport of momentum and heat, and 
hence need to be properly simulated in a turbulence model. 
Because of direct interaction with the mean flow, the large- 
scale motion depends strongly on the boundary conditions 
of the problem under consideration. 

An increase in Reynolds number increases the width of 
the spectrum, i.e. the difference between the largest eddies 
(associated with low-frequency fluctuations) and the 
smallest eddies (associated with high-frequency fluctua- 
tions). This suggests that at high Reynolds numbers the 
turbulent motion can be well approximated by a three- 
level procedure, namely, a mean motion, a large-scale 
motion and a small-scale motion. This procedure, proposed 
by Kovasznay, ~s is frequently used for turbulent flow 
calculations. 

Why use a turbulence model? 
Turbulence is a three-dimensional, time-dependent, 

nonlinear phenomenon. Computer programs, ~6-~8 now 
exist which are capable of solving three-dimensional, time- 
dependent Navier-Stokes equations, within practical 
computer resources. So why not make direct computer 
simulations of turbulence? The reason is that turbulence 
is dissipated, and momentum exchanged by small-scale 
fluctuations; and there is no existing or foreseen computer 
system with large enough memory or speed to allow the 
resolution of the small-scale effects. Therefore, in quanti- 
tative work one is obliged to use turbulence models based 
on using averaged NS equations and, in addition, a set of 
equations that supposedly express the relations between 
terms appearing in the NS equations. It must be realised 
that the available 'transport' models pay no respect to the 
actual physical modes of turbulence (eddies, velocity 
patterns, high-vorticity regions, large structures that 
stretch and engulf . . .  ) and, therefore, obscure the physical 
processes they purport to represent. Flow visualization 
experiments confirm this point and demonstrate the 
difficulty of precise definition and modelling. It is there- 
fore hardly surprising that the actual physics of turbulence 
are nowhere to be seen in the 'transport' models; simply 
because nobody can see as yet how mathematics can be 
employed to represent them in the models. It is, however, 
also true that the engineering community has fortuitously 
often obtained very useful results by using 'transport' 
models; results that would have required much more man- 
time and experimental cost to obtain in their absence. 
Therefore, cautiously exercised and interpreted the tur- 
bulence models can be valuable tools in research and 
design despite their physical deficiencies. 

Field m o d e l s  o f  t u rbu l ence  

The computation of turbulent flows, essentially the search 
for a model of  the Reynolds stresses -- PUi'U i' appearing 
in equatiod (10) (the 'closure' problem) in terms of either 
known or calculable quantities, has been a serious problem 
since Reynolds' time. Until the advent of powerful com- 
puters most boundary-layer prediction methods were highly 
empirical and based on ordinary differential equations. The 
impact of computers by the mid-1960s led several workers 
to develop methods based on the governing partial differen- 
tial equations of mean motion, incorporating turbulence 
transport equations. The main impact of the 1968 Stanford 
University specialists' conference was to legitimize pde 
methods, which proved to be more accurate and more 
general than the best integral methods. Vigorous develop- 
ment of pde turbulence models then followed. This review 
outlines the main features and advantages/disadvantages of 
several levels of turbulent-flow pde models. For methods 
based on ordinary differential equations, which still have 
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some uses, the comprehensive review by Reynolds and 
Cebeci 1 should be consulted. For modelling of turbulent 
heat and mass transport, see the review by Launder. 3 
Modelling of turbulence has been attempted in general 
by five methods, as follows: 19 

• Analytical turbulence theories: these are normally 
developed in Fourier (wave number or frequency) 
space. 2°-22 These theories are very complicated and 
have not yet been applied to complex engineering 
problems. 

• Sub-grid scale closure models: these are based on the 
hypothesis that turbulent motion could be separated 
into large scale and sub-grid (small-scale) components 
such that the separation between the two does not have 
a significant effect on the evolution of large scales. 2a 
These methods, although promising, still require too 
much computational time to be useful for engineering 
applications. 24 

• Direct numerical simulation: This method attempts to 
simulate directly aU the dynamically important scales 
of  large Reynolds number turbulent flows. It is based on 
the hypothesis that direct simulation may be carried out 
by artificially decreasing the Reynolds number to the 
point where the important scales can be simulated 
accurately on existing computers, and that a sufficient 
number of large scales remain unchanged by any change 
in Re. This method still requires too much computa- 
tional time)9' 2s 

• Turbulence transport models: These are the basis of the 
engineers' approach, where attempts are concentrated 
on seeking simplified modelling of the terms governing 
the transport of momentum, heat, etc. These models are 
similar to the analytical theories in that both treat 
dynamical quantities as statistically-averaged fields; but 
they simulate only the gross features of turbulence, 
while analytical theories pay attention to interactions 
between the various scales of motion. 26 

• Two-fluid models of turbulence: The 'fragmentariness' 
of  turbulent flows is neglected by the conventional 
(single-fluid) models of turbulence. It can be allowed for 
by the use of a multi-fluid model which permits different 
(arbitrarily distinguished) fluids to exist and interact in 
the same space. Thus, when a two-fluid model is applied 
to a turbulent jet, two-phase theory is applied to the 
flow of a single thermodynamic phase ; the 'two fluids' 
being (1) injected fluid possessing vorticity (2) surround- 
ing irrotational fluid. A conventional turbulence model 
can still be used within phase 1. Multi-fluid turbulence 
modelling is just beginning and appears promising. 27-29 

This review will discuss the turbulence transport models 
in some detail because they have been intensively developed 
and are essentially today's standard practice. Large-eddy 
simulations are still in the development stage and are 
serving mainly to help assess the lower-level models. 
Because of their long term promise they are discussed 
briefly. Finally, the two-fluid models are discussed. They 
are in their infancy but may in future inject more physical 
content into turbulence modelling. 

T u r b u l e n c e  t r a n s p o r t  mode l s  

A transport model is a set of equations, additional to the 
averaged Navier-Stokes equations, purporting to express 
relations between terms appearing in those equations. The 
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starting point of all transport models is the Reynolds 
equation (10), and the problem of 'closure' reduces to the 
modelling of the Reynolds stresses -- pui'uj' , in terms of 
mean-flow quantities. 

Simple closure models of the Reynolds stresses,--pui'ui', 
normally use an eddy viscosity hypothesis based on an 
analogy between molecular and turbulent motions. Accord- 
ingly, the turbulence eddies are thought of as lumps of fluid, 
which, like molecules, collide and exchange momentum, 
obeying the kinetic theory of gases. Thus, in analogy with 
the molecular viscous stress, the Reynolds (turbulence) 
stresses are modelled according to: 

, , / ' a ~  + a ~ ~  
--Idi Uj "~ Pt - -  

= 2vtSii  - ~ i j k  (13) 

Here v t [=- #t/P] is referred to as the turbulence or eddy 
(kinematic) viscosity which, in contrast to the molecular 
(kinematic) viscosity, v [--I~/P], is not a fluid property but 
depends on the local state of the turbulence; it is assumed 
to be a scalar and may vary significantly from point to 
point and flow to flow. The symbol k in the above equa- 
tion denotes the kinetic energy of the turbulent motion, 
expressed as: 

1 r i ~2 k = ~ u  iu i =~(ul  '2+u2 +ua '2) (14) 

This, being a measure of normal (or diagonal) turbulence 
stresses, is also the turbulence equivalent of the (kine- 
matic) static pressure pip of the molecular motion, and is 
therefore absorbed normally in the unknown pip (replacing 
pip by ~/p + ~ k) if an explicit equation for k is not 
involved. (It should be noted that equation (1 3) reduces 
to the identity k = k for i = j ,  and thus cannot be used 
for the determination of k.) 

Even though the eddy viscosity hypothesis (equation 
(13)) faces some conceptual difficulties, 13 it has proved 
quite successful in many flow situations. 3°-37 Its success 
results from the fact that the (only) unknown v t in equa- 
tion (1 3) can be determined, to a good approximation, 
simply by writing: 

v, = r;'Z, (15) 

where L is a length scale characteristic of large turbulence 
eddies and V is a velocity scale characteristic of fluctuating 
velocities (also of  the large eddies). It has been pointed 
out 2a that it is the distribution of these scales that can be 
well approximated in many flows. 

Equation (13) defines the mean rate of strain Sij. The 
difference between zero-equation and one-equation models, 
discussed below, is that in the latter vt, instead of being 
related directly to the mean-flow scales, is modelled by: 

v t = Cvt x/kL 

Zero-equation models 
These are models using only the pde's for the mean 

fields and no differential equation for turbulence quantities. 
The models of this group relate the turbulence shear stress 
uniquely to the mean-flow conditions at each point. Since 
they require only algebraic expressions, they have been 
very popular. All models of this class use the eddy-viscosity 
concept of Boussinesq, which for u'v' in a thin shear layer 
becomes: 

O(l 
- - u ' v '  = v t - -  (16) 

ay 
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The two most familiar versions of this class are distinguished 
by the way in which v t is calculated. 

(a) The constant-eddy-viscosity model. Trubchikov 3s and 
Prandtl a9 have proposed the following formula for free-jet 
flows: 

V t = C~ ( U r e a  x - -  U m i n )  (1 7) 

All quantities on the right hand side of (17), except C, may 
be functions of the longitudinal distance x; v t is supposed 
to be uniform over any cross-section. 

(b) The mbcing length hypothesis o f  Prandtl 4° which was 
proposed for two-dimensional boundary layers: 

= 12 ~ U  
vt I -'~-Y [ (18) 

The mixing length of turbulent motion, l, is analogous to 
the molecular mean-free path, and forjet  flows it is usually 
taken as proportional to the jet width. Prandtl 4° determined 
I by postulating that this was proportional to the distance 
from the nearest wall. Von K~irm~n 4~ proposed the following 
correlation of l with the mean velocity prot'ile by using 
dimensional analysis: 

aU, laX2 I (19) l = K 02U1/O2X 2 

where K is the yon Kgrm~in constant (= 0.4). This expression 
has had limited success because it yields an infinite mixing 
length when there is a point of inflexion (a2Ul/b2X2 = 0) in 
the mean velocity profile, as is generally the casewith flows 
like jets and wakes. Formulae (16) and (18) are based, it 
should be mentioned, on erroneous physical arguments, but 
can be regarded as definitions of the quantities v t and l 
which, in simple flows, are simpler to correlate empirically 
than u'v' itself. In most boundary-layer calculation methods 
the turbulent boundary layer is regarded as consisting of 
inner and outer regions, and the l and v t distributions are 
described by two separate empirical expressions in each 
region. For example, outside the viscous sublayer close to 
the wall, l is proportional t oy  in the inner region, and it is 
proportional to ~i in the outer region. Therefore: 

I.= I KY Yv <~ Y <~ Yi 

( a t5  Yi<<-Y<<-6 (20) 

where 3'v is the viscous sublayer thickness, 40V/Ur, and 
Yi is a distance obtained from the continuity of mixing 
length. The empirical parameters K and al vary slightly 
according to the experimental data. For flows at Re > 
5000 they are taken as K = 0.4 and a~ = 0.075. According 
to recent studies 42 at Re < 5000 a ,  is a function of  Re.  
Similarly, according to several studies, v t varies linearly 
withy in the inner region where --plt'v' is nearly equal to 
rw, and is nearly constant in the outer region. The following 
formulae may be used: 

Pt 

12 ~ Yv <~ Y <~ Yi 

I; ( Ue - U) dy yi <~ y <<. 6 

o 

( : l )  

with I given by (20). The 'constant' a is assumed equal to 
0.0168 forRe > 5000, and it also varies, like ~l, with the 

Reynolds number when Re < 5000. Cebeci 43 has given a 
formula for a as a function of the 'strength of the wake'. 

There have been numerous attempts to extend equa- 
tion (20) into the viscous sublayer, by multiplying l 
with functions of the sublayer thickness or otherwise. 44 
Van Driest 4s using an analogy with the laminar flow on an 
oscillating flat plate, proposed: 

l = ~3, [1 --exp(--y/A)]  (22) 

for a smooth flat-plate flow. Here A is a damping-length 
constant for which the best empirical choice (e.g. dimen- 
sionally correct) is A +v(rw/p) -1/2 with A + being about 
26. A + varies somewhat with pressure gradient, transpira- 
tion, etc.' 

Abbott et al, 46 using an intermittent model of the sub- 
layer, obtained an expression similar to equation (22) by 
considering the unsteady one-dimensional vorticity equa- 
tion rather than the unsteady one-dimensional momentum 
equation considered by Van Driest. This model, which is 
developed for incompressible flows, has not yet been used 
and tested as thoroughly as the Van Driest model. 

The eddy viscosity and mixing-length formulae, like all 
expressions for turbulent flows, are empirical. Over the 
years, several empirical corrections to these formulae have 
been made, to account for the effects of low Reynolds 
number, transitional region, mass transfer, pressure gradient, 
transverse curvature and compressibility. An example is the 
eddy-viscosity formulation of Cebeci and Smith (Ref. 1, 
p. 219) that accounts for all of these effects and appears to 
give satisfactory results. Eddy-viscosity formulations have 
also been generalized to 3D incompressible and compressible 
flows by Cebeci, 47 Cebeci and Abbott ,~ Cebeci et al. 49 
They proposed: 

(vt)i = L=IS(y)I  (vt)i~< (V,)o 

v t =l(Vt)o 0.0168 o f(Iq,l-lq(y)l) dy 

(vt) i >>- (Vt)o (23) 

where: 

L = 0.43' [1 -- exp(--y/A)] ; A = 26(v/lSwl) a/2 (24) 

Here y denotes distance normal to the surface, q the velo- 
city vector parallel to the wall, q = (U, W), and S denotes 
the strain vector S = ~q/by = (aU[by, OW/ay). The sub- 
scripts e and w denote the edge and the wall, respectively. 
The expressions in (23) have been used to compute a num- 
ber of 3D flows ranging from swept infinite cylinders to 
arbitrary wings for incompressible and compressible flows. 
The governing boundary-layer equations were solved by 
numerical methods and comparisons made with experiment 
and with the predictions of Bradshaw's method, s° Figure 1 
shows the results for a 45 ° infinite swept wing and Figure 
2 the results for a laterally diverging boundary layer. The 
experinaental data in Figure 1 were obtained by Bradshaw 
and Te~rell sa on the flat rear of the wing, in a region of 
nominally zero pressure gradient and decaying cross-flow. 
The experimental data in Figure 2 were obtained by 
Johnston sz in an apparatus consisting of a rectangular 
inlet duct from which an issuing jet impinged on an end 
wall from the outlet of the channel. The jet was confined 
on the top and bottom by flat surfaces. Other zero- 
equation methods based on mixing length or eddy viscosity 
have also been extended to 3D flows. Such a model which 
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Figure I Predictions of a swept-wing boundary using equation 
(23] (0), experiments (reference 51 ); { ), calculations. (Taken 
from reference 1 ) 

z - O  

1.2 

1.0 

~ o 8  k~ 

~ 0 . 6  

0.4 

0.2 

1.4 

o t 

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0,8 1.0 
U/Ue 

Figure 2 Predictions of a laterally diverging boundary layer using 
equation (23). (0), experiments (reference 52); ( - - ) ,  calculations, 
(Taken from reference 1) 

appears to give satisfactory results is due to Hunt et al, 5a 
and has been adopted and used by others, s4'ss 

Though several other algebraic formulae for v t have been 
proposed, they did not attract much attention because 
they need more ad hoc adjustment than the mixing-length 
model. Thus, Prandtl's model is still the basis of many 
calculations of the turbulent boundary layer which are 
carried out today; its merits and short-comings are there- 
fore discussed in greater detail. 

For many boundary-layer flows, Prandtl's mixing length 
hypothesis works surprisingly well. The spreading rate, as 
well as the profiles of velocity, temperature, and concen- 
tration, can be predicted satisfactorily. Unfortunately, the 
constants involved must vary with the problem considered. 
Table 1 exemplifies this for the following jets: plane mixing 
layer, plane jet, radial jet and round jet; all of these are 
without swirl, and issue into stagnant surroundings. 

Mathematical modelling of turbulent flow: N. C. Markatos 

The mixing length, l, divided by the jet width, 6, varies 
from one case to another. This lack of universality is an 
indication that the underlying model of turbulence lacks 
some of the important features of real flows. Thus, the 
mixing-length hypothesis implies that generation and 
dissipation of turbulence energy are in balance everywhere; 
so the convection and diffusion of turbulence energy are 
ignored. Only the employment of differential equations 
for the turbulence quantities (whereby the eddy viscosity 
or the associated characteristic scales of turbulent motion 
are calculated through the transport equations) can over- 
come these restrictions. 

Models which employ differential equations for  turbulence 
quantities 

The eddy-viscosity hypothesis has been extended to 
higher levels of complexity for non-equilibrium boundary 
layers (where, locally, generation-dissipation ~ 0). Following 
Mellor and Herring, s6 mean-velocity-field (MVF) models 
include all those eddy-viscosity models (algebraic and pde) 
which provide information only about the mean velocity 
profile, in addition to the turbulence shear stresses (through 
equations (13) and (15)), whereas mean-turbulence-energy 
(MTE) models include all other (pde but not necessarily 
eddy-viscosity) models that provide additional information 
about the kinetic energy of turbulent motion. The models 
of Saffman and Wilcox, s7 and Nee and Kovasznay ss are 
classified as MVF models since their transportable para- 
meters (such as vt) are themselves models of turbulent 
flows and not physically realizable quantities like k. The 
lack of popularity of these models compared with MTE 
models is due to that reason. MTE models, reviewed recently 
by Harsha, s9 can be classified into two groups: PK models, 
proposed by Prandtl 6° and Kolmogorov, 6] use the eddy- 
viscosity hypothesis (equations (13) and (15)) with the 
scale of velocity fluctuations specified as ~/k where k is 
determined through a transport equation. On the other 
hand, models proposed by Nevzglijadov 62 and Dryden 6a 
are based on the hypothesis that the shear Reynolds stresses 
are proportional to the turbulence kinetic energy (k) or 
normal Reynolds stresses: 

ui'uj' = alk ,  i 4=j (25) 

where a~ is a dimensionless constant (-~ 0.3) or a function 
of  y /6  where fi is the shear-layer thickness. The latter 
models derive a transport equation for the Reynolds 
stresses from the k-equation rather than from the full 
Navier--Stokes equations. Furthermore, because the energy 
in equation (25) cannot assume negative values, the use of 
this assumption is restricted to problems in which the shear 
stress varies monotonically from a finite value on one 
boundary to zero at the other. 

One-equation models 
Several models focus attention on the kinetic energy of 

turbulence k, as defined by equation (14). k is the depen- 
dent variable of a differential transport equation, derived 

Table 1 Mixing-length constants for free jets 

Mixing layer Plane jet Radial jet Round jet 

1/6 0.07 0.09 0.13 0.075 
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exactly from the Navier-Stokes equations, as follows (for 
p = constant): 

Ok Ok 
- -  + ~ i  Ot Ox/ 

rate of  advective 
change (I) transport (II) 

O r_[ui'fui'ui'_~ 2 +p~)-2vuisil]' " 
ax i 

-= inertial diffusive 
transport (III) 

, ' , OU i (ou, o., - -  ou,'  
- ui'ui Oxj v \Ox] Ox] t- Ox] Oxi / 

Pk =- production e = viscous 
by shear stress (kinematic) dissipation 

(IV) rate (V) 

o r  

Dk 

(26a) 

Ok Ok 
-- t- W / - -  = ~ k  + Pk -- e (265) 

Dt 3t 3x i 

where: 

l (Oui'+ Ou]'~ 
s . =  (27) 

is the deformation or symmetric part of the second-order 
fluctuating rate-of-strain tensor (Ou i ' /Ox ] ) .  The first two 
terms of equation (26) are self-explanatory. Other terms 
involving unknown correlations need some discussion. 
The term ~k( I I l ) ,  which represents the turbulent trans- 
port of k by diffusion, is an inertial term and vanishes when 
integrated over the representative volume of any flow. =° It 
implies that the term neither creates turbulence energy nor 
destroys it; it merely moves it from place to place in con- 
figuration space, and one wave number to another in Fourier 

9 space. The viscous diffusion part, _ v s q u  i can be shown to 
be negligible at high Reynolds numbers ~= (Viscous diffusion 
may not be negligible outside the inviscid region, i.e. in 
the viscous region near solid boundaries). The rest of this 
tern] is modelled, in analogy with the eddy-viscosity hypo- 
thesis (equation (13), according to the gradient-diffusion 
assumption: 

s i s t 

, [ u i u i  , ,~ ,u iu i  - " J  - -  
_ 2 

ak (eddy-diffusivity'~ 3'k 
0x~' \ hypothesis ] (28) 

where ")'k(- Fk/P) is the turbulence (or eddy) diffusivity 
o f k  and, similarly to ~'t, is not a property of  the fluid. This 
may be determined from the Reynolds analogy between 
different transport diffusivities, which states that vt, des- 
cribing the turbulent trans!bort of  momentum,  is linearly 
related to 3'k, describing the turbulent transport of  k, i.e.: 

/ ) t  

"Yk ---- - -  
Ok 

where ak is an empirical diffusion number. It has been 
pointed out, 24 on the basis o f  experimental observations, 
that even though the turbulence diffusivities may vary 
significantly across the flow, their ratio (i.e. (vt/'rk) = ok) 
stays almost constant; nevertheless buoyancy may signifi- 
cantly influence the value of  ok. The term Pk (IV) rep- 
resents the rate of  transfer (or production) of  kinetic 
energy from the mean to the turbulent motion. It  is worth 
mentioning here that this term appears with opposite sign 
as a sink tern] in the equation for } UiUi, the kinetic energy 
of  the mean motion. 12 The correlation u/u/ impl ic i t  in 
the term Pk is modelled according to equation (13). The 
term e(V) represents the 'average' (kinematic) dissipation 
rate of  turbulence (kinetic) energy, i.e. the rate at which 
turbulence energy is destroyed by molecular viscous 
stresses. At large,Re,  where local isotropy prevails at 
smaller scales of  the turbulent motion,  e can be equivalently 
written as: 

(o.,' o.,'÷ o.,' o.,' 
e = v --  2vs i j  - -  - 2 v s q s i j  

\Ox/ Ox/ Ox i Oxi / Ox/ 
(29) 

The modelled fern] of e is, however, derived from the 
experimental results which suggest that it is governed by 
the energy of  large eddies (~k )  and their single time-scale 
(~Lk/~/k). Thus, on dimensional grounds, equation (29) 
is simplified to: 

k3/2 
e = vsi/sii ~- CD - -  (30) 

Lk 

where Co is an empirical constant for (viscous) dissipation. 
The second equality of  the above equation implies that the 
turbulence viscous dissipation is a passive process, in the 
same sense that e can be estimated from the large-scale 
eddies which do not involve viscosity. The first equality 
suggests that the (smallest) scale at which eddies are dissi- 
pated due to viscosity can then be determined by the 
dissipation rate (e) and the viscosity. With equations (13) 
and (26)-(30),  the modelled form of the k equation (26) 
at large Re becomes: 

Ok+ ~ Ok 3 (1) t Ok ~q. O K _  k 3/2 
oxj- oxj 2 ,s,j oxj 

(31) 
It can be seen that if advective and diffusive trans- 

port terms are neglected, this equation reduces to the 
mixing-length model (equation (18)), with l and Lk being 
related by: 

/.~. 3\tJ4 
1 = {  "v '  } L (32) 

\CD / K 

Cv, being the proportionality 'constant '  in the v t ~L rela- 
tion. The modelled k-equation (3 l) still involves L K as an 
unknown. It is the specification of LK that distinguishes 
various PK models. In general, the one-equation models can 
be classified as foUows: " 

Models which use the eddy-viscosiO, concept, equation 
(16): 

(a) Models solving the above transport equation for k. 
Kolmogorov, 61 Prandtl, 6° and Emmons 64 independently 
proposed the use of  the relationship: 

v t = C ,  x/~L (33) 
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k is to be calculated from the differential equation, and 
the length-scale L, in the models of this class, from an 
empirical algebraic expression. 

Wieghardt, 6° Glushko, 6s and Beckwith and Bushnell 66 
applied this model to various boundary-layer flows. Wolf- 
shtein 67 used the model to calculate the impinging jet and 
Spalding 68 applied it to separated flows. The quality of 
the prediction depends, of course, on the realism of the 
expression for L ; but, whenever the diffusion and con- 
vection of turbulence play a significant role, the superiority 
of this model over zero-equation models is clearly evident. 
(b) Models solving a transport equation for v t. Nee and 
Kovasznay s8 have proposed a transport equation for vt; 
they also needed to incorporate an empirical algebraic 
expression for L. They applied the resulting model to a 
turbulent wall boundary-layer without pressure gradient 
and obtained good agreement with experimental results. 
The objection to these models is the use of a non-physical 
quantity as dependent variable. 

Models which use the 'structural' assumption, equation 
(25) rather than the 'Newtonian' assumption, equation (16). 

A length scale is needed, because the turbulence trans- 
port and dissipation terms in the k-equation have dimen- 
sions of (velocity)a/(length) and are modelled as functions 
of the scales h/k and L. Use of equation (25) produces an 
equation for u'v'. In both approaches L//5 is taken as an 
empirical function of  y/~5. Townsend 69 proposed that the 
ratio of u'v' to k might be a universal constant. This is not 
always plausible. T/(pk) cannot remain constant near zero- 
gradient regions; in practice it can change sign. Bradshaw 
et al 7° employed the 'structural' assumption to derive a 
shear-stress transport equation from the turbulence energy 
equation (ND model), and used an empirically specified 
bulk convection velocity for the turbulence transport 
terms. They were successful in making predictions for 
several uniform-density boundary layers near walls. Figure 
3 presents calculations by Bradshaw et al and experiments 
for flow past a flat plate with uniform u=. Figure 4 presents 
the same information for equilibrium boundary layer with 
u=o:x -°'~s and Figure 5 for equilibrium in favourable 
pressure gradient with/5 l/rwa, dp/dx = ---0.35. The agree- 
ment of the Bradshaw et al model with experiment is very 
good. Other models, however, can also give agreement in 
these cases which is as good. The method has also been 
applied to a wide range of boundary-layer problems includ- 

1.0 

~ -'~'U/U== 

p u =  62/I.L = 12400  exper- lments at 

1.0 
• Y/8o.ge~ 

Figure 3 Flow past a flat plate with uniform u~. Calculations by 
Bradshaw et al. (Figure taken from reference 4) 
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~'~ c.alculation scarcely ~ 
differ \ \  m 

0 7/~0.99~ 1.0 

Figure 4 Equil ibrium boundary layer with u.. = x -°'=s. Calculations 
by Bradshaw et al. (Figure taken from reference 4) 

. - - - E x p e r i m e n t  

1.0 %~=~-- Golcu ~ lotion 

. , ~ , , ~ ' ~  ~ku / u~ Calculation and 

0 1.0 
¥/6o.9g~ 

Figure5 Equil ibrium boundary layer in favourable pressure gradient. 
Calculations by Bradshaw. (Figure taken from reference 4) 

ing 3D s°' 71, ~2 and compressible flow with heat transfer; 73 
also internal flows, 74 free shear layers 7s and unsteady 
flow. 76 For many flows, however, the underlying assump- 
tion is not realistic; often where k remains finite the shear 
stress vanishes, or, as in the case of round jets, when k has 
its maximum value. Other limitations of the model are: 

• Only uni-directional k diffusion is allowed. 
• The length-scale distribution must be inserted as 

empirical input, as for the mixing-length and Prandtl 
energy methods; no universal prescription is available, 
even for flows near walls. 

• For recirculating flows, the situation is as for other 
one-equation models. 

The Bradshaw et al model has in the past attracted 
much attention. Its supporters have pointed to the experi- 
mental data showing that sometimes r and &t/a),, and 
--u 'k '  and ak/O),, have opposite signs; such data exist and 
show the limited validity of 'effective-viscosity' and 'tur- 
bulence diffusion' models. Nevertheless, the implausibili- 
ties of the Bradshaw et a /model  appear to be as severe. 
For flows where shear stress changes sign, Morel et a/77 
have accounted for the sign of the shear stress profiles by 
considering them as two opposite boundary layers over- 
lapped together, and then treating each layer according 
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to equation (25). This concept also fails in axi-synunetric 
flows, s9 where an infinite number of interacting layers has 
to be postulated and parameters of the model have to be 
modified as well. For 2D and axisymmetric flows, Harsha 
and co-workers 7s-s° have, alternately, taken into account 
the sign of shear stress profiles by proposing an expression 
for x j ,  that effectively transforms the ND (or structural) 
hypothesis to the PK (or Newtonian) hypothesis. Con- 
trary to Bradshaw and co-workers 7°'sl Harsha and co- 
workers 7s's° have therefore used the gradient-diffusion 
assumption for the diffusion term;the expression similar 
to (30) is again used for the dissipation term. Another 
interesting class of ND models includes the semi-integral 
formulation of the Bradshaw et  al model 7° by Patel and 
Head s2 and that of Lee and Harsha 7a by Peter and Phares. sa 
The survey by Harsha s9 has shown that, besides being 
numerically efficient, the integral models provide signifi- 
cantly better predictions than the corresponding finite- 
difference versions in some flows, such as in far-field wakes 
and jets. The numerical efficiency of the integral models is, 
however, not considered a substantial advantage since 
equally fast finite-difference procedures are also available, s9 

Finally, the one-equation model of  Norris and Rey- 
nolds 44 for use in the viscous sublayer as well as in the fully 
turbulent regions should also be mentioned. They argued 
that the length scale L should do nothing special in the 
viscous region, but should behave like L ~- Ky all the way 
down to the wall. However, they assumed that the turbu- 
lence transport is suppressed by the presence of the wall 
and took:' 

vt = C ,x /kL  [1 -- exp(--  C2x/~y/v)] (37) 

where C1, C2 are constants. A similar approach was adopted 
by Wolfshtein. a4 The latter allowed L to depart from Ky, in 
the viscous region, but used ~ =  Caka/2/L for dissipation 
(Norris and Reynolds used ~ =  C3(k3/2/L) (1 + C4/(x /~L/v)) .  
When cast in comparable form, the constants used by Wolf- 
shtein and by Norris and Reynolds are similar. 

All one-equation models require the input of a length- 
scale distribution based on experimental information and 
hope. Information about these distributions is available 
for simple flows (although not complete); but it is not 
available for elliptic flows. For this reason, most researchers 
have abandoned these models in favour of two- or even 
more-equation models. For some flows of interest, it may 
still be easier to specify the length-scale distribution than 
to compute it with a pde. This would be particularly true if 
the length scale should really be governed by the global 
features of the flow through an integro-differential equa- 
tion. Therefore, the would-be user of a turbulence model is 
advised not to disregard them without some preliminary 
thought. 

Two-equat ion models  

General. All the models considered so far have neces- 
sitated the use of an algebraic length-scale specification; 
and experience has shown that this specification must 
vary with the boundary conditions. There is little hope 
of achieving universality for the empirical inputs until 
L, or some combination of L and k, is itself determined 
from an independent differential equation. Kolmogorov 61 
made the first proposal of this kind; he introduced a pde 
for the 'frequency' f =  k I ~2/L. The Kolmogorov energy- 
frequency model represents a major advance in turbulence 
computations, as it permits the length scale to be predicted 

(at the cost of solving an additional pde and of supplying 
further empirical constants). Rotta as derived an exact 
equation for L (related to the integral scale) from the 
Navier--Stokes equations. Harlow et  al s6-88 postulated an 
equation for L, and later replaced it by one for the dissipa- 
tion of k. They applied their model to turbulent pipe flow 
and obtained fair agreement with experimental results. 

The groups at Imperial College and at Stanford both 
experimented with ad hoc  transport equations for L with 
no real success. However, these and other groups have 
achieved greater success using equations for k ~ w, k ~ e 
and k ~ kL where w represents the 'vorticity' fluctuations 
square, and e the eddy dissipation rate. s9-92'96 Rodi and 
Spalding 9a used a k ~ kL model based on Rotta's model, 
and employed the eddy-viscosity concept and the relation- 
ship for vt, which was introduced much earlier by Kolmo- 
gorov, Prandtl and Emmons. They succeeded in predicting 
the behaviour of free jets with agreement with the experi- 
ment lying within the experimental accuracy. Markato~ '9s 
used the k ~ e model for recirculating flows, also with 
relative success. 

The model that has attracted most attention from the 
research community employs as the second pde that for 
the 'isotropic dissipation' ~ ,  based on the exact trans- 
port equation for ~ ,  which follows from differentiating the 
xi-component Navier-Stokes equation with respect to x/,  
multiplying by ~ui /Ox/and  averaging. At high turbulence 
Reynolds numbers, the difference between e and the 'iso- 
tropic dissipation' ~ is small, and one can use e for con- 
venience. Of course the e-equation implies a transport 
equation for L, using the transport equation for k. Since 
neither the terms in Rotta's length-scale equation nor those 
in the e equation have ever been measured, the reason for 
the greater usefulness of the e equation is not entirely 
clear. It can be shown, however, that modelling turbulence 
transport of L by an eddy viscosity gives implausible results 
in the inner layer of a wall flow, and most researchers have 
abandoned the L equation rather than the eddy-viscosity 
concept. The alternative to eddy viscosity is the bulk- 
convection hypothesis of Townsend, 97 in which turbulence 
energy and other quantities are supposed to be transported 
by the turbulence at a velocity that depends on the energy 
distribution but not on the local gradient. This may be a 
more realistic model than gradient transport, for transport 
by the large eddies. However, there is as yet no quantitative 
model for the behaviour of the bulk-convection velocity. 1 
An adversely critical discussion of gradient-transport con- 
cepts in turbulence is given by Corrsin. 9s 

Mathemat ical  analysis. It has been emphasised 99 that, for 
any substantial improvement in the performance of the PK 
models over mixing-length models, a transport equation of 
L k  seems essential. Otherwise, any algebraic length-scale 
specification must vary with the boundary conditions and 
there is little hope of achieving universality for the empiri- 
cal inputs. The length scale Lk is usually not chosen as a 
proper dependent variable for the Lk-equation. Instead, a 
combination of k and Lk, having the form: 

z = kmLT, (35) 

is chosen as the dependent variable, such that it can be 
interpreted physically. The most popular forms ofz  are: 

z = k l /2 /L  k = f  (turbulence frequency of energy 
containing eddies) 61 

z = k /L~  = w (time-average square of the vor- 
ticity fluctuations) 91-93 
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z = kS/=/Lk = e 

z = kLt¢ 

(dissipation rate of turbulence 
energy)S6-s9, lo3 
(energy ~ length-scale pro duct).93'l°°'l°~ 

Recently, Lin and Wolfshtein x°2 proposed an equation for 
the length scale in terms of tensor volume of turbulence, 
defined as the volume integral of the two-point correlation: 

f f  f (ldiA UlB /3 kAA) dQ, k~  =~lliA IliA/2 gij_= "----'7-- ~ ;! t 

Q 

where Q is the total volume surrounding the point A. 
It has been shown 2a that the various modelled transport 

equations for z differ mainly in diffusion and 'secondary' 
source (as a near-wall correction term which is zero for free 
flows) terms. The variable z = e is preferred normally 
because it does not require a secondary source term 24 and a 
simple gradient diffusion hypothesis is fairly good for the 
diffusion term.a9 An explicit transport equation for e also 
eliminates the use of  any empirical expression like equation 
(30). 

The k ~ e model is the only one, when compared with 
the k ~ k l  and k "" w models, that permits the 'turbulence 
Prandtl number' o z to have a reasonable value (= 1.3), 
which will fit the experimental data for the spread of the 
various entities at locations far from walls, without modifi- 
cation of any constants. Of course, the above 'superiority' 
of the e equation is very dubious; because it may be that 
some of the 'constants' should not be constants, and per- 
haps also the true behaviour of turbulence requires that 
the gradients of more than one turbulence property drive 
diffusional effects. Until further theoretical or experimental 
evidence of this becomes available, it seems better to 
stand by the simplest formulations. There is no reason, 
however, to suppose that, if an equal amount of attention 
were given to it, another two-equation mcdel would not 
perform as well, or even better than the k ~ e model. 

An exact transport equation for e has been derived from 
the NS equations independently by Davidov 1°3 and by 
Harlow and Nakayama, s6 which for incompressible flows is: 

D e  

D t  
I 

time rate 
of change 

and advection 
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(36) 

The interpretation of this equation does not look 
straightforward when e is taken as the rate of viscous dis- 
sipation of the turbulence energy. Its modelling can, how- 
ever, be performed by analogy with Chou's vorticity-decay 
equation for the mean-squared fluctuating vorticity ( ~ )  
which closely resembles the e-equation) °* At high Rey- 
nolds numbers: 

e = 21)sijs ff ~ V ~ i W  i (37) 

where sij is the symmetric part of the fluctuating strain rate 
OuilOx i. 

Unlike e, which is a passive scalar, the fluctuating vorti- 
city co i may be considered as an active scalar property of 
the small-scale turbulence, because most of the turbulence 
energy is associated with the large-scale motion whereas 
most of the vorticity is associated with the small-scale 
motion )2 With these concepts, the e-equation seems easier 
to understand in terms of w----/-/-/-/-/-/-/-/~. Its most direct interpreta- 
tion,mS, m6 however, is an equation for the rate at which 
turbulence kinetic energy is transferred across the spec- 
trum from large eddies (or low wave numbers) to smaller 
and smaller eddies (or higher and higher wave numbers). In 
the light of these remarks, the modelled e-equation is of the 
form: lOS 

~ =  +k  (CelPk--Ce2e) ( 3 8 )  
D t  a x m k e  

where Ce, Cei ,  Ce2 are empirical parameters. Upon rearrang- 
ing equations (31) and (38) the k ~ e model is as follows: 

and 

D t  = -~t + ~ -  - - + P k - - e  (39) I a x  i ax i ak 

De  Oe 8e a i r  t ae'~ e 

Dt  at ax i ax i~oe (40) 

O__j~/= v (O~i+  a~//.~Ou// 2vSi /O~i  (41) 
ek=-.;.;  Oxi 'tox/ o7/o7 = o7 

k 2 

vt ~-- C.1 x/kLk ~- Cvl - -  (42) 
6 

The empirical parameters normally used in these k - e  

models are: s9 

O r = Cv,CD (Co = 1.0) C~i 

(from equilibrium (from equilibrium 
shear layers) wall layers) 

0.09 1.44 

Cc2 ok % 

(from decay of 
grid turbulence) 

1.92 1.0 1.3 (43) 
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with C~ and Ce2 modified sometimes (e.g. axisymmetric 
jets), according to Refs. 99 and 107. 

Cm has been further improved, especially for thin (or 
weak) shear flows (e.g. far field jets and wakes) where 
turbulence is not necessarily in equilibrium, by simulating 
C~1 as an empirical function of Pk/e: to7 

Cvl = 0.09f2 (Pk/e) (43a) 

with 

JYe dy/ f e  Plc/e = ~ u{u~ Pky/  ulu-~y i dy (43b) 
e 

J'1 

where Ys, Ye refer, respectively. The flow area is yi dy so in 
boundary of the shear layer. Pk/e is weighted with ul'u2', so 
that regions with large u~'u2' have a dominating influence 
on the determination of Cvl. YJ dy is the flow area, so in 
plane f l ows /=  0 and in axisymmetric flows/" = 1. The 
graphical forms off2 are obtainable from Launder e t  al. 99 

The improved empirical parameters of the k-e  model now 
read as: 

G,1 Q I  C~2 ok • a~ 

0.09f2 (Pk/e) 1.43 1.94 1.0 1.3 
(44) 

for planar flows, and for axisymmetric flows with C~1 and 
Ce2 modified according to: 

Cvl = 0.09f2 (Pk/e) -- 0.0534fl (45a) 

C~2 = 1.94 -- 0.1336f~ (45b) 

with the retardation parameter f t  defined in references 
99 and 107. 

The empirical parameters have also been suitably 
adapted so as to make the k-e model applicable for low-Re 
flows l°s and for laminarizing boundary layers. I°9 

To understand the limitations of the two-equation PK 
models the assumptions, all or most of which are implicit 
in them are listed below: 

• Nearly homogeneous turbulence. This is the first condi- 
tion for the use of: 

au 
u'v' = - C~l v/-kLk ay 

in the shear-stress source terms. 
• High Reynolds numbers. This is the second condition 

for the use of  the above expression. 
• Similarity of the spectral distribution of the turbulence 

quantities. 
• Diffusion is of  the gradient type. For simplicity, con- 

stant effective Prandtl numbers Oz are used. 
• Dissipation o f k  can be expressed by e = CDka/2/L k 

with Co as a universal constant ;no the viscous-diffusion 
terms are negligible. 

The assumptions are so many that not all of them can be 
valid for the flows of practical interest. It must therefore be 
expected that the constants are not truly universal but 
functions of characteristic flow parameters. 

The researchers of turbulence modelling have insisted 
that their two-equation models first describe properly the 
decay of isotropic turbulence, and then have worried about 

the behaviour of their models in homogeneous shear flows 
where the transport terms vanish, l It is therefore assumed 
that the same empirical input is adequate for both types 
of flow. For further discussion of this, see Comte-Bellot and 
Corrsin, m Lumley and Khajeh-Nouri n2 and Reynolds. na 
It seems most desirable to model the source of e by ref- 
erence to experiments in nearly homogeneous flow, where 
the transport would not confuse the issue. There are two 
types of such flows, those involving pure strain and those 
involving pure shear. Tucker and Reynolds n4 and Mare- 
chal ns studied the pure strain case; Champagne et al n6 
and Rose n7 studied homogeneous shearing flows. For their 
use in modelling, see Reynolds. na 

The form of the models presented so far has by impli- 
cation adopted the notion of a scalar turbulence viscosity. 
This assumption forces the principal axes of  u~u] and the 
mean-strain rate Sil to be aligned. This is true in pure strain, 
but not true in any flow with mean vorticity. In practice, 
this supposition has proved perfectly adequate in 2D 
flows without swirl, where only one stress component 
exerts much influence on the flow development. In flows 
with swirl, however, and indeed in 3D flows generally, the 
measured flow distribution can be predicted in detail only 
by choosing a different level of viscosity for each active 
stress component. Such an attempt is described in detail 
by Launder ns and Rodi; 1°7' 12a applications of the pro- 
cedure have been reported by Launder and Yingng: 120 to 
the flows in square-sectioned ducts, by Rodi 1°7 to obtain 
the normal-stress profiles in some free-shear flows, and 
by Koosinlin and Lockwood TM to the calculation of 
flows near rotating cones and discs. The starting point of  
this procedure in deriving the relevant stress-strain formu- 
lae is the exact equation for the transport of  Reynolds 
stress. Details on approximating the diffusive, dissipative 
and redistributive terms in the equation are given by 
Launder et al. 122 What is especially important in this 
context is that the approximation of neither the dissipa- 
tive nor the redistributive terms contain gradients of stress 
components. The essence of 'algebraic' stress modelling 
then resides in reducing the differential stress equation to 
an algebraic set of equations among the Reynolds stresses, 
the turbulence energy, the energy dissipation rate and mean 
velocity gradients: 

UiU / = f tlq, k, e, ~m,/  (46) 

This is mainly done by neglecting the convection and 
diffusion terms, or more generally by assuming that the 
transport qf u~uj is proportional to the transport of k. 123 

By this means, most of the basic features of  the full stress 
model are retained, k, e appearing in equation (46) may be 
found from the pair of  pdes (39) and (40); this is the 
simpler practice. Alternatively, one may use the values of 
u/u/obtained from (46) to replace vt(OUi/aX 1 + ~U//aXi) 
which appears in the generation terms of these equations; 
this would be a more consistent practice and probably a 
more accurate one too. This modelling lies between the 
PK and stress-equation modelling trying to combine the 
economy of the former with the 'universality' of the latter, 
especially in accounting for anisotropic and wall effects. 24 

Saffman 124 tried the following constitutive equation: 

k 
.;.; = 3 8 , ,  - 0 + (47) 
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where I21] is the rotation tensor, C is a constant, and the 
first two terms are the same as in the scalar def'mition. In 
a two-equation model l would be expressed in terms of 
k and e. 

Equation (47) does produce the right sort of  normal- 
stress anisotropy in shear flows, but the new terms do not 
alter the shear stress and hence (47) works no better than 
the scalar definition of eddy viscosity. 

Two-equation models also fail to predict the return to 
isotropy after the removal of  strain, or the isotropizing of 
grid-generated turbulence.n~ This failure arises because 
of the need for a constitutive equation for the u[uj .  To 
use the k ~ e model in an inhomogeneous flow, Jones 
and Launder ms' ~o9 used a gradient-transport model for the 
diffusive fluxes of e, that involves an additional con- 
stant = 0.77. Lumley 12s showed that the diffusive flux of 
dissipation should depend also on the gradients in turbu- 
lence energy, and vice versa; therefore two gradient terms 
should be introduced in the diffusive fluxes of k and e. ~ 

Another difficulty with using the e-equation as the 
second model equation has escaped the model developers 
and has been pointed out by Reynolds and Cebeci. ~ This 
arises from term VII of equation (36), the pressure gradient- 
velocity gradient term in the diffusion. Since the pressure 
field depends explicitly on the mean velocity field, mean 
velocity gradients can explicitly generate e-transport. This 
could be an extremely important effect, especially near a 
wall. The omission of this consideration may be an impor- 
tant deficiency in all e-equation models studied to date. 

Other two-equation models include the Saffman-Wil- 
cox s7 and the Wilcox-Traci ~26 models. Instead of an 
e-equation they use an equation for a 'pseudo-vorticity', 
a typical inverse time-scale of the energy-containing 
eddies, z27 In addition, they use the k-equation with appro- 
priate modelling of the production and 'isotropic dissipa- 
tion' terms. The production term as modelled in reference 
57 is inconsistent with the u ju j  transport equation but 
Reynolds and Cebeci ~ have commented that this may in 
fact be a strength. This model of the production is based 
on the experimental fact that the structure of the turbu- 
lence in the wall region of a boundary layer is essentially 
independent of the strain rate, and hence the production 
should be proportional to k. Hence the Saffman-Wilcox 
model is a blend of the 'Newtonian' and 'structural' alter- 
natives, equations (16) and (25) (see also reference 56). 
Recently, Wilcox and Rubesin 12s have demonstrated 
that the Saffman-type production terms 92 can introduce 
errors, and they have reintroduced the unmodelled terms. 
A good description of the Wilcox-Rubesin model and the 
work at NASA Ames is given in reference 129. 

In spite of the above difficulties with models based on 
constitutive equations for u[uj ,  their simplicity (and there- 
fore computational economy) makes them attractive. Two- 
equation models have been extensively studied and applied 
with various levels of success. Other models (e.g. stress- 
equation models, large-eddy simulation etc) also have 
problems. Therefore, there may still be space for further 
development of two-equation models. Two interesting 
proposals for improving the 'universality' of  the k ~ e 
model have been made by Pope 33 and Hanjalic and Laun- 
der. ~a° The former introduced a 'vortex-stretching genera- 
tion' term in the e-equation, and correctly predicted both 
plane and round jets with the same set of constants. The 
latter introduced a preferential-irrotational-straining genera- 
tion' term in the e-equation (guided by the multi-scale 
k ~ e work, see section on the multi-scale k -e  model) and 
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obtained improved results for the round jet and for 
boundary layers in adverse pressure gradients. These pro- 
posals deserve further study. Other attractive propositions 
appear to be the use of equation (46) (as followed by 
Rodi's group at Karlsruhe, TM or equation (47) with two- 
equation models; since they allow for anisotropy of the 
normal stresses, they can be used for predicting turbulent 
boundary layer separation, buoyant flows, rotating flows 
and tic .vs with strong streamline curvature, which cannot 
be predicted properly by the commonly used scalar eddy- 
viscosity assumption. 

Stress-equation models  
In turbulent shear flows, the energy is usually first 

produced in one component and then transferred to the 
others by turbulence processes. 

In complex flow situations such as in recirculating 
flows, the MTE models based on local isotropy of tur- 
bulence (or one velocity scale, x/'k) are sometimes inade- 
quate to represent the local state of turbulence. The heated 
asymmetric plane jet presents simultaneously two counter- 
gradient diffusion zones, one for the dynamical field, the 
other for the thermal field. 2°7 Effective viscosity and 
diffusivity concepts cannot be retained for this type of 
flow. These deficiencies may be overcome by mean-Rey- 
nolds-stress (MRS) models which explicitly employ trans- 

I t port equations for the individual Reynolds stresses, - u  i ui, 
(and for uj T') ,  each representing a separate velocity scale. 
An exact MRS-equation, derived from the Navier-Stokes 
equations by Chou l~ is (for incompressible flows): 

Dt  - -~t ~rn rriJ + ~ i l - - e i J  
oxrn / (48) 

where: 

Pii -- -- | ui Urn - -  -t- u i urn 
\ axrn Oxrn / 

(generation 
tensor) (48a) 

7rij= + p ' ( a u ~  + ~u]~ (pressure strain 

p k3x /  3x i /  'redistribution 
tensor') (48b) 

a I -  
I 

= / " ; " h ' m  + + .;8,rn) 
~)xrn L p 

- -  v - -  (u lui ' )  (diffusion) (48c) 
O x rn 

I t 

aui ~u i 
e i j=  2v - -  (viscous 

OXm ~Xm dissipation 
tensor) (48d) 

The radically new feature of the MRS-equation is the 
pressure-strain 'redistribution' term Ori/) which, having zero 
trace (putting i = j ) ,  does not appear in the exact k-equa- 
tion (26a). This suggests that the pressure-strain term only 
serves to redistribute the turbulence energy among its 
components (when i = / )  and to reduce the shear stresses 
(when i ~ j ) ,  thus tending to make the turbulence more 
isotropic. The unknown correlations appearing in the 
MRS-equation are either determined by a transport equa- 
tion or else are expressed in terms of second-order correla- 
tions (u]uj)  themselves; the latter procedure, closing the 
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MRS-equation at its own level, is often referred to as 
'second-order closure'. The production term needs no 
modelling. There have been extensive efforts 24' ~32 aimed 
at modelling the remaining terms. Modelled forms com- 
monly used for the various terms of the MRS-equation 
(48) can be summarized as: 

~ii ~ ~i/,1 q- nil,2 (pressure-strain term) (49) 

where: 

nii, l = func (u ;u]um ~ -- C l k b i i / J k  

(return to isotropy 
hypothesis ss) (50) 

with bii defined as anisotropy ofu~u]: 

b~ = (u lu /  /k  - ] 8~jk) (50a) 

~'k defined as characteristic time scale of energy con- 
taining eddies: 

J k  ~ k /e  (50b) 

and Cl as an empirical parameter given by: 133,134 

1.5 
C1 ~ (50c) 

1.8 

and 

~ i i , 2  - f u n c ( u / u j ,  u l u l  . . . .  ) - -  
OXrn 

~-- -- C2 (Pii -- 28iipk) ' (quasi-isotropy 
approximation 13s) 

(51) 

with Pii defined by equation (48a),Pk defined as the shear 
production of k: 

ek = ~6i (524) 

and C2 as an empirical parameter is given by: 133 

C2 ~ 0.6 (52b) 

Diffusion term: 

c s ~ 0.25 

Viscous dissipation term: 

(gradient -diffusion 
assumption 136) 

(53) 

(local isotropy 
assumption at large 
Re)  (54) 

With equations (49)-(54), the MRS equation (48) yields the 
MRS-model for non-buoyant, incompressible, free flows: 

Du i' u ]  _ e _ _  

9 t  ~ i i = - - C l - u " u '  + ] S q ( Q e  + P k - - e )  k ~1  

+ (1 - C2) (Pq - ~ 6 i i P k )  (55) 

(Wall effects (and free-surface effects) are accounted for via 
'wall corrections' to the pressure-strain term ~31,133, ~36, 137): 
An eddy viscosity is not needed to derive u]uj but may be 
used in modelling the 'transport' ~ii- It is very clear from 
experiments that, at high Reynolds number, the small- 

scale dissipative structures are isotropic. Hence all workers 
now use equation (54). The redistribution term has been 
the subject of most controversy and experimentation. ~ 
In a flow without any mean strain, this term is responsible 
for the return to isotropy. In deforming flows, however, 
the situation is much more complicated. Guidance is pro- 
vided by the exact equation for the fluctuating pressure, 
which is a Poisson equation containing a source term in two 
parts. One part involves the mean deformation explicitly, 
and its contribution to the redistribution term can be 
obtained for homogeneous fields in terms of the Fourier 
transform of the velocity field, n3 Models have been pro- 
posed for this. l°s The remaining part of the redistribution 
term should not change instantly when the mean deforma- 
tion is changed, and hence should not depend explicitly on 
the mean deformation. The best model for this is Rotta's 
and has been followed by Launder and his co-workers, and 
others. Application of these models indicates a much slower 
return to isotropy than indicated in experiments, l~ '  139 
However, different components return at decidedly 
different rates. It can be concluded that current stress 
models will not perform very well in handling the return 
to isotropy. They may, however, work well in flows 
dominated by other effects. 

Inhomogeneities greatly complicate the 'redistribution' 
modelling. In a wall region, a complex integral model is 
really needed for such flows. This is a very unsatisfactory 
aspect of present stress-equation modelling and an area for 
future developments. In addition to modifications in 'redis- 
tribution', inhomogeneities require modelling of the 'trans- 
port '  ~i/- The gradient diffusion model is usually employed 
(see also Hanjalic and Launder)) °s Reynolds and Cebeci 1 
remarked that ~ii contains one pressure-velocity term 
(equation 48c), and since p '  will have a part that depends 
explicitly on the mean velocity gradients, it does seem that 
~i/should also be explicitly linear in the mean gradients. 

Three approaches have been used in stress-equation 
modelling; see Donaldson et  al. ~4°-~42 Launder et  al ~3~' ~34 
and Lumley et  al. m'143-146 The earlier work (Donaldson ~4°) 
involved specification of the length scale and use of the 
Norris and Reynolds 44 expression to determine e. Hanjalic 
and Launder l°s used the e-equation model in conjunction 
with the u~uj equations. Current attempts made towards 
the refinement of the MRS-model equation (55) are now 
summarized. Leslie ~47 reported that Lumley's proposi- 
tion 143 of treating C~ as a function of bii does not make any 
significant improvement in equation (50). With regard to 
rrii,2 Leslie x47 has argued that the model of Launder et  a1134 
is not general enough to handle quasi-homogeneous aniso- 
tropic turbulent flows (such as those of a strong-shear type). 
Althougfa a nonlinear model for Irii 2 is not suggested an 

123 - '  147  algebraic stress model is recommended for the estima- 
tion of anisotropies (particularly for the component rr23,2 ) 
in such flows. 

A recent application of second-moment turbulence 
closure refers to the asymmetrical heated plane j e t )  °8 
Except for the level of the streamwise heat flux on the 
high velocity side of the flow, no notable differences 
were found in the comparison of predictions with 
measurements. 

Stress-equation models are still in a state of develop- 
ment and it is felt that it will be some time before these 
models are sufficiently well-developed to perform better 
than simpler models for engineering problems. Improve- 
ments in the modelling of the pressure interaction and 
diffusion processes would still be of interest. Such models 
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are, however, important as the starting point for deriving 
algebraic stress relations, and should be pursued further. 

Multi-scale k ~ e model 
The turbulence transport models discussed employ 

almost the same modelled transport equation for e and may 
differ in the treatment of the Reynolds shear stresses. This 
is because the engineer's interest in the dissipation pro- 
cesses has been simply to account for the surplus energy, 
unaccounted for by k or any other variable governing the 
production process, in terms of a variable e (referred to as 
energy transfer rate into the dissipation range). Hanjalic 
and Launder 1°6 have argued, following Pope and White- 
law 14a for recirculating flows, and Launder and Morse x49 
for round jets in stagnant surroundings, that since even the 
higher order closures in MRS models show the same poor 
agreement as the simple two-equation isotropic eddy- 
viscosity models, the e-equation (being common to all 
these models) is the probable source of error in predicting 
an incorrect turbulence energy level. 

From energy considerations, it is probable that the two 
inherent assumptions in the e-equation, namely, (1) the 
local equilibrium of the rate of transfer of turbulence energy 
(implying that the local rate of energy transfer across the 
spectrum is unchanged and is equal to the local rate of 
dissipation), giving rise to a single characteristic turbulence 
scale (i.e. elk) and (2) the unchanged spectrum shape from 
one flow to another, may not necessarily be true in 
complex flow situations. It has been pointed out ~32 that 
although the more elaborate Reynolds stress model of 
Lin and Wolfshtein ~s° provides transport equations for the 
individual components of eq, it calculates only the single 

110 scale. Following Kolmogorov (who postulated that the 
turbulence spectrum comprises independent production, 
inertial and dissipation ranges), Hanjalic and Launder I°6 
have, therefore, proposed a multi-scale model in which 
separate transport equations are solved for the turbulence 
energy transfer rates across the spectrum. Using Figure 6 
(taken from their paper) the model is mathematically 
expressed as: 

- ?Jx/\o~ ~ixi/ Pk -- ep (56) Dt 

a -5 ep-e ,  (57) 

Dt Ox/ 3xi / kp 

x (CtPPk--Caputeijnetmna~i aUll~ 
Oxi OXm/ 

eP2 (58) 
- -  C 2  P - -  

kp 

De a(v, ae~ eep _ e~ 

/ kkp~* 
l) t = ~ Cu -~p ) 

(59) 

(60) 

* This form has been obtained from simplifying tile MRS equation 
by considering normal Reynolds stresses proportional to k and by 
taking the time scale for the pressure strain to be kp/ep. 

Mathematical modelling of turbulent flow: N. C. Markatos 

and with the following sets of coefficients and functions: 

C,p GP Cap 

2.1 0.8 [ 2 - 0"5 (kP- kl) ] k  

C,~ G~ C. akp=a,p=o~ 

0.1 1.0 

(61) 

Here kp and k I are, respectively, the turbulence kinetic 
energy in the production and dissipation ranges, Pk is the 
rate at which turbulence energy is produced (or extracted) 
from the mean motion, ee is the rate at which energy is 
transferred out of the production range, e I is the rate at 
which energy is transferred into the dissipation range from 
the inertial range and e is the rate at which turbulence 
energy is dissipated (i.e. converted into internal energy). 

The above equations have been formulated by assuming 
that all the turbulence energy is generated up to wave num- 
bers qv (production range) and is contained at the maxi- 
mum up to qz (inertial range), and there is negligible time 
lag between energy entering the dissipation range and its 
being destroyed, i.e: 

e I ~- e (62) 

The additional term (with coefficient Cap) in the ee-equa- 
tion has been introduced to improve the performance of 
the multi-scale model in shear flows. This term is inter- 
preted as increasing the effect of  normal strains relative to 
the shear strains or, in other words, promoting the higher 
rates of dissipation for irrotational than for rotational 
strains. It should be noted that, for normal strains, this 
term provides no contribution (leading to higher el, and e) 
since eil  m = 0 for i =/" or m. The multi-scale k-e model 
becomes more realistic than the conventional (single-scale) 
k-e model by the presence of ep (in place of Pk) in the 
dissipation-rate (e) equation, simply because in flows where 
the turbulence production (Pk) is suddenly switched off, 
e ( "  el) is not expected to decrease immediately. This 
model has been shown to improve the predictions of the 

hi 

Figure 6 
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single scale k-e  models in plane and round turbulent jets. 1°6 
In general, the model (due to its multi-scale nature) is 
expected to be superior to the other existing single-scale 
models in predicting shear flows far away from local equi- 
librium. It  has been pointed out that its poor performance 
in predicting plane wakes ~°6 can be improved if the effects 
of spectrum shape on the empirical coefficients are also 
properly accounted for. A useful evaluation of the multi- 
scale model was carried out by Fabris et al. ~sl 

Recent developments and applications of two- 
equation models 

Another model which, in the author's opinion, deserves 
more attention than it has been given so far is the k ~ w 
model of Spalding, 9° of  which the second calculated quan- 
tity is w, a measure of the vorticity fluctuations. This model 
was shown by Spalding m and Gibson and Spalding lsa to 
yield predictions of 2D turbulent flows which were in good 
agreement with experimental data. However, it possessed 
the defect (shared also with the k-k l  model of Rodi and 
Spalding, 9a and Ng and Spalding 1°1) of requiring a modifi- 
cation of one of its constants for near-wall flows. This 
defect was regarded at the time as sufficient reason for 
allowing the k -w  model (and the k-k l  one) to be over- 
shadowed by the k ~ e model of Harlow and Nakayama, s6 
which was then being refined by Jones and Launder; 1°9 for 
the k ~ e model appeared to require no near-wall adjust- 
ment. During the last few years, experience with the k-e 
model has not been consistently favourable, its success 
being uneven, and some early users of the k-e  have now re- 
turned. 91 Saffman 92 published an independently derived 
model having several points in common with the k -w  model; 
and he has, wisely in the author's opinion, continued work 
on it subsequently. The rocket-plume fraternity in the USA 
still prefer the k -w  model. It is said to fit the experimental 
data better than the k ~ e model. 91 

The k -w  model has in its favour a strong physical appeal. 
Experimental evidence has accumulated which points 
strongly to the vorticity fluctuations, resulting from the 
breakdown of vorticity sheets into less regular structures, 
as being central to the mechanism of turbulence, whereas 
the dissipation processes (which e represents) are far less 
prominent. Finally, Spalding has recently 91' is4 introduced 
a small modification to the k -w  model which, while being 
quite general, completely solves the near-wall problem (This 
modification has also been introduced independently by 
Wilcox and Traci 126 into Saffman's model (see also reference 
128)). The objectionable feature of the earlier version of 
the k -w  model was its inclusion of a term kw-ly  -2, which 
became very important when the distance,y, from a 
bounding wall was small. How should the fluid 'know 
about' its distance from a wall? And the inclusion of 
the wall-distance calculation in the equation-solution 
scheme was troublesome. Spalding ts4 recognized that 
]grad(kw-X)l ~21 would probably serve just as well, and 
that it would be free from the wall-distance problem. 
Thus, the w-equation now reads: 

Ow _ p_, [div(/at grad w ) +  Sw] (63) 
D t \ Ow 

where the left-hand side represents time-dependence 
and bulk-transport terms and the right-hand side repre- 
sents the turbulence-diffusion transport and the 'source', 

which is expressed as: 

Sw = k-lw(CaPk -- Capkw -1:2) + Cllat (Igrad I21) 2 

- C4 pw a/2 (I grad (kw- t) x/2 )c, (64) 

where the last term is the novelty on which the new k - w  
model is founded. I2 is the major component of the local 
time-mean vorticity vector of  the mean motion, regardless 
of direction. In tensor form the time-mean vorticity is 
defined as follows: 

~uk 
~2 = e~/k Oxl (65) 

where ei/~ is the alternating tensor. 
The revised model involves nine constants. Of these, 

seven have been established by earlier work (at: = 1.0, 
aw = 1.0,C, = 0.09, Co = 1.0, 6'1 = 3.50, C2 = 0.17, 
Cs = 1.04). Of the two remaining constants, Cs was guessed 
to equal 2.0, implying that the new term is proportional to 
the square of the gradient of the tubulence length scale 
and therefore independent of  its sign. The constant Ca was 
determined by reference to the Von Karman constant 
K = 0.435 in the 'logarithmic law of the wall, as being 
equal to 2.97. The above model has been investigated by 
llegbusi and Spalding 1s4 and Mailn and Spalding. lss The 
first investigation has concerned itself with flows which are 
the same as those reported on by Spalding ts2 and Gibson 
and Spalding, 1s3 namely: abrupt enlargement of pipe 
diameter (data from Krall and Sparrow 1s6 and Zemanick 
and Dougail~sT); boundary layers with longitudinal pressure 
gradient (data from BradshawlSS); plate with intense mass 
transfer (data from Moffatt and KayslS9); plane free 
turbulent jet (data from Bradburyl6°); and several more. 

Figures 7-15 present some results of this investigation. 
Figure 7 refers to the experimental data of Zemanick and 
Dougall Is7 for an air flow in a pipe downstream of an 
orifice, with expansion ratio of 0.54. The figures demon- 
strate satisfactory agreement between predicted and 
experimental Nusselt numbers. The variation of maximum 
Nusselt number suggests that the predicted behaviour 
exhibits a slightly smaller sensitivity to Reynolds number 
than do the measurements. Figure 8 refers to the Klebanoff 
data for a smooth flat plate, as processed for the AFOSR- 
IFP Stanford conference by Coles and Hirst, TM and presents 
distributions of turbulence kinetic energy and Reynolds 
shear stress. The agreement is satisfactory, indeed probably 
within the margin of experimental error over most of the 
range. Figures 9 and 10 refer to the flat plate experiments 
of Bradshaw, ~ss in which a mild and more severe adverse 
pressure gradient were imposed. They show typical predic- 
tions of  turbulence energy and the shear stress compared 
with the experimental data. The agreement is satisfactory 
for the shear stress but not for the turbulence energy. 

Figure 11 shows the predicted and measured variation 
with the length Reynolds number of the Stanton number, 
for the experimental situation of Moffat and Kays. ~s9 The 
experiment is for heat transfer from a flat plate having a 
porous surface, through which air can be sucked from, 
or blown into, the boundary layer. The results show that 
agreement is satisfactory even at strong suction rates. The 
latter success is a result of the use of a sub-layer resistance 
factor that ensures the asymptotic limit (St ~ - r h / p c U c )  
is approached for these cases. ~s4 For strong blowing, the 
experimental Stanton number tends to zero; this behaviour 
is quite adequately predicted. 
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F i g u r e  7 (a) Nusselt number distribution for d o / D  = 0.54 (Pipe- 
expansion data of Zemanick and Dougall, 1970) .  (Taken from 
reference 154). (b) Variation of maximum Nusseld number with 
Reynolds number do/D = 0.54. (Pipe-expansion data from Zeman- 
ick and Dougall 1970). (Taken from reference 154) 
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Figure 8 Distributions on flat plate of (a) turbulence kinetic 
energy; (b) Reynolds shear stress. ('Experimental data from Kleban- 
off ,  1984), (Taken from reference 154) 

Figures 12-15 refer to the experimental situation of  
Bradbury, :6° which is for a plane jet issuing into slow- 
moving surroundings. The lxredictions seem to be in fair 
agreement with the measurements, except for the turbu- 
lence-energy distribution where the maximum predicted 
energy is some 7% above Bradbury's measurements) 6° 
However, the predicted and measured profile shapes are 
very similar. Finally Figure 15 compares the predicted ~ss 
and measured turbulence energy budgets for the self- 
similar jet, indicating the highest discrepancies in the pro- 
duction and then in the diffusion terms. The above results 
demonstrate that the k-w model can be accepted as a 
serious contender for general adoption. The studies of  
Saffman_Wilcox_Rubesin_Traci,~24, :26, t2s particularly for 
compressible and low-Re flows, tend also to confirm the 
above opinion. 

Its current main rival is the k ~ e model that has been 
exercised extensively with varying levels of  success. For 
comparisons with experiment of  predictions based on the 
k ~ e model, see elsewhere. 3s'36' ~62-~66 Results obtained 
with the k ~ e model for some complex engineering 
situations are presented in Figures 16-21. It should be 
pointed out that in several cases of  practical interest (see 
Conclusions) the standard models do not perform well. 
In these cases ad hoc modifications to the 'constants'  or 
additional (semi-theoretical) terms are required to pro- 
duce better agreement between model predictions and 
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Figure 9 Predicted and measured turbulence energy on a flat plate 
with (1) mild and (2) severe pressure gradients. (Data from Brad- 
shaw, 1965). (Taken from reference 154) 
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experiment. Two examples of situations where such 
modifications to the k ~ e model are necessary are (a) 
buoyancy-dominated flows and (b) flows subjected to 
rapid compression or expansion. For the former cases, 
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Figure 12 Axial mean velocity (Xlh = 70). (Plane-jet data from 
Bradbury, 1965). (Taken from reference 154) 
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the required modifications have been proposed in 
reference 24 and have been applied with relative success 
in, for example, references 35 and 36 (see also Figures 
16 and 17). For the latter cases, modifications have been 
proposed 167 and have been generalized and applied, 168' 169 
with particular emphasis to flows in internal combustion 
engines. Figure 21 compares the predicted swirl velocity 
in a 2D diesel engine 169 with the experianents of  Ricardo 
Consultants. ~7° It is clear that the modification to the 
k ~ e model 167-169 led to a significant improvement 
of  the predictions. Indeed, it has been reported ~6s that 

0 . 0 2  
. . . .  P reO i c t ) ons  ~ la  11601 

-_;. 

- 0 . 0~  I I I I I I I I I 
t,O 2 0 

Figure 15 Plane jet, turbulent-kinetic-energy balances in self- 
similar region. (Taken from reference 155) 
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when the original model was used inside a piston-engine 
geometry with 8:1 compression ratio, a sharp increase in 
turbulence length was predicted, resulting in a length scale 
up to several times larger than the cylinder clearance height. 
By contrast, the modified turbulence model predicted a 
physically more plausible behaviour. 

Other recent work refers to progress made in calculating 
developing flow in a square duct, with reasonable accu- 
racy by means of  length-scale models ~7H72 and k ~ e 
models. ~73-17s Recent k ~ e type predictions of  fully- 
developed square duct flows are reported in reference 176 
(see also reference 177 for algebraic stress modelling). 

A critical review of  closure approximations for two- 
equation models has been made)  7s Using a combination of  
singular perturbation methods and numerical computations, 
Wilcox 17a demonstrated that: 

• conventional k ~ e and k ~ w formulations are generally 
inaccurate for boundary layers in adverse pressure 
gradient 

• using 'wall functions' tends to mask the models' 
shortcomings 

• a more suitable choice of  dependent variables exists 
which is far more accurate for adverse pressure gradient 
(k - f ) .  

Some other recent interesting reviews can be found in 
references 179-186. 

Large-eddy and ful l  simulations 

There is a fundamental difficulty in the above general 
approach to turbulence modelling. One would like to 

: 2 

-L . -  Z 

11 7 2.0 oO°r 

1.5 
~11 

~.0 

0.5 

b o 

Door velocity profiles 

2 . 0 1 . 5  ~ - - - - ~ - - ~  ; ~  

-/ 

O. 5 Predicted 
Cocncol 21 

0 ~X I I C 
- 2 . 0  0 2 . 0  4 . 0  

W-VEL (m/s) 
temperature profiles 

250 

F ~ e d i c t e c l  

C o r n c a l  21  

I I 1 I I 
300 3.50 400 450 500 5.50 

Temp (deg K ) 

Figure 16 3D fires in enclosures (Taken from reference 36). (a) distribution of oxidant (10 contours in range 0.44-1.0); (b) distribution of 
combustion products (10 contours in range 0.001-0.55); (c) comparison of velocity profiles at door (symmetry plane). ( ), predictions; 
(-- -- --), experiment; (d) comparison of temperature profiles at door (symmetry plane), ( ), predictions; (-- -- --), experiment 

d 
6OO 

Appl .  Math. Model l ing,  1986, Vo l .  10, June 207 



2.0 

1.5 

v 

=; 1.0 

0.5 0.5 

2.0 

~e Predicted by JASMINE 
Door width 0.74 m 

) Heot r'elense 62.9kW 

I I I 
0 1 2 

w, (m/s) 

1.5 

1.0 

l i  Door' width 0.99m 
Heot r~leose 62.9 kW 

I I 
300 350 400 

T, (*K) 

/ 
I 

I 

Mathematical modelling of turbulent flow: N. C. Markatos 

0.8 

0.7 

O.E 

0.,1 

o ~ 0. '~  

0 . 2  

0 . 1  

o Outflow 
t~ Inf low 

JASMINE 
- - - - ~  Horvard V 

I O I I I I I I 
-1 3 60 120 180 

a b Heot releose rote, (kW) 
240 

Figure 17 Smoke flow in 3D enclosures. (Taken from reference 35). (a) d o o r w a y  v e l o c i t y  and corner temperature profiles; (b) comparison 
o f  Steckler's data with p r e d i c t i o n s  o f  f i e l d  and zone models 

model only terms that respond on time scales short com- 
pared to that of the computed quantities. It is well known 
that the small scales respond to change much faster than 
the large scales, and hence it is reasonable to express a 
quantity dominated by small scales, such as e, as a func- 
tion of quantities dominated by large scales, such as u[uj. 
However, terms like the 'transport' one have time scales of 
the order of those of u~uj, and therefore one does not 
really expect an equilibrium relationship to exist between 
the transport and u[u]. In general, higher order statistical 
quantities take longer to reach steady state than lower 
order statistics. Any model obtained by truncation at some 
statistical order would suffer from this difficulty. One 
really needs to truncate at some level of scale, and thereby 
take advantage of the fact that the smaller scales do adjust 
faster to local conditions. Then, by truncating at smaller 
scales, there is at least some hope of convergence, which is 
very difficult when truncation takes place at higher and 
higher orders of statistical quantities that have comparable 
time scales. The large-eddy simulation is a method imple- 
menting such a scale-truncation approach. 

The idea is to do a 3D time-dependent numerical com- 
putation of the large-scale turbulence, and model the 
smallest scales that will always be impossible to compute. 

In 1973 the Stanford group began a programme of 
development of this method, in cooperation with the 
NASA-Ames Laboratory. The first contribution was made 
by Leonard (reference 152, p. 237) who introduced 
spatial filtering (see also reference 138). When this opera- 
tion is applied to the Navier-Stokes equation, and an 
expansion is carried out, an equation arises that contains 
the 'sub-grid-scale Reynolds stresses', and a stress-like 
term resulting from the filtering of the nonlinear terms 
(the 'Leonard stresses'). Kwak and Reynolds 138 applied 
the method to the isotropic decay problem, adjusting the 
sub-grid scale eddy viscosity to obtain the proper rate of 
energy decay. They also simulated the flow of reference 
114 and found the main features of the experiments by 
using only 16 x 16 x 16 grid, and 5 min of CDC7600 for 
120 time steps. Shaanan et a1139 used a conventional 
staggered grid approach that is second-order accurate and 
does not require the explicit inclusion of the Leonard 

stresses. They also reproduced the main features of the 
experiments of reference 116 using a 16 x 16 x 16 grid. 

Another group involved in the development of this 
method is at Queen Mary College, London. 187-1a8. They 
began with one dimensional Burgers turbulence, the only 
case in which it is possible to simulate the whole of a high 
Reynolds number turbulence field, and thus to check the 
process of subgrid modeUing. 187 They have also done work 
on homogeneous flows with satisfactory results. ~88 The 
technique of full simulation, is only available for transi- 
tion flows. Once turbulence is fully developed, the range of 
eddy sizes is too great to be represented on any computer, 
and this is true even at the lowest Reynolds numbers at 
which 'proper' wall-bounded turbulence can be said to 
exist. Attempts at such full simulations are currently made 
at Stanford University and are very useful in guiding turbu- 
lence modelling. Ferziger lb9 presented such work recently, 
and reported on using 128 a grids and many hours of a 
supercomputer, CRAY X-MP, to simulate flows at low 
Reynolds numbers. These computer requirements are 
clearly outside practical limits; but such attempts are 
extremely useful in validating the lower-level models and 
should continue. 

'Two- f lu id '  mode l s  o f  t u rbu l ence  

The thinking which underlies current turbulence models has 
its roots in the notions of Boussinesq, ~9° who introduced 
the idea of an effective viscosity, and Prandtl, 4° who con- 
ceived of turbulence mixing phenomena as being very similar 
to those treated by the dynamical theory of gases. This 
thinking has been immensely fruitful; but it leaves out of 
account features which turbulent fluids possess and assem- 
blies of gaseous molecules do not. These features are 
vorticity and its major consequences. 27 The mathematical 
structure of conventional turbulence theory reflects only 
the unstructured diffusion of the molecular-collision pro- 
cess; large-structure formation and growth, and fine- 
structure creation and stretching, are nowhere to be found. 
The above facts led Spalding, 27 amongs others, to the 
development of the 'two-fluid' theory, briefly described 
below. 
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The origins of two-fluid-model ideas are to be found 
back in the 1940s and 1950s, particularly in the context 
of turbulent combustion 191-196 

Two-fluid model analysis 
In the laboratory 'conditional-sampling' techniques have 

been developed which discriminate between the turbulent 
and nonturbulent zones of a turbulent shear flow. With 
these techniques the experimentalist is able to perform 
measurements of flow variables by averaging separately 
over the turbulent and nonturbulent parts of the flow. 
These measurements are referred to as conditional-sampling 
techniques 2°9 and supplement the usual unconditioned 
measurements obtained by conventional time-averaging. 
The two-fluid model described below results in the predic- 
tion of the intermittency and of the conditional flow varia- 
bles within the turbulent and nonturbulent zones of the 
flow. This model was proposed by Spalding z7 and then 
developed by Malin 28'29'21° for the prediction of inter- 
mittency in free turbulent shear flows, and by Markatos 
and Pericleous 211 for turbulent combustion. It should be 
remembered that the model is still under development, and 
therefore the formulation that follows should not necessarily 
be regarded as final. There have been a number of studies 
concerned with the prediction of intermittent turbulent 
flows. The first studies appear to be those of Libby, t97,2t2 
who presented a theoretical model which comprised equa- 
tions for the intermittency and the conditioned flow 
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Figure 20 Flow around bodies of revolution. (Taken from reference 
166). Q8 is total velocity at boundary layer edge. (a) viscous-flow, 
full-body: distribution of skin friction coefficient along hull 
(b) viscous-flow, half-body: lateral variation of turbulent kinetic 
energy at z/L = 0.96. (000), predictions; ( ), Patel experiment 
(reference 206); ( . . . . .  ) Thompson (206) 

variables. The basis of this work was the postulate of a 
conservation equation for the intermittency function, with 
an unknown source term representing the creation of tur- 
bulent fluid. Dopazo, 2°° and later Duhame121a showed how 
to derive the exact equations for the intermittency and 
conditioned-averaged flow variables, thus avoiding the 
above postulate. The most advanced model of this type at 
present is probably the one developed by Kollman and his 
co.workersj98,199,214 They developed both first-order and 
second-order closure models for intermittent turbulent 
shear flows, based on the equations derived by Dopazo. 2°° 
The model contains the equations for the intermittency 
factor and the zone-averaged velocities, together with either 
a first-order or second-order closure model for the turbulent- 
zone stress tensor. This model was applied to the prediction 
of jets, mixing layers and boundary layers with some 
success. The Spalding 27 model has similarities with the 
models of Libby and Kollmann, but it is built on an 
analogy between intermittent flows and two-phase flows, 
rather than on any specific and rigorous closure of con- 
ditioned-averaged transport equations. The paper of 
Spiegel 2j5 must also be mentioned as a partial anticipator 
of the model described below. 
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It is supposed that two-fluids share occupancy of space. 
The proportions of time during which each can be expected 
to occupy a particular location are called the volume frac- 
tions. There are many ways in which the two fluids could be 
distinguished e.g. by reference to their temperatures, 
chemical composition or mean velocities. When inter- 
mittency is to be computed, it is convenient to define the 
fluids as 'turbulent' and 'nonturbulent'. This definition is 
adopted in what follows and subscripts 1 and 2 denote 

the turbulent and nonturbulent fluids, respectively. The 
intermittency factor is interpreted as being the 'volume 
fraction' or 'presence probability' of the turbulent fluid. 

The equations governing the motion of the turbulent 
and nonturbulent fluids are presented here in terms of 
Cartesian tensors (see also references 210 and 211). 

The mean continuity equation of the turbulent fluid is: 

(cb~ Ui),i = (vt/o-r~n,i),i + E ' "  (66) 
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and the mean global continuity is: 

4 h + ¢ 2 =  1 (67) 

The mean momentum equations of  the turbulent fluid are: 

(~, uiu,.), i = - p-~ ~ p ,  ~ + ( ~ , .  [u~,i + u:,~] ) , /  

- ( ~ ) , i  + (~vt/o~" u ~ , , i ) , i  

+ V i e ' "  - - F  i (68) 

The corresponding equation for the nonturbulent fluid is: 

(~2 ViVi),i = - - P - ' ¢ 2 P , i  + (q~2 v [ Vt',i + gj,i] ),j  

+ (¢2ut/ov" l'~b2a),i -- V//~'"' + F/ (69) 

The mean temperature equation of  the turbulent fluid is: 

- -  . k , , , .  C (qb~ UiT~),i = (q~lXTa,i,i - (¢ lu i t ) , i  - U IP p 

+ ( ¢ l v t / o ~ T l ¢ l , / ) , / +  T2E,'" (70) 

The corresponding equation for the nonturbulent fluid is: 

( ~ ' ) . T : ) , / =  ( ~ X T ~ , / ) , /  + O'"/PCp 

+ (¢2vt/ov'T2q~2,i), i -- T2/z'"' (71) 

In equations (66)-(71), the subscripts 1 and 2 denote 
the turbulent and nonturbulent fluids. Partial derivatives 
are represented by a subscript consisting of  a comma and 
an index, U/are the velocity components of  the turbulent 
fluid, V/are the velocity components of  the nonturbulent 
fluid, ~b~ is interpreted as the intermittency factor (i.e. the 
probability of  finding turbulent fluid in a field presenting 
the fragmentariness observed in turbulent flows), TI is the 
temperature of  the turbulent fluid and T2 is the tempera- 
ture of  the nonturbulent fluid. Fluctuating velocity com- 
ponents are denoted by lower-case letters and fluctuating 
temperature by t'. 

in the continuity equation (66), the term ~ '" '  represents 
the rate of  entrainment of  nonturbulent fluid by turbulent 
fluid per unit volume and the gradient-diffusion term acts 
as a turbulence flux for the turbulent fluid. Therefore, this 
term is responsible for the creation of  turbulent fluid: and 
it appears as source in the q~ -equation and as sink in the 
~b2 -equation. Here, o. r is an empirical diffusion coefficient, 
given the value 1.55 and t, t is akin to a turbulent-zone 
eddy viscosity. For thin turbulent shear layers, Malin ~8 
has computed gt from the 'mixing-length-type' formula- 
tion proposed by Spalding. z7 In future work, vtcan be com- 
puted from a conventional two-equation turbulence model 
such as the one described below. 

In the momentum equations (68) and (69), F/is the 
mean friction force per unit mass that the turbulent fluid 
exerts upon the nonturbulent fluid in the/-direction. The 
other interfluid source term involves the entrainment/-."'": 
it represents therefore the average entrainment of  momen- 
tum through the turbulent/nonturbulent interface. The 
turbulence stresses --Uitt j and fluxes -ui-~ -r, which appear 
in equations (68) and (70) respectively, are calculated with 
the aid of  a turbulence model. The term (~'", which appears 
in the temperature equations (70) and (71), is intended to 
represent the heat transferred per unit volume by conduc- 
tion at the turbulent/nonturbulent interface. The term 
involving b)"' represents the mean entrainment of  heat 
through the interface into the turbulent zone. 

Time-averaged flow variables are recovered from the 
conditioned variables via the following relation: 

¢0 = ¢~q5~ + ¢2~Ih (72) 

where ~ denotes any flow variable, such as velocity or 
temperature, and the subscripts 1 and 2 denote the tur- 
bulent and nonturbulent fluids. 

In order to close the above set of  equations (66)-(71!,, 
modelling assumptions are required for - - u i u i , - - ~ i t ' ,  [~ ' , 
F/and Q ' " .  The approximations adopted by Malin 29 for 
these quantities are described below. 

The turbulent stresses uiu / and fluxes ult'  a r e  calcu- 
lated from the eddy-viscosity and diffusivity relations by 
replacing the mean-flow variables, which appear in these 
relations, with the corresponding turbulent fluid variables. 
The turbulent-zone eddy viscosity u t may then be com- 
puted from a suitable turbulence model; for example 
Malin 29 has used a modified form of  the two-equation 
k ~ e model. For use with the two-fluid model, this takes 
the following form: 

(~'U/k), i  = (~) 'vt/°k'k, i) , /  + (~,vt[a't'kqb', i), i 

+ ~bl(P K - e) +Ckc~lc~2PK (73) 

( ~ u / e ) ,  / = (~ , .do~e,  /), i + ( ~ v t / o ~ . e ~ , , i ) ,  i 

+ ~, ICl~e/k'P -- C2~J/kl 

+ Ceq~l ¢2PK (74) 

where vt and PK are calculated using turbulent-zone 
variables rather than the conventional mean-flow ones. 
The standard values of  the model constants are retained, 
but in addition, the constants Ck and Ce are given the value 
of  2.5 as recommended by Malin. 29 

The equations for k and e each contain two source 
terms. The first appears in the standard (k ~ e) model, 
except that it has been multiplied by ~b~ to account for 
intermittency. The second term in each equation is an extra 
production included so as to account for an assumed pro- 
duction at the turbulent/nonturbulent interface. 

The model for the volumetric entrainment of  non- 
turbulent fluid is given by: 

E ' " :  plq,,~l~2c/L' (75) 

where km = 0.7, c is the local absolute value of the mean 
relative velocity between the two fluids and L '  is the length 
scale characterizing interaction processes between the two 
fluids. This length scale is computed from the local values 
of k and e through the expression. 

L'  = C3/ 'ka/2[e (76) 

This closure assumption relates this length scale to one 
which is representative of  the large energy-containing 
eddies. A further implication is that the entrainment rate 
can be only positive, i.e. that turbulent fluid cannot enter 
the nonturbulent category. Since it is known that turbu- 
lence can disappear completely, this assumption is at 
variance with the facts. This defect may not be as serious 
as it sounds, in most cases. 

The interfluid friction forces are given by: 

Fi = K f E ' " ( U i  -- Vi)/Km (77) 

where Kt -= 0.05 and Krn = 0.35 as recommended by 
Malin.29The implication of  the friction terms which appear 
in the momentum equations, is that momentum is imparted 
to the slower-moving fluid at the expense of  the loss ex- 
perienced by the faster-moving fluid. This effect is addi- 
tional to the transfer of  momentum which is associated 
with the mass transfer by entrainment. 
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fhe conductive heat transfer rate across the turbulent/ 
nonturbulent interface is modelled by: 

(~"' = KH Cp'~'"(T, -- T2)/K m (78) 

where KH is an empirical constant given the value of 0.1 
recommended by Malin, 29 and C o is the specific heat at 
constant pressure. Some results obtained using the above 
model are presented in Figures 22 and 23 for the self 
similar plane wake of a circular cylinder. Within the tur- 
bulent fluid, the intermittent form of the k ~ e model 
is used, together with Rodi's empirical function for C~. In 
the calculations, the turbulent heat flux is calculated from 
the eddy-diffusivity relation with o t = 0.5. 

The task was to predict the velocity and temperature 
fields in the turbulent wake with intermittency taken into 
account. Both the unconditioned and conditioned flow 
variables were computed. 

Comparisons were made with unconditioned and con- 
ditioned experimental data, mainly from the investigations 
of Townsend TM and Fabris. 2°3 Figure 22 compares com- 
puted and measured similarity prof'des of the intermittency 
factor and streamwise velocity defects. It is seen that the 
calculated intermittency prof'fle is in satisfactory agreement 
with the measurements of La Rue and Libby, 2°2 and less so 
with the data of Fabris. ~°3 It can also be seen that the 
calculations give excellent agreement with the measured 
turbulent-zone-averaged velocity profile. There is, however, 
a quantitative disagreement between the measured and pre- 
dicted values of the nonturbulent velocity profile. It is 
important to note that the model predicts correctly that 
the turbulent fluid moves slower than the nonturbulent 
fluid at all cross-stream positions, as was observed experi- 
mentally by Fabris. 2°3 Both prediction and experiment 
indicate that the turbulent fluid moves slower than the 
average flow in the intermittent region of the wake. In the 
core of the wake, the flow is fully-turbulent (because the 
intermittency factor is unity) and so in this region both the 
turbulent and average flow move with the same velocity. 

The computed similarity profile of the turbulent zone- 
averaged temperature is in very good agreement with the 
measured profile, as may be seen on inspection of  Figure 
23. Measurements of the temperature of the nonturbulent 
fluid were not reported in the experiments. This was 
because the temperature was used to mark the turbulence, 
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and thus the experimenters implicitly assumed that the 
nonturbulent fluid remained at ambient. Other conditional- 
sampling studies indicate that there is a f'mite conductive 
heat-transfer through the interface .29 It turns out, however, 
that the predictions of the thermal characteristics of the 

1.0 

~"  . 

X "\ 

, 

0 1.0 2 .0  

Figure 22 Plane wake. Comparison of measured and predicted 
similarity profiles of intermittency and conditional streamwise 
velocities. ~ stands for Y/Y~2" #~ for intermittency and wi for 
(w~ -- wi)aWmean. Z~Wmean is w=o minus centre-line velocity and 

i Y~2 is y at the locat ion where Aw is ~-AWmean. ( ), predict ions; 
(-- • --), exper iment ,  reference 203; (-- - - - - ) ,  exper iment ,  reference 
202 

1.0 

"~ ,At 
,~ ° ~  

----<____ 
0 I 1 ~ 

0 1.0 2.0 

Figure 23 Plane turbulent wake. Comparison of measured and 
predicted similarity profiles of conditional temperatures (taken 
from reference 29). e =-- (T--  T==)lZ~Trn where z~T m is maximum 
temperature excess. ( ), predictions; (o), experiments, 
reference 203. Subcripts, t = turbulence, n = nonturbulence 

Figure 24 Product mass f ract ion 0, (0.1),1. (Taken f rom reference 211 ) 
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Ambient 

Figure 25 Second fluid temperature contours 600, (100), 1600 k. (Taken from reference 211 ) 

mean flow are not sensitive to the inclusion of  the inter- 
fluid heat-transfer model. 

Figure 24 is taken from reference 211 and presents 
product mass-fraction, for a case of  plane diffusion flame, 
simulated by a two-fluid model. Here fluid 1 refers to 
oxidant and fluid 2 to 'balloons' of  gas containing fuel, 
products and excess oxidant. Finally, Figure 25 presents 
'fluid 2' temperature contours, for the same case. 

The above results for the two-fluid turbulence model 
serve to demonstrate its potential for simulating accurately 
intermittency in free turbulent shear flows. Applications to 
free jets, and more extensive comparisons with data are 
reported elsewhere. 2a'29,2'° 

Conclusions 

The mathematical modelling and computer simulation of  
turbulent flows are now within the capabilities of  modern 
mathematical and numerical methods. Several difficulties 
still surround turbulence modelling, and several research 
groups try to overcome them. The reviewer has tried to 
compile the progress and problems of  turbulence simula- 
tions for engineering purposes. Although five parallel 
approaches for turbulence modelling have been pointed out 
in this review, only the turbulence transport field models 
have been explored in detail. This is because to date these 
models seem to offer a better compromise than the others 
between relative simplicity and economy and often reason- 
able accuracy. 

Summarizing, the advantages and disadvantages of  the 
various levels of  turbulence models are as follows: 

Integral equations and entrainment-law theories 
• Useful simple prediction procedures have been based on 

them. 
• The entrainment law is not the lowest member of  a 

hierarchy because of  its inextensibility. To make good 
the defects o f  these theories, one must abandon them in 
favour o f  more extensible approaches. 

Mixing-length, l 
For unbounded flows (mixing layers, lets) 

• With more precise/-distribution prescriptions, it would 
be possible to produce better agreement between pre- 

dictions and experiments. This would, however, reduce 
the utility of  the model as a predictive tool; it is enough 
to be in doubt of  l's value. 

• The mixing-length model has proved very useful as a 
basis of  computational procedures, and is still as good as 
some more elaborate methods. It is good enough for 
flows in which turbulence can be treated as isotropiq and 
at a state of  local equilibrium. 

• Its main shortcoming is its lack of  universality. 

For bounded flows 
• The mixing-length model is still among the best for 

predicting boundary-layer flows. 
• The universality of  the constants is fairly high. 
• Boundary-layer separation under adverse pressure gradi- 

ents remains difficult to predict; but this is true of  even 
more advanced methods. 

• The mixing-length model is not usable when no mixing- 
layer width can be identified, e.g. in sudden-enlargement 
flows. 

Effective-viscosity models (e.g. direct prescription of  vtas 
function of  position or other flow properties) 
• Suitable formulae for flows with recirculation are 

totally absent. It is not worth looking for better for- 
mulae. It is better to use a pde model to compute v r. 

• Despite these limitations, it is useful to remember that 
Vr/(flow width x velocity difference) = of  order 0.01. 

• This can.be used as a check on more elaborate models. 
It can be used also to give starting values for calcula- 
tion procedures of  the iterative type, for which it is 
desirable to insert 'reasonable' values at the beginning, 
so as to accelerate convergence. 

One-equation models 
• The Prandtl k model is more realistic than the Prandtl 

I model, in that it allows for diffusion and convection 
o f  energy. It has not been greatly exercised, attention 
having been diverted to the Bradshaw k model and to 
two-equation models. Possibly it deserves more use than 
it has received. 

• The main deficiency of  these models is the need for a 
prescribed length-scale distribution; this is easily 
supplied only for flows of  boundary-layer type. 
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Somewhat more computation must be carried out as 
compared with mixing-length models; but this is no 
longer a very serious bar. 
Most workers have abandoned one-equation models 
in favour of two- or even more-equation models. It is 
possible, however, that one can do better with these 
models in most flows, because it may be easier after all 
to specify the length-scale distribution than to compute 
it with a pde. Further study of one-equation models 
does not appear to be a bad idea. 

Two- and more-equation models 

• The Kolmogorov energy ~ frequency model represents 
a major advance in turbulence modelling; for it permits 
the length scale to be predicted rather than presumed. 
This is true also for all other models that followed 
Kolmogorov's. 

• The k ~ w model has been successfully employed for the 
prediction of numerous turbulent flows. The chief 
disadvantage was that, in order to fit the logarithmic 
wall law, one constant must vary with distance from the 
wall. Because of this, preference was given to other 
second-equation variables. This disadvantage has now 
been removed and the model deserves more attention 
than it has received so far. 

• The k ~ kl model has been extensively and successfully 
employed for the prediction of free turbulent flows and 
those near walls. Its main defect is the necessity to intro- 
duce additional quantities to handle the region close to 
the wall. For this reason it is not used for elliptic flows, 
where walls often play an important part. 

• The k ~ e model is the currently most popular two- 
equation model, mainly for two reasons: (a), the e 
equation may be derived from the NS equations (but 
this is also true of the w equation); (b), the 'Prandtl' 
number for e has a reasonable value which fits the 
experimental data for the spread of the various entities 
at locations far from walls. The model still requires 
modifications for various effects (such as buoyancy, 
rapid compression, etc) and still requires further valida- 
tion in elliptic 2D and 3D flows.* There is no reason 
to suppose that, if an equal amount of attention were 
given to it, another two-equation model would not per- 
form as well, or even better. 

• MTE (PK and ND) models relax the assumption of local 
equilibrium of turbulence by allowing transport of single 
velocity scale (~ x/k). Non-isotropic flows can be handled 
by MRS and ARS models which employ different 
velocity scales for different components of the Reynolds 
stresses; the latter allowing transport of only one velo- 
city scale (~ x/k) characteristic of normal Reynolds 
stresses. For better performance these models are 
normally supplemented by a transport equation for a 
length scale characterized by an energy transfer rate. For 
recirculating flows the MRS models, however, perform only 
marginally better than PK (k ~ e) models, reflecting the 
unsatisfactory performance of the e-equation which is 
common to both. This failure is attributed to the fact that 
the same energy transfer rate cannot be assumed across the 

* It is pointed out that care must be taken to sort out discrepancies 
between prediction and experiment that arise separately from turbu- 
lence modelling and from numerical schemes. Therefore, tbr these 
flows turbulence-modelling research is likely to be coupled with 
research directed towards developing more accurate numerical 
prediction schemes. 
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entire turbulence energy spectrum. Multi-scale k ~ e 
models, postulating different transfer rates for produc- 
tion and dissipation ranges, remove this deficiency and 
provide generalization to the standard k ~ e model at 
the same level of mathematical complexity. 

• In general, predictions of current transport models (k ~ e, 
k ~ w) agree fairly well with experimental data for: 

• 2D boundary layers and jets along plane walls 
• 2D jets, wakes, mixing layers, plumes 
• 2D flow in tubes, channels, diffusers and annuli 
• many 3D flows without strong swirl, density varia- 

tions or chemical reaction 
• some flows influenced by buoyancy and low- 

Reynolds-number effects 

Ad hoc corrections must be made to the models or to 
the 'constants' in order to procure agreement with 
experiments on: 

• boundary layers on convex and concave walls 
• strongly swirling and recirculating flows 
• axi-symmetrical jets in stagnant surroundings 
• 3D walljets 
• gravity-stratified flows 
• flows involving chemical reactions 
• two-phase flows 

• Current transport models neglect intermittency 
(i.e. the ragged edges of jets and boundary layers), 
periodicity (i.e. the eddy-shedding propensity of wakes) 
and postulate, in general, gradient-induced diffusion, 
whereas other diffusion mechanisms exist. Furthermore, 
the absence of a direct means of establishing the con- 
stants delays progress. 

The above disadvantages lead researchers towards more 
'physical' models like large-eddy simulation and 'two-fluid' 
models. 

Large-eddy simulations 

• It involves the integration of the Navier-Stokes equations 
in time using an appropriate finite difference or spectral 
representation, and is therefore free from the closure 
difficulty. The technique of full simulation is only 
available for transition flows. Once turbulence is fully 
developed, the range of eddy sizes is too great to be 
represented on any computer now available or foreseen. 
The remedy is to represent the large eddies only and to 
account for their interaction with the small or subgrid 
eddies by means of a subgrid model. This reintroduces 
'closure', but is more realistic and universal than the 
closures of the transport models. 

• The technique is promising and is capable of supple- 
menting experimental data (like providing informa- 
tion on the fluctuating pressure). 

• The main disadvantages are: 

• it still requires too much computer time and 
storage 

• realistic subgrid models are not available near walls 
• the boundary conditions; the use of natural boundary 

conditions strains available computers to their limit, 
but present synthetic boundary conditions are 
questionable 

• Work continuous at Queen Mary College, London 
(Prof. D. C. Leslie) and elsewhere. The researchers at 
Queen Mary College are currently applying the tech- 
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nique to (a), fully developed flows in channels (including 
buoyancy-driven flows in vertical channels with heated/ 
cooled walls) and; (b), the turbulent near-wake behind a 
flat plate at zero incidence with potential applications to 
wing design. 

"13vo-fluid' models 
• Use is made of a newly-developed branch of computa- 

tional fluid dynamics, that of  multi-phase flow. 2~6' 217 
The basic idea arises from the fact that turbulent flows 
are 'spotty' .  Fluid parcels ('blobs', 'spots', 'pockets', 
'fragments') can be distinguished by reference to differ- 
ences of velocity, vorticity, density, etc. 'Two-fluid' 
models idealize this spottiness; they allow for the co- 
existence of only two kinds of fluid (turbulent fluid 
and irrotational fluid drawn in from the surroundings), 
which can occupy (in turn) any location. The 'presence' 
probability of the turbulent fluid is interpreted as the 
intermittency of turbulence. 'Multi-fluid' models may 
also be devised. 

• These models are promising. They can predict inter- 
mittency and therefore address directly important 
'physical' aspects of turbulence. They are also eco- 
nomical; they involve twice as many equations as 
conventional models, but their solution is no problem 
on present day computers. The problem is the multiple 
interactions which occur between the 'two fluids' as 
they interchange mass, momentum and energy. The 
mass-transfer and size-change phenomena are of special 
importance in a two-fluid turbulence model;for turbu- 
lent fluid certainly engulfs nonturbulent fluid from its 
surroundings increasing in quantity as a consequence; 
and eddies grow not only for this reason but because of 
the distortion which the mean flow subjects them to. 
The question is: what laws of 'fluid interaction' should 
be built into two-fluid theory in order to cause it to 
represent the major features of turbulence? Some pre- 
liminary answers have already been given based on 
intuition;much more research is required. 

• These models are currently undergoing development at 
the Computational Fluid Dynamics Unit, Imperial 
College, London (Prof. D. B. Spalding). Other 'inter- 
mittency' models are under development elsewhere (e.g. 
Kollmann, Von Karman Institute and University of 
California). It is still very early to pass judgement on 
these models, but they may become the standard prac- 
tice of tomorrow. Finally, the best advice to be given to 
the would-be user is 'caution'. For, although there is 
now a considerable amount of evidence in support 
of the one- and two-equation models of turbulence, they 
are still unable to predict several important flows. The 
user will still have to make guesses in such cases; and he 
should exercise his intuition and physical insight in inter- 
preting the models' predictions. Some further interesting 
reading may be found in references 218-230. 
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N o m e n c l a t u r e  

a l  
bq 
C 
D/Dt 

f 

g 
k 
l 
L ,Lk  

P 
a 
Re 
sii 

s~ 
t 
T 
U 

Ui 
U 1 ,lt2 o r  

/ / ,V  

U 
Ul, U2 

W 

Xi 
X I , X 2  

Y 
Z 

empirical parameter 
second-order anisotropy tensor 
empirical constant in turbulence model 
= ~/~t + u i (a/axi)  = total differential 
diffusion of dependent variable qb 
Kolmogorov's turbulence frequency; also empirical 
function 
external body force (X/-component); also inter- 
fluid friction forces 
gravitational acceleration 
= ~ u[u[, kinematic turbulence kinetic energy 
Prandtl's mixing length 
length scale (characteristic of large eddies) of 
turbulence 
instantaneous pressure 
set (~i, ti) of co-ordinates 
Reynolds number 
fluctuating symmetric strain-rate 
mean symmetric strain-rate 
source term for variable 
time 
temperature 
instantaneous fluid velocity 
instantaneous fluid velocity in/-direction 
velocities in directions 1 and 2 

shear velocity 
mean velocity 
mean velocities in directions 1 and 2 
velocity scale (characteristic of large eddies) 
of turbulence 
mean-square vorticity fluctuations; also for 
Weighting function for statistical averaging of 
fluctuating quantities 
co-ordinates in tensor notation 
co-ordinates in directions 1 and 2 
lateral or radial coordinate 
physical parameter corresponding to a length 
scale of turbulence 

Greek symbols 

c~, cq empirical parameters 
7 turbulent diffusivity (= P/p); also intermittency 
P turbulence diffusion coefficient 
8 shear layer thickness 
6ij  Kronecker delta, = 1 for i = j  and 0 for i :/:j 
/5(~) Dirac delta, = 1 for ~ = 0, = 0 for ~ :/: 0 
/xt increase in t 
e energy transfer of turbulence into dissipation 

range, or dissipation rate of k 
ep, el energy transfer rates out of production and 

inertial ranges, respectively 
eqm alternating third-order tensor, = I if i , j ,  m are 

cyclic, - 1 if i , / ,  m are anticyclic, and 0 if i = j 
o r  m 

r/ similarity co-ordinate - y/fi 
r von Kfirmfin constant 
/a,/a t absolute molecular and turbulent (or eddy) 

viscosities, respectively 
/ab bulk-viscosity coefficient 
v, v t kinematic molecular and turbulence (or eddy) 

viscosities, respectively 
~i Cartesian co-ordinates 
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P 
at 
ok, oe 
o~j 

¢ 

LO m 

pressure-strain terms 
instantaneous densi ty o f  the fluid 
turbulent  Prandt l -Schmidt  numbers  
empir ical  numbers  similar to o t 
stress-tensor componen t s  due to deformat ion  
and bulk di la tat ion 
ins tantaneous scalar quan t i ty  
dependen t  variable 
'presence probabi l i ty '  or  in te rmi t t ency  
f luctuat ing vor t ic i ty  in direct ion x m 
ro ta t ion tensor  

Subscripts, 

e 

i , j , l , m  

P 
t 
1J 
w 
(') 

(-)  

(,  i) 
n 
1 
2 
0 
pde 
A R S  
MVF 
MTE 
MRS 

superscripts and abbreviations 

edge 
direct ions o f  vectors 
p roduc t ion  range 
turbulent  
viscous 
wall 
pr ime,  denot ing f luctuat ing c o m p o n e n t  o f  a 
turbulence quan t i ty  
overbar,  denot ing convent ional  (or temporal )  
averaging of  turbulence  quant i t ies  or  their  
correla t ions  
differential  with respect to i 
i r rotat ional  fluid 
turbulent  fluid in ' two-f lu id '  models  
non- turbulent  fluid in ' two-f lu id '  models  
reference condi t ions  
part ial-differential  equa t ion  
algebraic-Reynolds-stress models  
mean-veloci ty-f ie ld models  
mean- turbulence-energy models  
mean-Reynolds-stress  models  
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