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Preface to the Third Edition

The first edition of this book, Analysis of Turbulent Boundary Layers, was written in
the period between 1970 and early 1974 when the subject of turbulence was in its
early stages and that of turbulence modeling in its infancy. The subject had advanced
considerably over the years with greater emphasis on the use of numerical methods
and an increasing requirement and ability to calculate turbulent two- and three-
dimensional flows with and without separation. The tools for experimentation were
still the traditional Pitot tube and hot wire-anemometer so that the range of flows that
could be examined was limited and computational methods still included integral
methods and a small range of procedures based on the numerical solution of
boundary layer equations and designed to match the limited range of measured
conditions. There have been tremendous advances in experimental techniques with
the development of non-intrusive optical methods such as laser-Doppler, phase-
Doppler and particle-image velocimetry, all for the measurement of velocity and
related quantities and of a wide range of methods for the measurement of scalars.
These advances have allowed an equivalent expansion in the range of flows that have
been investigated and also in the way in which they could be examined and inter-
preted. Similarly, the use of numerical methods to solve time-averaged forms of the
Navier-Stokes equations, sometimes interactively with the inviscid-flow equations,
has expanded, even more so with the rise and sometimes fall of Companies that
wished to promote and sell particular computer codes. The result of these devel-
opments has been an enormous expansion of the literature and has provided a great
deal of information beyond that which was available when the first edition was
written. Thus, the topics of the first edition needed to be re-examined in the light of
new experiments and calculations, and the ability of calculation methods to predict
a wide range of practical flows, including those with separation, to be reassessed.

The second edition, entitled Analysis of Turbulent Flows, undertook the neces-
sary reappraisal, reformulation and expansion, and evaluated the calculation methods
more extensively but also within the limitations of two-dimensional equations
largely because this made explanations easier and the book of acceptable size. In
addition, it was written to meet the needs of graduate students as well as engineers
and so included homework problems that were more sensibly formulated within the
constraints of two independent variables. References to more complex flows, and
particularly those with separation, were provided and the relative merits of various
turbulence models considered.

xi



xii Preface to the Third Edition

The third edition, entitled Analysis of Turbulent Flows with Computer Programs,
keeps the structure of the first and second editions the same. It expands the solution
of the boundary-layer equations with transport-equation turbulence models,
considers the solution of the boundary-layer equations with flow separation and
provides computer programs for calculating attached and separating flows with
several turbulence models.

The second edition and the contents of this new edition should be viewed in the
context of new developments such as those associated with large-eddy simulations
(LES) and direct numerical solutions (DNS) of the Navier-Stokes equations. LES
existed in 1976 as part of the effort to represent meteorological flows and has been
rediscovered recently as part of the recognition of the approximate nature of solu-
tions of time-averaged equations as considered here. There is no doubt that LES has
a place in the spectrum of methods applied to the prediction of turbulent flows but we
should not expect a panacea since it too involves approximations within the
numerical method, the filter between time-dependent and time-average solutions and
small-scale modeling. DNS approach also has imperfections and mainly associated
with the computational expense which implies compromises between accuracy and
complexity or, more usually, restriction to simple boundary conditions and low
Reynolds numbers. It is likely that practical aerodynamic calculations with and
without separation will continue to make use of solutions of the inviscid-flow
equations and some reduced forms of the Navier-Stokes equations for many years,
and this book is aimed mainly at this approach.

The first and second editions were written with help from many colleagues. AMO
Smith was an enthusiastic catalyst and ideas were discussed with him over the years.
Many colleagues and friends from Boeing, the former Douglas Aircraft Company
and the McDonnell-Douglas Company, have contributed by discussion and advice
and included K. C. Chang and J. P. Shao. Similarly, Peter Bradshaw, the late Herb
Keller of Cal Tech and the late Jim Whitelaw of Imperial College have helped in
countless ways.

Indian Wells

Tuncer Cebeci



Computer Programs Available from horizonpublishing.net

1. Integral Methods.

2. Differential Method with CS Model for two-dimensional flows with
and without heat transfer and infinite swept-wing flows.

3. Hess-Smith Panel Method with and without viscous effects.

4. Zonal Method for k- Model and solution of k-¢ Model equations with and
without wall functions.

5. Differential Method for SA Model and for a Plane Jet.

6. Differential Method for inverse and interactive boundary-layer flows with
CS Model.
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I 1.1 Introductory Remarks

Turbulence in viscous flows is described by the Navier—Stokes equations, perfected
by Stokes in 1845, and now soluble by Direct Numerical Simulation (DNS).
However, computing capacity restricts solutions to simple boundary conditions and 1
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2 Analysis of Turbulent Flows with Computer Programs

moderate Reynolds numbers and calculations for complex geometries are very
costly. Thus, there is need for simplified, and therefore approximate, calculations for
most engineering problems. It is instructive to go back some eighty years to remarks
made by Prandtl [1] who began an important lecture as follows:

What I am about to say on the phenomena of turbulent flows is still far from
conclusive. It concerns, rather, the first steps in a new path which I hope will
be followed by many others.

The researches on the problem of turbulence which have been carried on at
Gottingen for about five years have unfortunately left the hope of a thorough
understanding of turbulent flow very small. The photographs and
kineto-graphic pictures have shown us only how hopelessly complicated
this flow is ...

Prandtl spoke at a time when numerical calculations made use of primitive
devices — slide rules and mechanical desk calculators. We are no longer ““hopeless”
because DNS provides us with complete details of simple turbulent flows, while
experiments have advanced with the help of new techniques including non-obtrusive
laser-Doppler and particle-image velocimetry. Also, developments in large-eddy
simulation (LES) are also likely to be helpful although this method also involves
approximations, both in the filter separating the large (low-wave-number) eddies and
the small ‘sub-grid-scale’ eddies, and in the semi-empirical models for the latter.

Even LES is currently too expensive for routine use in engineering, and
a common procedure is to adopt the decomposition first introduced by Reynolds for
incompressible flows in which the turbulent motion is assumed to comprise the sum
of mean (usually time-averaged) and fluctuating parts, the latter covering the whole
range of eddy sizes. When introduced into the Navier—Stokes equations in terms of
dependent variables the time-averaged equations provide a basis for assumptions for
turbulent diffusion terms and, therefore, for attacking mean-flow problems. The
resulting equations and their reduced forms contain additional terms, known as the
Reynolds stresses and representing turbulent diffusion, so that there are more
unknowns than equations. A similar situation arises in transfer of heat and other
scalar quantities. In order to proceed further, additional equations for these unknown
quantities, or assumptions about the relationship between the unknown quantities
and the mean-flow variables, are required. This is referred to as the ‘“‘closure”
problem of turbulence modeling.

The subject of turbulence modeling has advanced considerably in the last seventy
years, corresponding roughly to the increasing availability of powerful digital
computers. The process started with ‘algebraic’ formulations (for example, algebraic
formulas for eddy viscosity) and progressed towards methods in which partial
differential equations for the transport of turbulence quantities (eddy viscosity, or the
Reynolds stresses themselves) are solved simultaneously with reduced forms of the
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Navier—Stokes equations. At the same time numerical methods have been developed
to solve forms of the conservation equations which are more general than the two-
dimensional boundary layer equations considered at the Stanford Conference of
1968.

The first edition of this book was written in the period from 1968 to 1973 and was
confined to algebraic models for two-dimensional boundary layers. Transport
models were in their infancy and were discussed without serious application or
evaluation. There were no similar books at that time. This situation has changed and
there are several books to which the reader can refer. Books on turbulence include
those of Tennekes and Lumley [2], Lesieur [3], Durbin and Petterson [5]. Among
those on turbulence models the most comprehensive is probably that of Wilcox [6].

The second edition of this book had greater emphasis on modern numerical
methods for boundary-layer equations than the first edition and considered turbu-
lence models from advanced algebraic to transport equations but with more emphasis
on engineering approaches. The present edition extends this subject to encompass
separated flows within the framework of interactive boundary layer theory.

This chapter provides some of the terminology used in subsequent chapters,
provides examples of turbulent flows and their complexity, and introduces some
important turbulent-flow characteristics.

I 1.2 Turbulence - Miscellaneous Remarks

We start this chapter by addressing the question “What is turbulence?”’ In the 25t
Wilbur Wright Memorial Lecture entitled ““Turbulence,” von Karman [7] defined
turbulence by quoting G. I. Taylor as follows:

Turbulence is an irregular motion which in general makes its appearance in
fluids, gaseous or liquid, when they flow past solid surfaces or even when
neighboring streams of the same fluid flow past or over one another:

That definition is acceptable but is not completely satisfactory. Many irregular
flows cannot be considered turbulent. To be turbulent, they must have certain
stationary statistical properties analogous to those of fluids when considered on the
molecular scale. Hinze [8] recognizes the deficiency in von Karman’s definition and
proposes the following:

Turbulent fluid motion is an irregular condition of flow in which the various
quantities show a random variation with time and space coordinates, so that
statistically distinct average values can be discerned.

In addition turbulence has a wide range of wave lengths. The three statements
taken together define the subject adequately.
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Fig. 1.1 Relation between @, (expressed in Rhineland inches per second) and the
temperature (expressed in degrees Reaumur) for various pipe diameters and heads h
(in Rhineland inches), after tests by G. Hagen. — 0.281 cm diam.; - — — 0.405 cm
diam.; - - - 0.596 cm diam. [10].

What were probably the first observations of turbulent flow in a scientific sense
were described by Hagen [9]. He was studying flow of water through round tubes and
observed two distinct kinds of flow, which are now known as laminar (or Hagen-
Poiseuille) and turbulent. If the flow was laminar as it left the tube, it looked clear
like glass; if turbulent, it appeared opaque and frosty. The two kinds of flow can be
generated readily by many household faucets. Fifteen years later, in 1854, he pub-
lished a second paper showing that viscosity as well as velocity influenced the
boundary between the two flow regimes. In his work he observed the mean® velocity
u in the tube to be a function of both head and water temperature. (Of course,
temperature uniquely determines viscosity.) His results are shown in Fig. 1.1 for
several tube diameters. The plot contains implicit variations of #, ry, and v, the
velocity, the tube radius, and the kinematic viscosity, respectively. This form of
presentation displays no orderliness in the data. About thirty years later, Reynolds
[11] introduced the parameter R, = ury/v an example of what is now known as the
Reynolds number (with velocity and length scales depending on the problem). It
collapsed Hagen’s data into nearly a single curve. The new parameter together with

“For now, let ““mean” denote an average with respect to time, over a time long compared with the lowest
frequencies of the turbulent fluctuations. In Section 2.3 we will give more details of this and other kinds
of averaging.
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Fig. 1.2 Pressure-drop coefficient vs Reynolds number (Hagen’s tests of Fig. 1.1 replotted;
squarely cut-off entrance) [10].

the dimensionless friction factor A, defined such that the pressure drop
Ap = Aei?/2) (I/r0), transforms the plot of Fig. 1.1 to that of Fig. 1.2. The
quantity / is tube length; the other quantities have the usual meaning. Thus was born
the parameter, Reynolds number. The term “turbulent flow” was not used in those
earlier studies; the adjective then used was ‘“‘sinuous’ because the path of fluid
particles in turbulent flow was observed to be sinusoidal or irregular. The term
“turbulent flow”” was introduced by Lord Kelvin in 1887.

In the definition of turbulence, it is stated that the flow is irregular. The extreme
degree of irregularity is illustrated in Fig. 1.3. If a fine wire is placed transversely in
flowing water and given a very short pulse of electric current, electrolysis occurs and
the water is marked by minute bubbles of hydrogen that are shed from the length of
the wire, provided that the polarity is correct. These bubbles flow along with the
stream and mark it. In simple rectilinear flow, the displacement is 4x = u4t, or, more
generally, since u, v, and w motion can occur, Ar = fé v dt, where r is the
displacement vector, v the velocity vector, and ¢ and 7 time. Hence the displacement
is proportional to the velocity, provided that the times are not too long. The sequence
of profiles in Fig. 1.3a was obtained by this hydrogen-bubble technique. All are for
the same point in a boundary-layer flow, but at different instants. The variation
from instant to instant is dramatic. Figure 1.3b, the result of superposition, shows the
time-average displacement for the 17 profiles, and Fig. 1.3c shows the conventional
theoretical shape. The average shape remains steady in time, and it is this steadiness
of statistical values that makes analysis possible. But Fig. 1.3 shows strikingly
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Fig. 1.3 Instantaneous turbulent boundary-layer profiles according to the hydrogen-
bubble technique. Measurements were made at R, = 10° on a flat plate 5 ft aft of
leading edge. The boundary layer was tripped. (a) A set of profiles, all obtained at the
same position from 17 runs. (b) The same set superimposed. (c) A standard mean profile
at the same R,. (d) Photograph of one of the hydrogen-bubble profiles. (e) A laminar
profile on the opposite side of the plate.

that the flow is anything but steady; it is certainly not even a small-perturbation type
of flow.

The Reynolds-number parameter has a number of interpretations, but the most
fundamental one is that it is a measure of the ratio of inertial forces to viscous forces.
It is well known that inertial forces are proportional to oV?2. Viscous forces are
proportional to terms of the type udu/dy, or approximately to uV/I, for a given
geometry. The ratio of these quantities is

oV?/(V/I) = oVl/u =R, (12.1)

which is a Reynolds number. Whenever a characteristic Reynolds number R; is high,
turbulent flow is likely to occur. In the tube tests of Fig. 1.2, the flow is laminar for all
conditions where R, is below about 1000, and it is turbulent for all conditions where
R, is greater than about 2000. Between those values of R, is the transition region.
Accurate prediction of the transition region is a complicated and essentially unsolved
problem.



Introduction 7

One fact that is often of some assistance in predicting transition will be
mentioned here. Numerous experiments in tube flow with a variety of entrance
conditions or degrees of turbulence of the entering flow exist. Preston [12] notes from
this information that it seems impossible to obtain fully turbulent flow in a tube
at Reynolds numbers R, less than about 1300 to 2000. His observation is confirmed
by the data of Fig. 1.2. Then by considering the similarity of the wall flow for both
tube and plate he transfers this observation to low-speed flat-plate flow and concludes
that turbulent flow cannot exist below a boundary-layer Reynolds number Ry = u.0/v
of about 320, where u, is the edge velocity and 6 is the momentum thickness

defined by
:/ i (11> dy (12.2)
0 Ue Ue

If the laminar boundary layer were to grow naturally from the beginning of the
flat plate, the x Reynolds number, Ry = ucx/v, would be about 230,000 for Ry = 320.
However, under conditions of very low turbulence in an acoustically treated wind
tunnel, an x Reynolds number of 5,000,000 can be reached [13]. Hence, it has been
demonstrated that there is a spread ratio of more than 20:1 in which the flow may be
either laminar or turbulent. Preston’s observation is of importance when turbulent
boundary layers are induced by using some sort of roughness to trip the laminar
layer, as in wind-tunnel testing. If the model scale is small, Ry at the trip may be less
than 320. Then the trip must be abnormally large — large enough to bring Ry up to
320. Fortunately, however, the Reynolds number is often so great that there is no
problem.

B 1.3 The Ubiquity of Turbulence

The following series of figures are some examples of turbulent flow that show its
ubiquitous character. The eddies and billowing can be clearly seen in the cumulus
cloud of Fig. 1.4. Figure 1.5 shows turbulent mixing of two different gases, smoke
and air. Even at stellar magnitudes turbulence seems to occur (Fig. 1.6). Turbulent
motion can occur at all speeds and under all sorts of conditions: in water at M = 0,
in hypersonic flow, in channels, in rocket nozzles, or on or near external surfaces
such as airfoils. Figure 1.7 shows the turbulence in a different way. It shows the
wake of a small circular cylinder in a towing tank, made visible by aluminum
powder. Although the wake is too close to the cylinder to produce fully developed
turbulence, the erratic path lines do indicate turbulence and its wonderful
complexity. Figure 1.8, taken at a ballistic range, reveals a turbulent wake at
hypersonic speeds.



8 Analysis of Turbulent Flows with Computer Programs

Fig. 1.4 Turbulent motion in a cumulus cloud.

Fig. 1.5 Turbulent motion in a smoke trail generated to indicate wind direction for
landing tests.

I 1.4 The Continuum Hypothesis

The Navier—Stokes equations and their reduced forms leading to Euler (Chapter 2)
and boundary-layer (Chapter 3) equations are derived by considering flow and forces
about an element of infinitesimal size, with the flow treated as a continuum.
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Fig. 1.6 Solar granulations — a highly magnified section of the sun’s surface. This
appears to be a random flow, a form of turbulence. The pattern changes continuously.
It becomes entirely different after about ten minutes. Photo courtesy of Hale
Observatories.

Fig. 1.7 The turbulent motion in the wake of a circular cylinder in water. Motion is
made visible by aluminum powder.

Although turbulent eddies may be very small, they are by no means infinitesimal.
How well does the assumption of continuity apply?

Avogadro’s number states that there are 6.025 x 1 molecules in a gram
molecular weight of gas, which at standard temperature (0°C) and pressure
(760 Torr) occupies 22,414 cm3, which means 2.7 x 10'° molecules/cm>. Hence

023
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Fig. 1.8 Typical turbulent wake of a 6.3°-half-angle projectile (M = 10.6, R; = 10.7 X
10°). Photo courtesy of Naval Ordnance Laboratory.

a cube whose edge is only 0.001 cm would contain 2.7 X 10'9 molecules. At these
standard conditions, the mean free path for gases such as air is approximately 107
cm, which is significantly smaller than the edge of the 0.001-cm cube. The total
number of collisions y per second in a cubic centimeter is y = v ¢ /2A, where v is the
number of molecules in a cubic centimeter, ¢ is the mean velocity (for air roughly
5% 10* cm/sec), and A is 107 cm. For these representative numbers, y = 6.75 X 108
collisions/sec cm?, and the collision frequency for a molecule is 5 x 10%/sec or in
a 0.001-cm cube the number is 6.75 x 10" collisions/sec. Hence, under standard
conditions, even very small eddies should obey the laws of continuum mechanics,
and because the number of collisions per second is so great, reaction or readjustment
times should be very small. Also, it appears that since both the number of molecules
and the number of collisions are so great, the continuum hypothesis will hold even
for moderately rarefied gas flows.

What is the size of the smallest eddies? What is termed the microscale is
generally considered to be a measure of the average value of the smallest eddies.
The microscale will be described in Sections 1.5 and 1.6. In Section 1.11 a value is
given for a rather large-scale flow. The value is 0.05 in. or about 1 mm. Hence, with
respect to such a number or a cube 1 mm on a side, the flow surely acts as
a continuum.

In studying the final process of dissipation, Kolmogorov [14] deduced a still
smaller length scale as well as a velocity scale. They are

n = (V3/€)1/4, v = (V8)1/4, (1.4.1)

where € is a measure of the rate of dissipation of energy due to turbulence (see
Section 3.5). Observe that the Reynolds number nv/v formed from those two
quantities is unity. A relationship between the Kolmogorov length scale 7 and the
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mean free path A can be obtained by writing the definition of kinematic viscosity,
namely, » = 0.499 ¢ A. Making use of that relationship, from Eq. (1.4.1) we can write

n/A = ¢/2v. (1.4.2)

A representative value of ¢ is given in Fig. 4.6b in dimensionless form as (&d/ u%)
Let us use the value 20. For the tests, u;/u. was about (0.0015)1/2 = 0.04. For these
test conditions, it follows that ¢ is approximately

e~ 12 x 107%3 /6. (1.4.3)
With Eq. (1.4.3), we can write Eq. (1.4.2) as

/i = 3R /(. 2), (1.4.4)

where Ry = uc0/v. Now a turbulent boundary layer has a thickness roughly equal to
ten times the momentum thickness. Hence, with the value 320 presented in Section
1.1, the minimum value of R¢ is about 3000. Then according to Eq. (1.4.4)  is small,
but it too is substantially larger than the mean free path. Note that Mach number has
effectively been brought in by the term u./ ¢. Accordingly, only if the Mach number
becomes quite large will any question arise as to the continuum hypothesis.

I 1.5 Measures of Turbulence - Intensity

Figure 1.9 shows the evolution of turbulence at a particular point on a 108-in.-
chord plate as the tunnel speed, and hence chord Reynolds number, was
increased. In the sequence, the transition position was moved relative to the hot
wire by changing tunnel speed which is often a more convenient method than
moving the hot wire through the transition region while holding tunnel speed
constant. Until the last or fully-developed turbulent trace is reached, it is ques-
tionable that the fluctuations meet Hinze’s requirement (Section 1.2) for
discernment of statistically distinct average values. Certainly the traces are not
long enough to indicate any statistical regularity. But the last trace seems to
indicate that the fully turbulent state has arrived. Some features visible to the eye
are: (1) average value of the velocity fluctuations; (2) range of magnitudes, or
distribution, of these fluctuations, and (3) some sort of frequency or wave length,
or distribution thereof (thousands of oscillations in 0.1 second or just a few?); (4)
the shortest wave length; (5) the average wave length, etc. A number of useful
measures have been developed, and it is our purpose here to acquaint the reader
with a few of the more important ones.

Consider the bottom trace in Fig. 1.9 and work out a time average by taking
samples periodically without bias, say at every 0.1 or 0.01 sec, or even more
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Fig. 1.9 Hot-wire records showing growth of laminar oscillations, their breakdown
into turbulent spots, and development of fully turbulent flow. An 0.008-in.-diam. trip
wire is located 8 in. behind the leading edge. The hot wire is located 56 in. behind
the leading edge, 0.020 in. off the surface. Traces are u fluctuations. Gain is the same
for all traces. Data from Smith and Clutter [15].

frequently. Or use random sampling, which is also a suitable method. Then, if
fluctuations in u are being sampled,

n
Umean = 1 = lim  (1/n) > ;. (1.5.1)
X— o
i=1
Let the individual fluctuations about & be ]} = u; — i, uh = up — i, etc. By the
definition of a mean, the average value of ' will be zero; that is,

n
o— 1i I
W = lim (1/n) ; u, = 0. (15.2)
However, the mean of the squares of the fluctuating components is not equal to zero,
since all are positive. For the u component, the mean square is in fact

_ n
N2 _ i 7]
(w)* = lim (1/n)2ui : (1.5.3)
1=
The root-mean-square of this quantity, that is the measure of the magnitude of the
velocity fluctuations about the mean value, is called the intensity of turbulence. It is
often expressed as the relative intensity by the three quantities
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e R (0 Ry A U R (1.5.4)

A “‘stationary” turbulent flow is characterized by a constant mean velocity u (with
v = w = 0 for suitable axes) and constant values of ﬁ, 172, w'2. The true velocity
at any instant is never known, but at least certain average properties can be specified.
One such measure is the relative level of turbulence ¢ in a stream whose average

velocity is i:
o = (1/m) [(W? +02 +w?)/3]"% (1.5.5)
If the turbulence is isotropic, W2 =2 = w2, Isotropic turbulence can be devel-
oped in a wind tunnel by placing a uniform grid across the duct. A few mesh lengths
downstream, the flow becomes essentially isotropic in its turbulence properties. The
quantity ¢ is about 1.0% in a poor wind tunnel, 0.2% in a good general purpose
tunnel, and as low as 0.01-0.02% in a well-designed low-turbulence tunnel.
The quantity ¢ is directly related to the kinetic energy of the turbulence, as

will now be shown. Consider a flow whose mean velocity is #, thatis,v = w = 0.
Its instantaneous velocity can be represented by

V= (u+u)i+Vj+wk
The instantaneous kinetic energy per unit mass is

1

E [(li + ul)z + UI2 + W/ZL
and the mean kinetic energy per unit mass is
1

~ i

2

To get the kinetic energy of the turbulence, we subtract the mean kinetic energy from
the instantaneous kinetic energy and obtain

1
5 (214/ u + 6]2)

where q2 =u';u'; with j = 1, 2, 3. The mean kinetic energy of the turbulence per unit
mass, k, can be obtained by taking the mean of the above expression. This gives

k= =g (1.5.6)

3
k= 51;202‘ (1.5.7)
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Fig. 1.10 Probability density function for the occurrence of various magnitudes of
velocity fluctuations u’ in a turbulent flow generated by a wire grid. Measurement
was made 16 mesh widths downstream. Mesh Reynolds number tM/y = 9600.
Crosses represent measurements; dashed line represents a Gaussian or normal distri-
bution [16].

Until now, we have considered only the mean intensity of the fluctuations. Let us now
consider the distribution of the velocity fluctuations. Are the velocity fluctuations all
about the same, or are some large and some small? The lowest trace in Fig. 1.9 shows
a considerable variation. At least in homogeneous turbulence, for which the question
has been studied in some detail, the distribution is nearly Gaussian. A typical result is
shown in Fig. 1.10.

Even in two-dimensional mean flows, the turbulent fluctuations are three
dimensional. That should be fairly evident from the appearance of turbulent water
flow, cloud motion, smoke flow, etc. Figure 1.11 shows some typical measurements
made in a thick two-dimensional boundary layer. The three fluctuating components
differ of course, but not greatly. Observe that the fluctuations reach as much as 10%
of the base velocity &, which is consistent with the indications of Fig. 1.3.

I 1.6 Measures of Turbulence - Scale

The oscilloscope trace of a hot wire placed in a stream flowing at 100 mph would
surely show a far more gradual fluctuation if the average eddy were 3 ft in diameter
than it would if the average eddy were %2 in. in diameter. Hence, both scale and
magnitude are parameters. For a stationary random-time series such as this is
presumed to be, a statistical method has been developed to establish well-defined
scales. Consider a stationary time series as in the sketch of Fig. 1.12, which could be
the kind supplied by the experiment just mentioned. Suppose one reads base values at
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Fig. 1.11 Relative turbulence intensities in the flow along a smooth flat plate. The inset
shows values very near the plate [17].

Fig. 1.12 lllustration of autocorrelation. Trace courtesy of Eckelmenn [16].

stations 1, 2, 3, 4, ..., n in the figure and another set displaced from each by an
amount 7. Then form the sum

n

W(tu'(t—1) = lim (1/n)Zu§(l)u:(t—r) (1.6.1)

n—)m <
i=1

This equation represents an autocorrelation function, since it is a function of the
offset 7. In problems such as those considered in this book, the quantity defined by
Eq. (1.5.1) converges to a unique function of t that is independent of ¢ for any
particular steady turbulent flow. Because the correlation is all within a single trace,
it is called an autocorrelation function. If t — 0, the function becomes u/(¢)u/(t)
or u. This quantity can be conveniently introduced for normalizing purposes, as
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Fig. 1.13  Plot of a typical correlation function.

in the following equation, to form what is known as an Eulerian time-correlation
coefficient:

Re(1) = ' (' (t — 1)/ u. (1.6.2)

The function Rg(7) may have a wide variety of shapes; the one sketched in Fig. 1.13
is typical.

The correlation shown in Fig. 1.13 was obtained from a trace produced by
a single instrument. In wind-tunnel tests two hot wires are offen placed abreast of
each other with the distance between them varied in order to obtain transverse
correlations, which provide measures of the transverse dimensions of eddies. In such
cases, simultaneous traces may have the general appearance shown in Fig. 1.14.
Correlations now are formed by taking readings of a pair of traces at matched time
instants to form quantities similar to Eq. (1.6.1), but now the variable is the sepa-
ration distance r, rather than t. If a pure transverse correlation is sought, the general
distance r reduces to y. With hot wires, a pure longitudinal correlation or x corre-
lation cannot be taken, because the downstream hot wire is in the wake of the
upstream wire. Longitudinal correlation is then obtained by the process leading to
Eq. (1.6.1). An example is shown in Fig. 1.12. An (x, f) relation is supplied by the
equation

/3t = —a(9/dx), (1.6.3)

which is known as Taylor’s hypothesis. The hypothesis simply assumes that the
fluctuations are too weak to induce any significant motion of their own, so that
disturbances are convected along at the mean stream velocity. It is quite accurate so
long as the level of turbulence is low, for example, less than 1%. It is not exact, and
has appreciable errors at high levels of turbulence [8].

In homogeneous turbulence, a transverse correlation coefficient appears as in
Fig. 1.15, although the coefficient does not always become negative. The curvature at
the vertex is determined by the smallest eddies. Hence, a measure of the smallest
eddies is provided by the intercept of the osculating parabola. Theory shows that the
correlation begins as a quadratic function; a linear term would of course destroy the
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Fig. 1.14 Oscillograms illustrating transverse correlation: (a) nearly perfect correlation,
two wires very close together; (b) moderate correlation, two wires a moderate distance
apart; (c) very low correlation, two wires far apart [18].

Fig. 1.15 Typical transverse correlation function. The microscale A, is the intercept of
the osculating parabola. 1//\?}, = — Kd?g/dy?),

required symmetry. The relation shown in the figure is readily derived by means of
a Taylor’s series for g(y) that ends with the y2 term. The length 4, is known as the
microscale of the turbulence. Since the value of g at y = 0 is normalized to unity,
a second convenient measure is the area under half the curve, /,; that is,

Ag = /O g(y) dy. (1.6.4)
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Fig. 1.16 Transverse correlation coefficients R, measured in the boundary layer of
a large airfoil-like body. At the 171 -ft station the edge velocity was 160 ft/sec. R, =

()2 ()2 119,

That area is a well-defined measure of the approximate size of the largest eddies. For
obvious reasons, it is called the integral scale. Figure 1.16 shows a number of
transverse correlation coefficients measured in a thick boundary layer on a large
body having a pressure distribution similar to that of a thick airfoil. By inspection —
because the peaks of the correlation curves are so pointed — it is evident that A, is
rather small. However, /, is rather large, as much as an inch, apparently. Longitu-
dinal correlations were measured in the same investigation; their scales are
considerably greater.

Obviously, a wide variety of correlations can be measured; ', v/, or w’ may be the
quantity measured. In the next chapter, the term v's// will emerge as a very important
quantity, which when multiplied by — ¢ is known as a Reynolds shear-stress term. It
is a correlation between two velocities at a point. It could be computed from
oscilloscope traces, but two hot wires arranged in the form of an x can yield
instantaneous u’, v’ directly. If v were not related to «/, the correlation would be zero.
Actually, it is physically related to u’. The transverse correlations just discussed are
known as double correlations. Correlations involving three or more measurements
can be made; they are of importance in attempts to develop further the statistical
theory of turbulence.

The rates of change of (1/2) 12 /i and A, downstream of a grid are of interest both
from a practical standpoint and from the standpoint of the general theory of turbu-
lence. Figure 1.17 shows typical results downstream of a grid at both large and small
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Fig. 1.17 Variations of (¢ /a?) and Ag downstream of a grid in a wind tunnel [20].

distances. At a short distance downstream of the grid, A§ has a slope 10vM/u; at large
distances, the slope is 4vM/u, where M is the mesh size. In the initial stages of decay,
) W? varies as . A parameter that often arises is the Reynolds number of
turbulence R = (ﬁ)l/zkg/v. In initial stages of decay, (ﬁ)l/2 ~ Y2 and Ag ~ i
2 Hence R, remains constant in this region because the ¢ terms cancel. Since the data
of Fig. 1.17 pertain to isotropic turbulence, the figure also provides information on
the decay of the kinetic energy of turbulence.

I 1.7 Measures of Turbulence — The Energy Spectrum

Since turbulence has fluctuations in three directions, any complete study of the
energy spectrum must necessarily involve a three-dimensional spectrum, or more
specifically a correlation tensor involving nine spectrum functions. But our purpose
here is only to introduce the general concept of a spectrum, and so we shall confine
our discussion to the one-dimensional case. Just as with light, where the different
colors (wave lengths or frequencies) may have different degrees of brightness, so
may the signal in a turbulent flow have different strengths for different frequencies.
For instance, the low-frequency portion of a u’ trace might have little energy and
the high-frequency portion much, or vice versa. The spectrum of turbulence relates
the energy content to the frequency. Consider the band of frequencies between n
and n + dn. Then define E| such that E{(n) dn is the contribution to u? of the
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Fig. 1.18 The spectral function £;(n) for u’ fluctuations downstream of a grid [21].

frequencies in this band. Obviously, the mean-square fluctuation covering all
frequencies is

u? :/ Ei(n) dn, (1.7.1)
0

where E; is the spectral distribution function for the u? component. A typical
form of the function for homogeneous grid turbulence is shown in a normal-
ized form in Fig. 1.18. Spectral analysis is readily performed on digitized
signals.

Different shapes of the curve will obviously indicate different distributions of
the energy as a function of frequency. We shall now discuss some of the prop-
erties of a spectral function and show the reason for the normalized coordinates
used in Fig. 1.18. If f(x) is the longitudinal correlation function, that is, the
companion of g(y) of Fig. 1.15, it can be shown by the theory of Fourier
transforms [8] that

fx) = (1/u?) /0 wE] (n) cos (2mwnx/ii) dn. (1.7.2)
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Also, by the inverse transform relation,
Ev(n) = 407/ / F(x) cos (2mnx/d) dx. (173)
0

The primary derivation is from a time series, but here time is replaced by means of
Taylor’s hypothesis, that is, + = x/u. Equations (1.7.2) and (1.7.3) show that the
correlation function can be derived from spectral measurements, and vice versa. Now
if we let n — 0 in Eq. (1.7.3) we have

lim [(u/4u’2 Ey(n / £(x) dx = 4y, (1.7.4)

n—0

which is analogous to Eq. (1.6.4); that is, the integral scale is just the product of the
quantity u/4 w2 and the limit of E{(n) as n — 0. The microscale can be derived from
the Fourier transform for f (x), Eq. (1.7.2). By definition (see Fig. 1.15) the micro-
scale Aris

1
/37 = — 5(62f/6x2)X=0. (1.7.5)
Double differentiation of Eq. (1.7.2) yields

12 = (2 fiu?) / 2 E\(n)dn. (17.6)
0

Because of the weighting factor n?in Eq. (1.7.6), it is evident that the microscale is
chiefly determined by the higher frequencies.
An equation defining energy dissipation in isotropic turbulence is

du/dt = —10vu /2. (1.7.7)

Since the higher frequencies generally determine the microscale, they generally
determine the dissipation rate. The form of Eq. (1.7.4), together with the fact that A
is one of the results, now explains the normalized coordinates of Fig. 1.18.

Power spectral information such as that just discussed is more than just a method
of presenting data. In the analysis of linear oscillating systems subject to random
forcing functions, the solution requires knowledge of the forcing function. The
output is the mean square of the response [22].

Figure 1.18, which is typical of spectral measurements in a turbulent flow, shows
that the energy is distributed over a very wide range of frequencies. One process that
importantly contributes to the effect is vortex stretching. A turbulent flow,
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particularly shear layers, is a large array of small vortices. Not only because of their
own interaction but also because of the mean velocity distribution in the boundary
layer, vortices may find themselves convected into the regions of higher velocity. If
so, they become stretched and their vorticity is intensified. Hence, more vorticity can
be generated at higher wave number. Thus there is such a complicated interaction
that vorticity of a wide variety of scales and strengths is generated. Batchelor [23] has
a good introductory discussion of this phenomenon, together with the descriptive
equations.

B 1.8 Measures of Turbulence - Intermittency

A laminar flow velocity profile asymptotes into the surrounding flow rapidly but
continuously. In fact, the disturbance due to a laminar flow such as a boundary layer
decays at least as fast as exp (—kyz), where k is near unity. Hence, although it decays
rapidly, the boundary layer has no distinct edge. The situation is quite different in
turbulent flows. There is a distinct edge, although it wanders around in random
fashion. Clouds show the effect well. A cumulus cloud is just a well-marked
turbulent flow on a giant scale. The line of demarcation between clear sky and cloud,
which shows as visible turbulent eddies, is quite sharp. There is no gradual
fading into the clear blue sky. Figure 1.4 is a picture of such a cloud, showing the
sharp but irregular boundaries. The ambient air can be thought of as being
contaminated by adjacent turbulence. The phenomenon is evident in any markedly
turbulent flow — clouds, smokestack plumes, exhaust steam, dust storms, muddy
water in clear water, etc.

Figure 1.19 shows the same basic phenomenon, in this case due to the wake of
a bullet. If the wake were in motion as in a wind tunnel, it is clear that a hot wire or
another sensor would be either entirely in the turbulence or out of it; and, judging by
the appearance of the wake, the fraction of time the hot wire sees turbulence is
a statistical function of the distance from the center of the wake. The fraction is
called v, the intermittency, a term introduced by Corrsin and Kistler [24]. Entirely
outside a turbulent flow y = 0, and entirely inside y = 1.

Corrsin and Kistler appears to have first noticed the effect in 1943, during studies
of a heated jet. Two important early specific studies of the phenomenon as it occurs
in ordinary turbulent flows of air were conducted by Corrsin and Kistler [24] and
Klebanoff [17]. Klebanoff made such measurements for a boundary-layer flow on
a flat plate. He found that the intermittency was accurately described by the
following equation, where ¢ is the mean thickness of the boundary layer:

v = = (1 —erfl), where ¢ = 5[(y/d) — 0.78]. (1.8.1)

N —
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Fig. 1.19 Turbulent wake of a bullet, showing sharp but irregular boundary. The photo
is a shadowgraph, which tends to accentuate the small-scale structure [24].

Hence the interface has a Gaussian probability distribution whose cumulative
distribution is just Eq. (1.8.1). An appreciable portion of the flow, according to these
measurements, is turbulent to a distance well beyond the mean edge of the boundary
layer, in fact to /6 = 1.20. Also, an appreciable fraction is nonturbulent as far into
the boundary layer as y/6 = 0.4.

There is a relative velocity between the ragged edge and the main irrotational
stream. Hence the flow can be viewed as a flow past a very rough surface. It is natural to
ask what the effect is of this ragged randomly fluctuating boundary upon the exterior
irrotational flow. Phillips [25], who studied the fluctuating velocity field induced by
the turbulence in the main irrotational stream by means of a simplified model, found
that the energy of the fluctuations decays asymptotically as the inverse fourth power of
the distance from a representative mean plane. Experiments confirm the result.

I 1.9 The Diffusive Nature of Turbulence

On the molecular scale, motion of the molecules — hence diffusion — is quite
arandom process. An important reason is that a normal gas is such that the mean free
path is far greater than the molecular diameter. On the scale of turbulence, the
process is not nearly so random. Nevertheless, it may be helpful to indicate some of
the gross features of a random motion, which is what a diffusion process amounts to.

A method starting from first principles is to consider a very general motion in
three dimensions, where at first no assumption is made as to uniformity of steps. The
motion is assumed to proceed in steps, which is certainly a correct assumption on the
molecular scale. Each step may have any direction and any length. In Cartesian
coordinates, each step has the components Ax;, 4y;, Az; but for brevity we shall
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leave out the 4’s. Then after n steps the total distance traveled in the x, y, and z
directions is

n n n
X = in, y = Zy,', = ZZi, (1.9.1)
0 0 0

Obviously, the square of the total distance traveled after n steps is

n 2 n 2 n 2
e = (ZM‘) +<Zyi) +<Zm> . (1.9.2)
0 0 0

Now consider in detail the first, of x term, which may be written xy + x; + x + x3 +
---. Its square is

(xo+x1 +x2+x3+ )2
(o5 7 + 33 + x5+ ) + 2x0(x1 +x2 + x5+ ) (1.9.3)
F2x1 (2 Fx3 4+ 1)+ 2x0(3 + )+ 0o

The expressions for displacements y and z are similar. The first term on the right is
a series of squares and hence always positive, but the remaining terms all contain
simple sums of displacements. If the number of steps is great and if the motion has
a high degree of randomness, there will be nearly as many negative steps as positive.
The cross-product quantities therefore become negligible in comparison with the first
term. Therefore, as n becomes large

n
ry = lim > x4y 47 (1.9.4)
0

This is a fully general result quite independent of step length. It states that the square
of the distance traveled is equal to the sum of the squares of the displacements in the
three coordinate directions. In any random motion, as in molecular motion, the ith
path between collisions has a total length /; which is exactly

P=x2+y +22 (1.9.5)

1

Hence Eq. (1.9.4) can be written more compactly, but with the same generality, as
n
2 : 2
ry = lim 20: z. (1.9.6)
If all paths are of equal length I, we can write

2= lim nl® or 1, = In)"% (1.9.7)

n— o
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If motion is at a uniform mean speed ¢ as in molecular motion, the number of
collisions or steps can be eliminated by the relation

¢t = nl, (1.9.8)
giving
(1) = (eln)'/2. (1.9.9)

But according to kinetic-gas theory, ¢ [ = 2v, where [ now is the molecular mean free
path and v the kinematic viscosity. Therefore,

(1) = (2ve)'/2. (1.9.10)

That is, the mean distance reached by some kind of random-motion process is
proportional to v!”2 and 2. The product (vt)l/2
processes. If v is large, diffusion will be much greater than when v is small.

Although the relations just derived are properly applicable only to molecular
motion in gases, they still exhibit some of the gross behavior of turbulence,
especially the high diffusivity. The development assumed that there was negligible
correlation between the successive steps. However, when eddies are large, there
must be some correlation at first, if the steps / are small. In fact, at the very
beginning, before any changes of path occur, we obviously can write, starting from
time t = 0,

is fundamental to all diffusion

(1) = et. (1.9.11)

Compare that with Eq. (1.9.9). The relations together show that a random motion
where scales are large starts out as a linear function of time, but after correlation is
lost, it becomes a square-root function of time and velocity. Our discussion considers
only the very beginning of a random process and the final fully developed phases.
Expansions of the type given in Eq. (1.9.3) bring in the notion of correlation. In an
important paper on the subject of diffusion by continuous movements, Taylor [26]
presented a method for analyzing the complete problem instead of just its limits.
Correlation functions are a key feature of the analysis.

In turbulent flow, the process of transfer of momentum and other quantities is
sufficiently similar to the molecular process to suggest the use of fictitious or eddy
viscosity. It is interesting to compare values. For gases on the molecular scale, as was
mentioned earlier, v = 0.499 ¢l. For turbulent flow in the outer parts of the boundary
layer, a formula that gives good results is &, = 0.0168u,0%, where 6* is the
displacement thickness. Typical values are shown in Table 1.1.

The effective viscosity in the example is 400 times the true viscosity. Hence the
diffusion rate [Eq. (1.9.10)] is 20 times as great. The primary reason for the large
difference is the great difference in characteristic length — the mean free path. In the
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TABLE 1.1 Comparison of typical molecular and turbulent viscosities

Characteristic Characteristic Kinematic
Flow velocity (cm/sec) length (cm) viscosity (cm?/sec)
Molecular ¢ = 54,000 (0°C) 9.4 x 107° 0.25
(laminar)
(v=10.499 cl)
Turbulent® ¢ = 6000 (200 ft/sec) 1 100

(em = 0.0168u0")

The quantities u. and 6" prove to be successful reference quantities, but the effective velocity and length are about
1/30 and 1/2 as much, respectively.

table the ratio is about 10°. When allowance for the effective length is made, the ratio
is still greater than 10*. The large ratio is due to the fact that eddies are being dealt
with, rather than molecules. In many cases, the characteristic velocities are not
substantially different. In the table they are, but at 2000 ft/sec, a moderate supersonic
velocity, ¢ would exceed the molecular value of €. Since a boundary layer at full scale
may have a displacement thickness much larger than 1 cm, it is apparent that the two
types of viscosity can easily differ by a thousand-fold. The strong diffusiveness helps
turbulent flows to withstand much stronger adverse pressure gradients than laminar
flows without separation.

The rise of smoke from a cigarette in quiet air has certain similarities to the
random walk just discussed. The smoke first rises as a slender filament with very
little diffusion, because the flow is laminar. Then transition takes place and the
diffusion is greatly increased. If any one element of smoke is traced, it can be seen
that it wanders back and forth as it rises, in much the random way just visualized.
The strong difference in diffusion rate can be put to good use as an indicator of
transition. A filament of gas injected into a laminar boundary layer will not diffuse
much, but it will diffuse rapidly when it encounters turbulent flow. Reynolds [11],
in his classic experiments with flow of water and transition in pipes, made use of
the phenomenon. He located transition beautifully, by introducing a filament of
dyed water into the pipe. When the transition was reached, the filament suddenly
diffused.

I 1.10 Turbulence Simulation

By convention, turbulence “modeling” is the development and solution of empirical
equations for the Reynolds stresses that result when the Navier-Stokes equations are
averaged, with respect to time or otherwise. Various models developed for this
purpose will be discussed in this book, but this is a convenient point to introduce
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turbulence “‘simulation”. Turbulence simulation is the solution of the complete
three-dimensional time-dependent Navier—Stokes equations, either for the complete
range of eddy sizes (‘“full simulation’”) or for the large, long-wavelength eddies only,
with a model for the small eddies (“‘large eddy simulation’’), see flow chart, Fig. 2.1.
Turbulence covers a very wide range of wavelengths; a full simulation must be
carried out in a volume (the domain of integration) large enough to enclose the
largest eddies, with a finite-difference grid spacing, or equivalent, small enough to
resolve the smallest eddies.

The ratio of the length scale [ (= K/¢) of the large, energy-containing eddies
to the length scale of the smallest, viscous-dependent eddies, Eq. (1.4.1), is of the
order of (kl/Z/v)m, so the number of finite-difference points in the domain of
integration must be somewhat larger than (k"?1v)°"*. Even for low Reynolds
number flows, such as a boundary layer at a momentum-thickness Reynolds
number of 1000, several million grid points are needed. Therefore, full simulation
is restricted to low Reynolds numbers: enormous increases in computer memory
and processing speed will be needed before full simulations at flight Reynolds
numbers become possible. At present, full analysis turbulence simulations are
a research technique rather than a design tool. After a period during which some
experimentalists and others had doubts about the realism of the simulations on the
grounds that the results of gross numerical instability look rather like turbulence,
simulation results now have about the same status as experimental data. That is,
errors due to poor numerical resolution (or other causes) may occur, but in prin-
ciple, solutions of the exact equations describing a phenomenon are equivalent to
measurements of the phenomenon. Simulations not only can give information on
a much finer mesh than could be achieved in an experiment, but can also include
the pressure fluctuations within the fluid. These pressure fluctuations cannot
currently be reliably measured but play a vital part in the behavior of the Reynolds
stresses. Therefore, simulation results are now a very useful source of information
in the development of turbulence models.

Particularly at large Reynolds numbers, the statistics of the small-scale motion
are almost independent of the details of the large-scale motion that produces most
of the Reynolds stresses. At a high enough Reynolds number, the small-scale
statistics depend only on the rate of transfer of turbulent kinetic energy from the
large scales to the small scales, which is equal to the eventual rate of dissipation
of turbulent energy into thermal internal energy by fluctuating viscous stresses in
the smallest eddies. Therefore, acceptable predictions of the large-scale eddies in
high Reynolds number flows can be obtained by modeling the small-scale eddies;
the wavelength which defines the boundary between ‘““large” and “‘small” eddies
is just twice the finite-difference grid size. In principle it is chosen small enough
to ensure that the contribution of the sub-grid-scale eddies to the Reynolds
stresses (or turbulent heat-flux rates) is negligible. Calculations for turbulent wall
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flows are made more difficult by the fact that the Reynolds stresses near a solid
surface are produced entirely by small eddies, which requires a fine grid near the
surface unless the whole of the near-surface region can be modeled.

An indirect disadvantage of the large number of points needed is the high cost of
performing calculations in complicated geometries, since coordinate-transformation
metrics must be computed or stored at each mesh point. To date few simulations have
been done with fine resolution in complex geometries, although a great deal of
ingenuity has been shown in choosing simple geometries to represent complex flow
behavior.

Much of the early work on simulations was done using ‘“‘spectral” codes in which
the computations are done in wave-number space. An advantage is that spectral
codes can represent spatial derivatives exactly for all wavelengths down to twice the
effective grid spacing, whereas finite-difference derivative formulas become seri-
ously inaccurate at wavelengths smaller than 4 or 6 grid spacings. (A factor of two on
grid spacing means a factor of 8 on the total number of grid points in three-
dimensional space.) However, spectral codes are almost impossible to use in general
geometries (simple analytically-specified coordinate stretching in one dimension is
the most that is ever attempted in practice) and higher-order finite-difference codes
are now coming into more general use.

Models for the sub-grid-scale motion yield apparent turbulent stresses, applied
instantaneously by the sub-grid-scale motion to the resolved eddies. That is, the sub-
grid-scale effects are averaged over the length and time scales of sub-grid-scale
motion but are seen by the resolved motion as fluctuating stresses, in the same way
that real turbulence sees fluctuating viscous stresses. Sub-grid-scale models are
usually quite simple, partly because the computing cost of complicated models
would be unacceptable and partly because imposing a sharp boundary between
resolved and modeled wavelengths is unphysical. Specifically, turbulent eddies,
however defined, are not simple Fourier modes, so a given eddy with a size near the
cutoff wavelength would make contributions to both the resolved and the sub-grid-
scale fields. Indeed, the most common sub-grid-scale model was developed forty
years ago for use in atmospheric calculations [27]; it relates the total sub-grid-scale
contribution to a given turbulent stress to the rate of strain in the resolved motion. It
is closely equivalent to a “mixing length” formula (see Section 4.3) in which the
mixing length is proportional to the grid spacing (i.e. proportional to the size of the
larger sub-grid-scale eddies, which is plausible in principle). Several alternative
suggestions have been made: a recent proposal which avoids rather than solves the
problem is the scaling technique of Germano [28], in which the influence of sub-
grid-scale eddies in a grid of size 4 (minimum resolvable wavelength 4) is deduced
from the resolved-scale motion in the range of wavelengths 24 to 44 (say).

It is possible for even full simulations to give poor results for the higher-order
statistics of the smallest-scale eddies. In real life the smallest-scale eddies adjust
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themselves so that fluctuating viscous stresses dissipate the turbulent kinetic energy
handed down to them by the larger eddies. In a simulation this dissipation is carried
out partly by real viscosity and partly by ‘“‘numerical viscosity”’, arising from finite-
difference errors and generally proportional to the mesh size. That is, the total
dissipation is correct (or the intensity of the smallest eddies would decrease or
increase without limit), but the actual statistics of the smallest eddies may be
incorrect to some extent. Mansour et al. [29] report an 8% discrepancy in the
dissipation-equation balance in the viscous wall region: this is satisfactorily small.

Simulations of heat transfer or other scalar transfer simply involve adding
transport equations for thermal energy or species concentration, at the expense of
greater storage and longer computing times but without other special difficulties.
However, if the Prandtl number (ratio of viscosity to thermal conductivity) is large,
the smallest scales in the temperature field may be much less than those in the
velocity field, so the grid size must be reduced; cost considerations currently limit
simulations to Prandtl numbers (or Schmidt numbers for scalar transfer) near unity.

Turbulent combustion is obviously a very difficult phenomenon to study experi-
mentally and is an active topic in simulation work. Even the simplest reactions have
many intermediate steps, ignored in elementary chemical formulas, and concentration
equations must be solved for each intermediate species together with rate equations
for each step. Simulations have so far been confined to instantaneously two-
dimensional flow (w' = 0). Since chemical reactions depend on mixing at a molecular
level, full simulations covering the whole range of eddy sizes are essential.

Numerical methods for simulations are in principle the same as for any other
three-dimensional time-dependent Navier-Stokes solution, but are in practice
simpler because they are confined to simple geometries. Most of the spectral codes
are based on the work of Rogallo [30] (see also Kim and Moin [31] and finite-
difference methods discussed by Moin and Rai [32]).

Detailed analysis of simulation results can take as much computer time as the
simulation itself, and a good deal more human time. Like the analysis of experi-
mental data, it falls into two categories: (1) studies of eddy structure and behavior in
which statistics are used as an adjunct to a computerized form of flow visualization
(inspection of computer graphics views of the flowfield), and (2) the study of
contributions to the Reynolds-stress transport equations (Chapter 6) and other
equations that are the subject of Reynolds-averaged turbulence modeling.

I Problems

1.1 Do your own ow visualization experiment to complement the photographs in this
chapter. Fill the largest available clear-glass container nearly to the brim with
water and leave it for several minutes for the water to come to rest. Then pour
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in a small quantity of colored liquid (a teaspoonful at most: very strong instant
coffee seems to be best, but milk or orange juice also work quite well). Some
experimenting will be needed to adjust quantity and ow rate, but it should be
possible to see a cloud-like boundary to the descending jet, and possibly some
of the internal structure as the colored liquid is gradually diluted. The liquid
will mostly collect near the bottom of the container. If possible, leave it over-
night and see how very slow molecular diffusion is compared to turbulent mix-
ing (in liquid mixtures, the diffusivity is usually very small compared to the
viscosity or thermal conductivity but even molecular diffusion of heat is small
compared to turbulent heat transfer).

A 3/4” water pipe will pass a ow of about one U.S. gallon (8 1b) of water per
minute. Show that the ow is almost certainly turbulent.

A Boeing 747 is 230 ft long and cruises at 33,000 ft (10,000 m) at a speed of
880 ft/sec. (Mach number 0.9) The International Standard Atmosphere, using
metric units, gives the density at this altitude as 0.413 kg/m3 and the molec-
ular viscosity as 0.0000146 N sec/m?, so that the kinematic viscosity is 3.53 x
10~ m?%/sec. (Note that a Newton, symbol N, is the force required to accel-
erate a mass of 1 kg at 1 m/sec? and therefore has units of kg m'sec?.) Calcu-
late the Reynolds number based on body length. Note that it would be more
logical to evaluate the viscosity at the wall temperature than at the free-stream
temperature, because the direct effect of viscosity on turbulent stresses and
skin friction is felt only very close to the wall. In this case the absolute
temperature at the wall will be about 1.15 times that in the free stream, about
60 < F greater.

Using the “representative” value of dissipation given in Eq. (1.3.3) and
assuming that u,/v = 80,000 as in Klebanoff’s experiments (see the cited figures
in Chapter 4) show that n/6 = 1,1 X 107, The thickness of Klebanoff’s
boundary layer was about 3 in, so that n was about 30 p in. The smalles signif-
icance wavelength in the flow are roughly 57 and the wavelengths that contribute
most to the dissipation are roughly 507.

The “theoretical” (strictly, empirical) fit to the frequency spectral function data
in Fig. 1.19 has an asymptotic form at high frequency proportional to n2.
Show, using the formulas in Sect. 1.6, that the corresponding microscale is
zero and the dissipation infinite. Using Eq. (1.6.5) and referring to to
Fig. 1.14, explain what is wrong with the data fit. Note that a best fit to the
data obviously has a negative slope that increases all the way up to the highest
frequency resolved.

Use Eq. (1.9.4) to show that, in two-dimensional incompressible flow with u,
independent of x, the displacement thickness is indeed the distance by which
the external streamlines are displaced outwards by the reduction in flow rate
within the boundary layer.



Introduction 31

I References

[1] L. Prandtl, Turbulent flow. NACA Tech. Memo, 435, originally delivered to 2nd Int, Congr. Appl.
Mech. Zurich (1926).
[2] H.Tennekes, J.L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, MA.
[3] M. Lesieur, La Turbulence, Press Universitaires de Grenoble, 1994.
[4] S.B. Pope, Turbulent Flows, Cambridge Univ. Press, 2000.
[5]1 P.A. Durbin, B.A. Petterson, Statistical Theory and Modeling of Turbulent Flows, John Wiley and
Sons, New York, 2001.
[6] W.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, La Canada, CA, 1998.
[7] T. von Karman, Turbulence. Twenty-fifth Wilbur Wright Memorial Lecture, J. Roy. Aeronaut. Soc.
41 (1937) 1109.
[8] J.O. Hinze, Turbulence, an Introduction to Its Mechanism and Theory, McGraw-Hill, New York,
1959.
[9] G. Hagen, On the motion of water in narrow cylindrical tubes (German), Pogg. Ann. 46 (1839) 423.
[10] L. Prandtl, O.G. Tietjens, Applied Hydro- and Aeromechanics, Dover, New York, 1934, p. 29.
[11] O. Reynolds, An experimental investigation of the circumstances which determine whether the
motion of water will be direct or sinuous and the law of resistance in parallel channels, Phil. Trans.
Roy. Soc. London 174 (1883) 935.

[12] J.H. Preston, The minimum Reynolds number for a turbulent boundary layer and selection of
a transition device, J. Fluid Mech 3 (1957) 373.

[13] C.S. Wells, Effects of free-stream turbulence on boundary-layer transition, AIAA J 5 (1967) 172.

[14] A.M. Kolmogorov, Equations of turbulent motion of an incompressible fluid. Izvestia Academy of
Sciences, USSR, Physics 6 (1 and 2) (1942) 56-58.

[15] A.M.O. Smith, D.W. Clutter, The smallest height of roughness capable of affecting boundary-layer
transition in low-speed flow, Douglas Aircraft Co (1957). Rep. ES 26803, AD 149 907.

[16] G.K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge Univ. Press, London
New York, 1953.

[17] P.S. Klebanoff, Characteristics of turbulence in a boundary layer with zero pressure gradient, NACA
Tech. Note 3178 (1954).

[18] H. Eckelmann, Experimentelle Untersuchungen in einer turbulenten Kanalstromung mit starken
viskosen Wandschichten, Mitt. No. 48, Max-Planck-Inst. for Flow Res., Gottingen (1970).

[19] G.B. Schubauer, P.S. Klebanoff, Investigation of separation of the turbulent boundary layer, NACA
Tech. Note No. 2133 (1950).

[20] G.K. Batchelor, A.A. Townsend, Decay of turbulence in the final period, Proc. Roy Soc. 194A
(1948) 527.

[21] A. Favre, J. Gaviglio, R. Dumas, Quelques mesures de correlation dans le temps et 1’espace en
soufflerie, Rech. Aeronaut 32 (1953) 21.

[22] H.W. Liepmann, On the application of statistical concepts to the buffeting problem, J. Aeronaut Sci.
19 (1952) 793.

[23] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, London New York,
1967.

[24] S. Corrsin, A.L. Kistler, The free-stream boundaries of turbulent flows, NACA Tech. Note No. 3133
(1954).

[25] O.M. Phillips, The irrotational motion outside a free turbulent boundary layer, Proc. Camb. Phil.
Soc. 51 (1955) 220.

[26] G.I. Taylor, Diffusion by continuous movements, Proc. London Math. Soc. 20 (1921) 196.



32 Analysis of Turbulent Flows with Computer Programs

[27] J. Smagorinsky, General Circulation Experiments with the Primitive Equations, I. The Basic
Experiment. Monthly Weather Review 91 (1963) 99.

[28] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A Dynamic Subgrid-Scale Eddy-Viscosity Model,
Phys. Fluids A3 (1991) 1760.

[29] N.N. Mansour, J. Kim, P. Moin, Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent
Channel Flow, J. Fluid Mech. 194 (1988) 15.

[30] R.S. Rogallo, Numerical Experiments in Homogeneous Turbulence, NASA TM 81315 (1981).

[31] J. Kim, P. Moin, Application of a Fractional Step Method to Incompressible Navier-Stokes Equa-
tion, J. Comp. Phys. 59 (308) (1985). 1985 and NASA TM85898, N8422328.

[32] M.M. Rai, P. Moin, Direct Simulations of Turbulent Flow Using Finite-Difference Schemes,
J. Comp. Phys. 96 (1991) 15.



Conservation
Equations for
Compressible
Turbulent Flows

¢ J19)dey)

Chapter Outline Head

2.1 Introduction 33
2.2 The Navier-Stokes Equations 34
2.3 Conventional Time-Averaging and Mass-Weighted-Averaging Procedures 35
2.4 Relation Between Conventional Time-Averaged Quantities and

Mass-Weighted-Averaged Quantities 39
2.5 Continuity and Momentum Equations 41
2.6 Energy Equations 41
2.7 Mean-Kinetic-Energy Equation 42
2.8 Reynolds-Stress Transport Equations 44
2.9 Reduced Forms of the Navier-Stokes Equations 48
Problems 51
References 51

I 2.1 Introduction

In this chapter we consider the Navier-Stokes equations for a compressible fluid and
show how they can be put into a form more convenient for turbulent flows. We follow 33
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the procedure first introduced by Reynolds in incompressible flows: we regard the
turbulent motion as consisting of the sum of the mean part and a fluctuating part,
introduce the sum into the Navier—Stokes equations, and time' average the resulting
expressions. The equations thus obtained give considerable insight into the character
of turbulent motions and serve as a basis for attacking mean-flow problems, as well
as for analyzing the turbulence to find its harmonic components. However, before
these governing conservation equations for compressible turbulent flows are
obtained, it is appropriate to write down the conservation equations for mass,
momentum, and energy.

In the following sections we shall discuss the conservation equations and their
reduced forms in terms of rectangular coordinates, and for convenience we shall use
the summation notation. For a discussion of the conservation equations in terms of
another coordinate system, the reader is referred to [1].

I 2.2 The Navier-Stokes Equations

The well-known Navier—Stokes equations of motion for a compressible, viscous,
heat-conducting, perfect gas may be written in the following form [2]:
Continuity

do 0
— 4+ — i) = 2.2.1
a1 + axj (Qu]) 0, ( )
Momentum
d dp | 0t
— (ou; — (ouju;) = —— 222
at (Qul) + ax]' (Quluj) axi * axj' ’ ( )
Energy
d d dgp 0
—(oH) +—(ou;H) = — + — (u;t;; — q; 223
at (Q ) + axJ (Quj ) at + ax] (uj‘clj qj)? ( )

where the stress tensor t;;, heat-flux vector g;, and total enthalpy H are given by

Gul au,' auj
o= Abj — — 1) 2.2.4
W = 0 0x; + “(axj i ax,) ( )
aT
= —k— 225
qj axjv ( )

'See Section 2.3 for a discussion of various kinds of averaging.
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1
H=nh +§uiui. (2.2.6)

In these equations, A is the bulk viscosity (= —2/3u), u the dynamic viscosity, k the
thermal conductivity, and h the static enthalpy. In Eq. (2.2.4), ¢;; is the Kronecker
delta, having the value 1 for i = j and O for i # j. A summation is understood for
repeated indices.

Sometimes it is more convenient to express the energy equation in terms of static
enthalpy A, rather than total enthalpy H. Then using Egs. (2.2.1) and (2.2.2) Eq.
(2.2.3) becomes

a

ap a du;  dq;
ot

2T uja—)’; prom S 2.2.7)

d
(Qh) +_(Qhuj) = axj axj7

axj'
where 7;;0u;/dx; is the dissipation function.

Equations (2.2.1)—(2.2.7) apply to laminar as well as to turbulent flows. For the
latter, however, the values of the dependent variables are to be replaced by their
instantaneous values. A direct approach to the turbulence problem, namely the
solution of the full time-dependent Navier—Stokes equations, then consists in solving
the equations for a given set of boundary or initial values and computing mean values
over the ensemble for solutions, as discussed in Section 1.10. Even for the most
restricted problem — turbulence of an incompressible fluid that appears to be
a hopeless undertaking, because of the nonlinear terms in the equations. Thus, the
standard procedure is to average over the equations rather than over the solutions.
The averaging can be done either by the conventional time-averaging procedure or
by the mass-weighted averaging procedure. Both are discussed in the next section.

2.3 Conventional Time-Averaging and
Mass-Weighted-Averaging Procedures

In order to obtain the governing conservation equations for turbulent flows, it is
convenient to replace the instantaneous quantities in the equations of Section 2.2 by
their mean and their fluctuating quantities. In the conventional time-averaging
procedure, for example, the velocity and pressure are usually written in the following
forms:?

wi(xi, 1) = wixi) +uf' (xi, 1), 23.1)

p(xi, 1) = p(x) +p" (xi, 1), (2.3.2)

The usual single prime on fluctuating quantities, for example, i, p/, is reserved for later use.
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where u;(x;) and p(x;) are the time averages of the bulk velocity and pressure,
respectively, and u;” (x;, ) and p” (x;, t) the superimposed velocity and pressure
fluctuations, respectively. The time average or “mean” of any quantity g (¢) is
defined by

to+At
g = lim (1/4¢) / q(t) dr. (2.3.3)
fp

At— o

In practice, oo is taken to mean a time that is long compared to the reciprocal of the
predominant frequencies in the spectrum of ¢; in wind-tunnel experiments, aver-
aging times of a few seconds to a minute are usual. Clearly, the time average is useful
only if it is independent of fy; a random process whose time averages are all inde-
pendent of 7y is called “statistically stationary.” A nonstationary process (e.g., an air
jet from a high-pressure reservoir of finite size) must be analyzed by means of
“ensemble averages.” The ensemble average ¢ is the average of a large number of
instantaneous samples of g, of which one sample is taken during each run of the
process at time f# after the process starts. A process with periodicity imposed on
turbulence, like the flow in a turbomachine, can be analyzed by phase averages — take
averages at a given point in space over many events in which a blade is at a given
position relative to that point. For further discussions, see [3].
For a fluctuating quantity ¢” (¢), the average, ¢ (¢), is zero, that is,

7 to+4t
¢"() = lim (1/41) / q"(1) dt = 0. (2.3.4)

At— o fo

Average values similar to Eqs. (2.3.1) and (2.3.2) can be written for the other flow
quantities, such as density, temperature, and enthalpy, as follows:

o(xi, 1) = o(xi) + 0" (xi, 1), (2.3.5)
h(xi, t) = h(x;) +h" (x;, ), (2.3.6)
H(x;, 1) = H(x;) + H" (xi, 1), (2.3.7)
T(xi, 1) = T(x;) + T"(xi, 1), (2.3.8)

where o/ = 1" = H' = T" = 0.

As an example, let us consider the continuity and the momentum equations in the
forms given by Eqs. (2.2.1) and (2.2.2), respectively, and show how they can be
obtained by using the conventional time-averaging procedure for compressible
turbulent flows. If we substitute the expressions given by Egs. (2.3.1), (2.3.2), and
(2.3.5) into (2.2.1) and (2.2.2) and take the time average of the terms appearing in the
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resulting equations, we obtain the mean continuity and the mean momentum
equations in the following forms:

o 9
af i (@ i+ o'u ”) — 0, (2.3.9)

d d
ot (Q i+ ' H) ax'(@ il u,g”u”)
! (2.3.10)

ap 1,0 l/ // 15,01 //

= 6x,+66 (TU*MJQM —ouju; — Q"uju )

For incompressible flows, dg = 0. As a result Egs. (2.3.9) and (2.3.10) can be
simplified considerably; they become

674
a_j? =0, (2.3.11)
]
aﬁl a TR — ap 6 ! //
0, +anj(u,u,) = 2ot (r,, o ) (23.12)

We see from Eqgs. (2.3.9)—(2.3.12) that the continuity and the momentum equa-
tions obtained by this procedure contain mean terms that have the same form as the
corresponding terms in the instantaneous equations. However, they also have terms
representing the mean effects of turbulence, which are additional unknown quanti-
ties. For that reason, the resulting conservation equations are undetermined.
Consequently, the governing equations in this case, continuity and momentum, do
not form a closed set. They require additional relations, which have to come from
statistical or similarity considerations. The additional terms enter the governing
equation as turbulent- transport terms such as gu;'u; and as density-generated terms
such as ¢”u} and ¢"uju. In incompressible flows, the density-generated terms
disappear, as is shown in Egs. (2.3.11) and (2.3.12). In compressible flows, the
continuity equation (2.3.9) has a source term, (9/dx;)¢"u}, which indicates that
a mean mass interchange occurs across the mean streamlines defined in terms of #;. It
also indicates that the splitting of u; according to Eq. (2.3.1) is not convenient; it is
not consistent with the usual concept of a streamline. For that reason, we shall
replace the conventional time-averaging procedure by another procedure that is well
known in the studies of gas mixtures, the mass-weighted-averaging procedure, which
was used by Van Driest [4], Favre [5], and Laufer and Ludloff [6]. Mass-weighted
averaging eliminates the mean-mass term g” uj’.’ and some of the momentum transport
terms such as i;0"u and ¢”w/u; across mean streamlines. We define a mass-
weighted mean velocity

i = ou;/Q, (2.3.13)
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where the bar denotes conventional time averaging and the tilde denotes mass-
weighted averaging. The velocity may then be written as
ui(xi,t) = I],‘()C,) + u; ()Cl, ), (2.3.14)

where u'; (x;, 1) is the superimposed velocity fluctuation. Multiplying Eq. (2.3.14) by
the expression for g(x;, ) given by Eq. (2.3.5) gives

.1

oui = (2+0")(@; +uj) = gt + ¢"it; + 0" + ouj.
Time averaging and noting the definition of o(x;, 7), we get
i = odi + ou].
From the definition of #;, given by Eq. (2.3.13) it follows that
oul = 0. (2.3.15)

Note the important differences between the two averaging procedures. In the
conventional time averaging, u_:’ = Oand QT:/ # (; in the mass-weighted averaging,
u; # 0 and ou, = 0.

Similarly, we can define the static enthalpy, static temperature, and total enthalpy
thus:

h(xi,t) = h(x;) +H (xi,1), (2.3.16)
T(x;,t) = T(x;) + T (xi,1), (2.3.17)
H(x;,t) = H(x;) +H (x;,1), (2.3.18)
where
T =oT/a, h=gh/sg, H= ﬁ—i—%ﬂiu, +% oulul /g,
. (2.3.19)
= I + uu] +2 i — = Qulu/Q
Also,
o' = oh/ = oH' = 0. (2.3.20)

The expressions for H and H' in Eq. (2.3.19) follow from the definitions of H, u;,
and H. Multiplying both sides of Eq. (2.2.6) by g, and introducing the definition of u;
given by Eq. (2.3.14) into the resulting expression, we can write

| 1
oH = oh+ 5 ouili + djou} + Egugu:
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Mass averaging the above expression gives

S | 1
oH = Qh+ olL;iL; —|—2 Qu’u’. (2.3.21)

Since
¢H = gH and oh = gh,

Eq. (2.3.21) can be written as

Also,

_ _ 1 1 1
H=H+H = h+h’+§(ﬁ,-+u) =h+h+ —uu,+uu +2ulu,

Substituting the expression for H into the above expression, we get

H =N+ —&-;ulul — = oulul/a.

The definitions given by Eqs. (2.3.14)—(2.3.21) are also convenient for turbulence
measurements because in hot-wire anemometry, the quantities measured at low speeds
are the fluctuations of gu;, and of 7, and those measured at supersonic speeds are the
fluctuations of gu;, and of a quantity that is very close to the total enthalpy. Mean
pressure is directly measurable. For that reason, the conventional time average of
pressure is convenient; we shall use the definition given by Eq. (2.3.2). Furthermore,
we shall also use the conventional time-averaging procedures for the stress tensor t;;
and for the heat-flux vector g; as given by Eqs. (2.2.4) and (2.2.5), respectively.

2.4 Relation Between Conventional Time-Averaged
Quantities and Mass-Weighted-Averaged Quantities

A relationship between #; and u; can be established as follows. Using Eq. (2.3.5), we
can write Eq. (2.3.15) as

ou; = (0+o"u; = 0.

That expression can also be written as

= —0 u’/g. (24.1)
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Taking the mean value of Eq. (2.3.14) and rearranging, we get

1

Hence,

uj —u; = o"u}/o. (2.4.3a)
It follows from the definitions of u; (x;, f) that for i = 1
uy(xi,t) = u(x,t) = a+u = a+u".
Multiplying both sides of that expression by ¢ and averaging, we get
Qi + ou' = gt + ou”.

If we note that ou' = O by definition and that ou” can be written as
(0 + o")u" = @"u", we can combine the above expression and Eq. (2.4.3a) as

u—i = o"'/o = o"u"/a. (2.4.3b)

Similar relationships between hand ﬁ, T and f, Hand H , etc., can be established
by a similar procedure. For example, in order to find the relation T and T, we rewrite
the first term in Eq. (2.3.20) in the form

o' = (@ +0")T' = 0. (2.4.4)

Taking the mean value of Eq. (2.3.17), rearranging, and substituting the value of 97"
from Eq. (2.4.4) into the resulting expression, we get

T-T = o'T'/q. (2.4.52)
It follows from the definition of T (x;, ) that
T(xi,t) =T+T =T+T". (2.4.5b)
Multiplying both sides of Eq. (2.4.5b) by ¢ and averaging, we get
oT + oT' = oT + oT". (2.4.5¢)

If we note that o7’ = 0 and that o7” = ¢’T” and if we make use of
Egs. (2.4.52)—(2.4.5c), we can write

T-T=T-T =¢"T"/g =" T/o. (2.4.6)

From Egs. (2.4.3) and (2.4.5) we see that the difference between the two

average velocities depends on the density—velocity correlation term o”u or ¢"u!.
Similarly, the difference between the two average temperatures depends on the
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density—temperature correlation term ¢”7” or ¢”T”. A discussion of the magnitude of
these quantities will be given later, in subsection 3.2.2.

I 2.5 Continuity and Momentum Equations

If we substitute the expressions given by Egs. (2.3.2), (2.3.5), and (2.3.14) into Eqgs.
(2.2.1) and (2.2.2), we obtain

d J , _
5, (@+0") + (e + o)) =0, 2.5.1)
]

d, . 9, _ _
&(gui + Qu;) + E(guiuj + Qu]'-ui + Qu;uj + Qu;uj/)
’ (2.5.2)

aﬁ ap//

axi 6x,~ ax,- ’

(91',‘]‘

Taking the time average of the terms appearing in these equations, we obtain the
mean continuity and mean momentum equations for compressible turbulent flow:

E+g(@ﬁj) =0, (2.5.3)
]
9, _ q ,_ p 4, —
a—t(gul) + a—xj(gu,-uj) = o +a_xj(fij - ngu;) (2.54)

A comparison of the continuity equation (2.5.3) and the momentum equation
(2.5.4) obtained by the mass-weighted averaging with those obtained by the
conventional time averaging, namely, Eqs. (2.3.9) and (2.3.10), shows that with
mass-weighted averaging the final equations have simpler form. In fact, with the
mass-weighted averaging, they have the same form, term by term, as those for
incompressible flows, with two exceptions: The viscous stresses 7;; and the so-called
Reynolds stresses —Qu—;uj’. include fluctuations in viscosity and in density,
respectively.

I 2.6 Energy Equations

If we substitute the expressions given by Egs. (2.3.2), (2.3.5) and (2.3.14)—(2.3.20)
into Egs. (2.2.3) and (2.2.7), we obtain

a, - q, - -
&(QH + oH') + g(gﬂ i + oH'i; + u:H + oH'u})
/
(2.6.1)
]
=—(p+r")+ a—xj(uﬂij - q),
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d J  ~ _
at(gh + oh') + 3 j(ghzlj + ol + Quj’-h + Quj’-h')
5 5 5 5 (2.6.2)
_ O i) (54 Ui _ 04
= PP+ ) g P p") g g

In those equations, it is convenient not to replace u;, by its average and fluctuating
component when it or its derivative 0u;/0x; is multiplied by t;;. By taking the time
average of the terms appearing in the equations, we obtain the mean energy equa-
tions in terms of total enthalpy, Eq. (2.6.1),

9, -~ 9, ~
—(eH) + ——(eHi;
at( ) axj( J)
5 0 o (2.6.3)
=S+ aij(f 4; — oH'u} + Ty + ujty),
and static enthalpy, Eq. (2.6.2),
d, ~ d ,_~
5, (eh) + a—xj(Qh”/)
(2.6.4)
ap _op ,dp 0 _ Ju;
= =~ 4 G, — ol il
TR fax,+ax,( o) + ox;

I 2.7 Mean-Kinetic-Energy Equation

The equation for kinetic energy of the mean motion can be obtained by
considering the scalar product of #; and the mean momentum equation for #; [see
Eq. 2.54)],

o, a ,_ .. - 613 ad
uj[a(@”i)‘f'a_mc(Quiuk)} :”j[ o a (Tzk Q“;”D]a (27.12)

and the scalar product of #; and the mean momentum equation for u;,

_la,_ . Jd , . ~ ap J -
i [E(lelj) +a_)6k(QMjuk):| =i [ — ——I——k(rjk - Quj’u;()], (2.7.1b)
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Adding Eqgs. (2.7.1a) and (2.7.1b) and rearranging, we obtain

d, . . o . ..
E(gu, ]) a(gu,uluk)
_0p _Oop _ 0 ,_ —
= Gy gyt g (T ) 12
d
+uia—xk(?ik out)

For i = j, that equation becomes

O(Loai) s O (L aii
ar\ 22 ) T g \ 2 itttk

(2.7.3a)
= fﬁ'@+i ;| Ty — oulu, | | + oulu] %ff 9t
i ax; | Oxg i\ Tik — QU;Uy Qu;uy oxy ik axkv
which can also be written as
D _ ﬁ[ﬁl‘ ~ (9[7 + ~ aflk ~ a ﬁ
= = —i; —+10; — — u; —| ottu
D\’ 2 P T P (2.7.3b)

I II I vV

Equation (2.7.3) is the kinetic energy equation of the mean motion. The terms I to
IV in the equation can be given the following meaning:

D ( @@\ 8 ([ @i O [ (i
I: Dt(g 2) —at<g 2) +axk{uk<g 2)} (2.7.4)

represents the rate of change of the kinetic energy of the mean motion. Sometimes
this is called the gain of kinetic energy of the mean motion by advection.

I:  —ii;(0p/dx;) (2.7.5)

represents the flow work done by the mean pressure forces acting on the control
volume to produce kinetic energy of the mean motion.

Il : ﬁi(af,-k/axk) (2.7.6)

represents the action of viscosity, which takes the form of a dissipation and a spatial
transfer.

0 — 0 (. .—— — Ou;
vV: —u o out u, = — a—Xk(u,-Qu; u;() + out} uj, o
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The first term on the right-hand side of IV represents the spatial transport of mean
kinetic energy by the turbulent fluctuations; it is sometimes called the “‘gain from
energy flux” or “the divergence of the energy flux transmitted by the working of the
mean flow against the Reynolds stress.”

The second term represents the ‘““loss to turbulence” or the production of
turbulent energy from the mean flow energy.

I 2.8 Reynolds-Stress Transport Equations

In the preceding sections, we have discussed the mean continuity, momentum,
energy, and kinetic-energy equations for compressible turbulent flow. In this section
we shall discuss the equations for the mean products of velocity fluctuation
components known as Reynolds-stress transport equations.

Let us consider the scalar product of #; and momentum equation for ; [see Eq.
(2.2.2)],

d 0 dp Oty
N (ou:) + —/(ou: = - 2.8.1
Uj [al(gul) + axk(Quluk) ax; =+ x|’ ( a)
and the scalar product of u; and the momentum equation for u;,
d d dp  Otik
1= N+ —(ou: = — 4+ L. 2.8.1b
i L?t (o)) + axk(Q”f“k> I (2.8.1b)
The sum of the two equations is
d d
&(Quiuj) + 6_xk<guiujuk)
(2.8.2)
I dp y dp Oty Itk
T Ay "9 . T 9xy " Oxy

Using Eq. (2.3.14), we can write Eq. (2.8.2) as

Lo+ )i 1)+ oo+ 1)+ )+ )]

Oxy,
. dp . n Op . N
= —(uj + uj’)a—xl — (4 +u;) a—xj + (; + ”f')axk
. dTjk
Jr(u,' + u;)ﬁv

where now 7 = Tjx + T and Tjp = Tjx + r]’;{ Taking the time average of the terms,
we obtain
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Of( .  —
a(guiuj + Quiuj)

d
—i—a—(gu ijily + g Quiu; + iQuiwy + QU + Quiu; ’)

_ Op ap _dp ,0p 0ty 0T

- Mja_xl_ ’6xl T ax] uiﬁ_)cj " Oxy “faxk
97 ot
i (2.8.3)
axk axk

If we subtract Eq. (2.7.2) from that equation and rearrange, we obtain the equations

for the components of the Reynolds stress, —ng j’,

o (045) + 5. (e

g ,0p at)) aTy
S e S ot SR et | SR L
N uj ax,‘ Ml (9x]‘ + u] 6xk + i axk
— Oilj  —— Ou;
!, J /., !
—ouluy, _6xk — Qujuy —an, (2.8.4)

where

D 0 d (.
Dt<Q uu ]’) =3 (gu; ]’> —|—a—x’€(uk9u;u]’)

Equation (2.8.4) is the transport equation for the Reynolds stress —W ; it expresses
the rate of change of the Reynolds stress along the mean streamline as the balance of
generation by interaction between the turbulence and the mean flow, the gain or loss
by convective movements of the turbulence and by the action of pressure gradients,
and destruction by viscous forces. It is clear that the six independent components of
Eq. (2.8.4), when taken together with Eqs. (2.5.3) and (2.5.4) form a set with more
unknowns than equations. By itself, Eq. (2.8.4) does not lead to a knowledge of the
distribution of the Reynolds stress and so to a solution of the mean-flow problem,; its
value lies in the restrictions it puts on the nature of turbulent transfer processes.

The meaning of the terms in Eq. (2.8.4) will be discussed later. First, we shall
discuss the meaning of these terms for i = j.

For i = j, Eq. (2.8.4) becomes the mean-kinetic-energy equation of the fluctua-
tions, often called the “‘turbulent-energy” equation:

D1l——~ 94 ,(1 ,, , Op , 0Tl T dii;
Dz o QUi +37Xk U\ 5 oty | = —U; aj{,*‘“j axlk Quju o (2.8.5a)
1 II III v \%
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Sometimes the equation is written in the form

D 11—
Di 224
p 7 4 I aa (2.8.5b)
p u; i
= —u o 1 a—x]i + e [u: <r§§< -3 Qu:u;{>] — uiuj, oy
The meanings of the terms in Eq. (2.8.5a) are as follows:
D1 d1 d . [1—
Di3 oulul = 33 oulu; + T iy, <§ Qu;ui) (2.8.6)
represents the rate of change of the kinetic energy of the turbulence. The term
d 1

represents the unsteady growth of turbulent energy, and the term

ift 1 u' u
Oxy k ZQi i

represents the kinetic energy of the fluctuation motion that is convected by the mean
motion. That term is also often called the “advection” or gain of energy by mean
stream advection (gain following the mean flow).

represents the kinetic energy of the fluctuations convected by the fluctuations, that is,
the diffusion of the fluctuation energy.

)
m: —u a_f- (2.8.8)
]
represents the work due to turbulence.
at’ 0 — ou'
WV w5 = — L 2.89
u; axk axk UiTik ik axk ( )

represents the work of viscous stresses due to the fluctuation motion. The term

a%(”l_fli) (2.8.10)

represents the spatial transport of turbulent energy by viscous forces, and the term

7
1" 6”1’

_‘Cik(a_xk (2811)
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represents the viscous “dissipation’ by the turbulent motion.
Vi —quu — 2.8.12
ou;tty axk ( )

represents the product of a turbulent stress and mean rate of strain. That term links
the mean flow to the turbulent fluctuations through the ‘“‘Reynolds stresses”
—Qu—%. It is generally called the ‘“‘production of turbulent energy” term. Of
course, all the terms on the right-hand side of Eq. (2.8.5a) except the transport
terms act to produce or to destroy (depending upon their sign) the kinetic energy
of the turbulence in the control volume. Any term expressible as the spatial
gradient of a time-averaged quantity is a transport term (its integral over the flow
volume must be zero). Terms not so expressible are source/sink terms. The
distinction between term V and the other terms on the right-hand side of Eq.
(2.8.5a) is that V is the only one containing the mean velocity gradient; the others
contain only the fluctuation quantities. Thus, only term V can act to take energy
from the mean motion.

Let us now turn our attention to the meaning of the terms appearing in the
Reynolds-stress transport equation, Eq. (2.8.4). From the previous discussion of the
meaning of each term for i = j, it is apparent that the meanings of the terms in Eq.
(2.8.4) for i # j are similar to the ones for i = j. For example, the first term on the
left-hand side of Eq. (2.8.4),

(D/Dr) (oufus) (2.8.13)

represents the variation of the correlation Qu;uj’- as the fluid element moves along
a streamline, rather than the variation of the kinetic energy of the fluctuations, % oulu.
The first two terms on the right-hand side of Eq. (2.8.4) deserve special attention.

If we write them in the form

o I (2.8.14)
— ou; Ou
= —|—(up) +-—(4, o oY
{ax ( Jp) 9 j(u]p)} +p(c9x,~ 6xj>’
the terms
a ,, J , ,
3 P) + a—)cj(ujp) (2.8.15)

represent the so-called general pressure-diffusion terms. The second term on the
right-hand side of Eq. (2.8.14),
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L4 2.8.1
p<ax,' + axj'> ( 8 6)

is sometimes called the “‘redistribution” or ‘“‘return-to-isotropy’” term. It describes

the redistribution of energy among the terms u_l2 (i = 1, 2, 3) that approaches the

statistically most probable state, in which all of the components of ”_12 are equal.

I 2.9 Reduced Forms of the Navier-Stokes Equations

The solution of the complete three-dimensional time dependent Navier—Stokes
equations for turbulent flows, Egs. (2.2.1)—(2.2.3), is rather difficult due to the wide
range of length and time scales that the turbulent flows posses (see Section 1.5).
Analytical solutions to even the simplest turbulent flows do not exist. A complete
description of turbulent flow, where the flow variables (e.g. velocity, temperature and
pressure) are known as a function of space and time can therefore only be obtained
by numerically solving the Navier—Stokes equations. These numerical solutions are
termed direct numerical simulations (DNS).

The instantaneous range of scales in turbulent flows increases rapidly with the
Reynolds number. As a result most engineering problems, e.g. the flow around
a wing, have too wide a range of scales to be directly computed using DNS. The
engineering computation of turbulent flows therefore relies on simpler descriptions:
instead of solving for the instantaneous flow field, the statistical evolution of the flow
is sought. Approaches based on the Reynolds averaged Navier-Stokes (RANS)
equations, (2.5.3), (2.5.4) and on their reduced forms (see Fig. 2.1) are the most
prevalent. Another approximation, large eddy simulation (LES), is intermediate in
complexity between DNS and RANS (see Fig. 2.1). Large eddy simulation (see
Section 1.10) directly computes the large energy-containing scales, while modeling
the influence of the small scales.

For both laminar and turbulent flows, the Navier—Stokes equations can be
reduced to simpler forms by examining the relative magnitudes of the terms in the
equations. In the application of this procedure, known as “order-of-magnitude”
analysis, it is common to introduce length and velocity scales in order to estimate the
relative magnitudes of the mean and fluctuating components as described, for
example, in [7]. Figure 2.1 shows the hierarchy of the simplification of the Navier—
Stokes equations.

Since the momentum equation expresses a balance among inertia forces, pressure
forces, and viscous forces (in formulating the equations, the body forces were
neglected), one such simplifications arises when some of the relative magnitudes of
these forces are small in comparison with others. For example, at Reynolds numbers
much smaller than unity, the inertia accelerating terms in Eq. (2.5.4) become small in
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Fig. 2.1 Simplification of the Navier-Stokes equations. Dashed boxes denote simpli-
fying approximations.

comparison with pressure and viscous terms. The resulting momentum equation
together with the continuity equation are known as the Stokes flow equations; they
are given by

auj

=0 2.9.1
ax; @9.1)
6p aTij
— = 29.2
ax,' axj' ( ? )

Another simplification of Eq. (2.5.4) arises when the viscous forces are negligible
with respect to the inertia and the pressure forces. In such cases, the momentum
equation, Eq. (2.5.4), and the energy equation, for example, Eq. (2.6.3), can be
simplified considerably; they reduce to

d ad dp
-— i -— iuj) = — —, 2.9.
at(gu ) + axj(gu uj) o (2.9.3)
0 0 dp 0gj
a:(e) + g (@) = 5, = 5 @99
The continuity equation, Eq. (2.5.3),
) a
% ., (ouj) = 0 (2.9.5)

ot 6xj
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can be used to simplify Eqgs. (2.9.3) and (2.9.4) further, to the forms

du; du; 1dp

i 0 2P 2.9.6

ot T 0x; 00x;’ ( )
0H  8H 13p 1dg 0om

E—i_ ”jax, 00t Qéxj'

These equations are known as the Euler equations. As discussed in [7], for example,
for incompressible irrotational flows, they reduce to the Laplace equation.
In some three-dimensional flows, the viscous terms

ad

ax (‘E,] fguu )

in Eq. (2.5.4) can be omitted and can be written as

9 9 w9 N
2 (g +7(@ziﬁj) S a—)’; + a—xz(fiz _ gu;u’z) +E(T,~3 _ Qu;ug). (2.9.8)

Similarly, the energy equation, Eq. (2.6.4), it can be written as

i)+ 2 (i) - 2

o 3%, TR fax, "o
J i 9 / (2.9.9)
*a?z(*qr@h“z)mf( 3 - o)
o, Qw0
2 6x2 i3 aX3

The momentum and energy equations resulting from this approximation, Egs. (2.9.8)
and (2.9.9) together with the continuity equation, Eq. (2.5.3), are known as the
parabolized Navier—Stokes equations.

In other flows, the Navier—Stokes equations can be simplified further by retaining
only the viscous terms with derivatives in the coordinate direction normal to the body
surface x, or, for free shear flows, the direction normal to the thin layer. Momentum
and energy equations become

%(@z,») a(ij (@713) == 2—2+68 ( T —W) (2.9.10)
5 (08) 35 0) == 5o o e

(2.9.11)
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The above equations together with Eq. (2.5.3) are known as the thin-layer Navier—
Stokes equations.

Another simplification of the Navier—Stokes equations occurs at high Reynolds
number. The resulting equations are known as the boundary-layer equations. They
are discussed in the next chapter.

I Problems

2.1 Show that the continuity equation (2.2.1) can be regarded as a “‘transport” equa-
tion for the density, in the same sense that Eq. (2.2.2) is a transport equation for
the momentum per unit volume, gu;.

2.2 Take the x; derivative of Eq. (2.2.2), i.e. “‘take the divergence’ of the set of equa-
tions for the three components of momentum, and show that if ¢ is constant the
result is nominally a transport equation for the divergence du;/0x;. Further show
that if Ou;/0x; is set to zero (which Eq. (2.2.1) shows is the correct value in
constant-density flow) the transport equation reduces to a Poisson equation for
the pressure.

2.3 Show that the rate of viscous dissipation given in Eq. (2.8.11) is the mean
product of the fluctuating viscous stress and the fluctuating rate of strain,
du/dxi + dujy /dx;)/2. Show that this is the mean rate at which the turbulance
does work against viscous stresses, and that the first law of thermodynamics
confirms that this is truly the rate at which turbulent kinetic energy is converted
into thermal internal energy.

I References

[1] L.H. Back, Conservation equations of a viscous, heat-conducting fluid in curvilinear orthogonal
coordinates. Published in Handbook of Tables for Applied Engineering Science. 415, in: R.E. Boze,
G.L. Tuve (Eds.), Chem. Rubber Co., Cleveland, Ohio, 1970.

[2] H.W. Liepmann, A. Roshko, Elements of Gas Dynamics. 332, Wiley, New York, 1952.

[3] P. Bradshaw, An Introduction to Turbulence and Its Measurement, Pergamon, Oxford, 1971.

[4] E.R. Van Driest, Turbulent Boundary Layer in Compressible Fluids, J. Aeronaut. Sci. 18 (1951) 145.

[5] A. Favre, Statistical equations of turbulent gases. SIAM Problems of Hydrodynamics and Continuum
Mechanics (Sedov 60" birthday volume). Also, Equations des gaz turbulents compressibles, J. Mec.
4 (1969). 361 (part I), 391 (part II).

[6] J. Laufer, K.G. Ludloff, Conservation equations in a compressible turbulent fluid and a numerical
scheme for their solution, McDonnell Douglas Paper WD 1355 (1970).

[7] T. Cebeci, J. Cousteix, Modeling and Computation of Boundary-Layer Flows, Horizons Publ, Long
Beach and Springer-Verlag, Berlin, 1998.



Boundary-Layer
Equations

Chapter Outline Head

3.1
3.2

Introduction

Boundary-Layer Approximations for Compressible Flows
3.2.1 Laminar Flows

3.2.2 Turbulent Flows

Continuity, Momentum, and Energy Equations
3.3.1 Two-Dimensional Flows

3.3.2 Axisymmetric Flows

3.3.3 Three-Dimensional Flows
Mean-Kinetic-Energy Flows

Reynolds-Stress Transport Equations

Integral Equations of the Boundary Layer
3.6.1 Momentum Integral Equation

3.6.2 Mean Energy Integral Equation

3.6.3 Turbulent Energy Integral Equation

3.6.4 Energy Integral Equation

Problems

References

Analysis of Turbulent Flows with Computer Programs. http://dx.doi.org/10.1016/B978-0-08-098335-6.00003-3
Copyright © 2013 Elsevier Ltd. All rights reserved.

53


http://dx.doi.org/10.1016/B978-0-08-098335-6.00003-3

54 Analysis of Turbulent Flows with Computer Programs

I 3.1 Introduction

Another important simplification of the Navier-Stokes equations arises when the
flow of a fluid past a solid at high Reynolds number is considered. In such cases,
there is a very narrow region close to the surface in which the fluid velocity and
possibly the temperature (or enthalpy) deviate considerably from their values far
away from the surface. For example, the velocity of a fluid flowing past a stationary
body changes rapidly from zero velocity at the surface to its value in the body of the
fluid (except for very-low-pressure gases, when the mean free path of the gas
molecules is large relative to the body). In that narrow region, the velocity gradient
may be so large that, even if the fluid viscosity is small, the viscous forces may be of
the same order as the inertia forces. That region is called the boundary region, and the
layer of affected fluid is called the boundary layer. There, because gradients
perpendicular to the surface are much larger than gradients parallel to the surface,
some of the terms in the Navier-Stokes equations can be neglected, which simplifies
the equations considerably. It is on this basis that Prandtl, in 1904, proposed his
boundary-layer theory. According to that theory, the flow field may be separated into
two regions: the main, inviscid flow, which is described by Egs. (2.9.5)—(2.9.7), and
the boundary region described by the simplified momentum and energy equations,
called boundary-layer equations. The simplifications are discussed in the next
section.

3.2 Boundary-Layer Approximations for Compressible
Flows

For simplicity, we consider a two-dimensional, unsteady, compressible turbulent
flow. The external flow has one velocity component, u., that depends on the time
coordinate ¢ (unsteady flow) and on one coordinate x in the wall surface. The flow
within the boundary layer possesses two velocity components, « and v, that depend
on ¢ and two space coordinates, x and y. As is standard in boundary-layer theory, x is
taken to be the distance measured along the surface (which may be curved) and y is
the distance normal to the surface. The turbulence is three dimensional, with velocity
components u’, v/, and w' in the x, y, and z directions, respectively. The total enthalpy
within the boundary layer H is a function of x, y, and ¢. The conservation equations
for mass, momentum, and energy as given by Eqgs (2.5.3), (2.5.4), and (2.6.3),
respectively, become
Continuity

%Jr;—x(@ﬁ) +a—y(@f;) =0, (3.2.1)
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x Momentum

55(08) + 5 (@) + 5 (ai)
= Pt (v ) + (5~ ),
y Momentum
%(@f)) + ;—x(@f}ﬂ) + (%(@Ja)
=~ e = )+ (5 — ),

Energy (Total Enthalpy)

d, -~ d, -~ d, -~
—(aH) + ——(eHi) + —(eH?v
5:(@H) + 5 (eHi) + 5= (eHY)
op 0 _ @ —
= E—i_a[_ g, — oH'W + Uty + VT
+i[—‘ — oH + Uy + 1Ty |
dy 4y — @ Xy Y
where
_ u v _ _ du dv
Txx = 2#&7 Tyy = zﬂa_y; Txyy = Tyx = M a_era )
and

_ T aT
dx = _ka7 Qy - _kg

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.52)

(3.2.5b)

Note that in Eq. (3.2.5) we have neglected the product of the second viscosity
coefficient A and the divergence term duy/dx; given in Eq. (2.2.4), which is permis-
sible within the boundary-layer approximations. As shown by the discussions that
follow in the next sections, the stress term A(du;/dx;) is of the order of 6% and is small

compared with some of the other stress terms.

3.2.1 LAMINAR FLows

The conservation equations given by Egs. (3.2.1)—(3.2.4) can be simplified consider-
ably by using Prandtl’s boundary-layer approximations, often referred to as thin-shear-
layer approximations. They are applicable to both wall shear layers and free shear
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layers, provided that the layers are thin. By convention x is taken as the distance along
the solid surface, or along the axis of a free shear layer, and the layer is “thin” in the
y-direction. The approximations are made by estimating the order of magnitude of the
various principal mean quantities, such as i, v, T,H, and D, and the order of magnitude
of various statistical averages of fluctuating quantities, such as ﬁ, 1/_2, o'V, oH'V,
etc. Before we discuss the Prandtl approximations for turbulent flow and apply them to
Egs. (3.2.1)~(3.2.4), we shall first discuss the boundary-layer approximations for
laminar flow. Since the fluctuating quantities are zero for laminar flow, the bars are not
needed. Equations (3.2.1)-(3.2.4) can be written as

Continuity
do O d
5 T gl + @(Qv) =0, (3.2.6)
x Momentum
0 d d dp 0 d
g7l0u) + 5 (ou) + 5(avu) = — ot (o) + a—y(rxy), (3.2.7)
y Momentum
d 0 0 dp 0 d
o ™ ™ = ——+ (7 - 2.
57100) F glom) + glow) = Pt () (o). (328)

Energy (Total Enthalpy)

ad d d
&(QH) + a(QuH) + a—y(QvH)
(3.2.9)
= G_p_’_i(_q + uty + vt )—i—i(—q + utyy + Ut )
ot dxt “ gy ® I

In essence, Prandtl’s boundary-layer approximations depend on the assumption
that gradients of quantities such as u and H across a “principal flow direction” y, i.e.
in the y-direction, are at least an order of magnitude larger than gradients along x.
That assumption permits the neglect of some terms in the governing differential
equations. In accordance with the boundary-layer approximations, we assume that

e =0(1), u=0(1), H=0(1), T = 0(1), h = 0(1),

3/dt = 0(1), 9/ax = O(1), 8/dy = O(s7 ). (3.2.10)

In Eq. (3.2.10), 0, the thickness of the boundary layer, is a function of x and 7 only. It
is assumed to be small relative to a reference length L, that is, 6/L < 1.

Let us first consider the continuity equation (3.2.6). Introducing the appropriate
orders of magnitude in Eq. (3.2.10) into (3.2.6), we see that the velocity component
normal to the surface, v, is of O (0). Since ¢ is small, v is also small.
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We next consider the x-momentum equation (3.2.7). Clearly, the left-hand side
of Eq. (3.2.7) is of O (1). Since 8/0, = O ((3_1) and dty,/d, is of O (1) at most, 7,, must
be of O (6). From the definition of ty,, it can then follow that u is of O (62) and that,
since dv/dx is small compared to du/dy, tr, = u (du/dy). From the definition of 7,
and from the fact that u, = O (62), we see that 7,, is small compared to 7, and is
of 0 (6.

At the edge of the boundary layer, the viscous terms are zero. Equation (3.2.7),
with the continuity equation (3.2.6), reduces to the well-known Euler equation,

Oue Oue B 6£

QeW‘FQM* =

e . 3.2.11
€ ox Ox ( )

From Eq. (3.2.11) we see that the streamwise pressure-gradient term dp/0x is of
O (1).
With these approximations, the x-momentum equation (3.2.2) becomes

3 3 3 dp 9
ggleu) + 5 (ouu) +a—y(9uv) = —6—x+a—y(rxy). (3.2.12a)

With the use of Eq. (3.2.6), we can also write Eq. (3.2.12a) as

aquQua—quQv%: op a(rxy),

ou _pL 9 32.12b
0 TR TS T T T gy ( )

where 7., = u(du/dy).

Turning our attention to the y-momentum equation (3.2.8), we see that the left-
hand side is of O (3). On the right-hand side, the larger stress term (9/dy)(t,,) is also
of O (6) and (9/9x)(tyy) is of O (62). Therefore dp/dy is also of O (6). Thus the
pressure variation across the boundary layer is of O (62) and can be neglected within
the boundary-layer approximations. Then Eq. (3.2.8) reduces to

p(x,y,t)=p(x,1). (3.2.13)

According to that expression, pressure is a function of only x and z. Hence, for
steady flows the pressure-gradient term in Eq. (3.2.12) becomes an ordinary deriv-
ative rather than a partial derivative.

We now consider the energy equation for total enthalpy, Eq. (3.2.9). According to
Eq. (3.2.10), the left-hand side of the equation is of O (1). Also,

UTyy 2> UTxy, UTyy, UTyy.

Since /0, = O (5_1) and dg,/dy is at most of O (1), g, is of O (6). Then because
dT/dy is of O (6‘1), the thermal-conductivity coefficient k is of O ((32). It follows
from the definition of ¢, that the streamwise heat transfer is of O (52), which is small
compared to the heat transfer normal to the main flow, g,.
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With those approximations, the energy equation (3.2.9) becomes

d 0 0 dp 0
~(oH) + — (ouH) + —(ovH) = — + —(— gy + ‘ 3.2.14

Again making use of Eq. (3.2.6), we can write Eq. (3.2.14a) as

0H 0H O0H dp 0
- - — = =4 (- 3.2.14b
0 YOG Tegs = g g (o umy), (9.2.146)
where g, = —k (9T/dy) and uty, = uu(du/dy).

At the edge of the boundary layer, the heat transfer normal to the main flow, g,,
and the work done by the viscous forces, uty,, are zero. Equation (3.2.14b) then
reduces to the unsteady inviscid energy equation

0H, 0H, dap

—_— —_— == 3.2.15

Qg Tty = g (3-2.15)

From the definitions of total enthalpy H = c,T + u*/2, Prandtl number Pr= ucplk,
and heat transfer normal to the flow gy, we can write

0H d ( T) L du Pr n du

— = —(c U— = ——qy+u—.

dy ay- P dy w1y
Solving for g,, we get

p OH w du w OH 1

—gy = — — Ty =" Tyt 3.2.16
D= py dy Pruay Pr dy Pr Wixy ( )
Substitution of that expression for g, into Eq. (3.2.14b) gives
8H+ 0H . 0H
@ Ty T
(3.2.17)

dp 0 1 uw O0H
= — —_— 1 _—— —_— — .
a dy {ufxy< pr) b Gy}
For air, the value of the Prandtl number Pr does not vary much with temperature, and
a constant value of about 0.72 has generally been assumed. But considerable
simplification results if Pr is assumed to be unity and many theories have been
developed on that basis.

We can easily see from Eq. (3.2.17) that for steady state when Pr=1 the total-
enthalpy energy equation always has a solution.

H = const,

which corresponds to the case of an adiabatic wall whose temperature is
constant. For the case of steady state and of zero pressure gradient, (dp/dx = 0),



Boundary-Layer Equations 59

we see further, by comparison of Egs. (3.2.12b) and (3.2.17), that Eq. (3.2.17) always
has a solution

H = (const)u (Pr = 1),
provided that the wall has a uniform temperature. The general solution is then
H = A+ Bu.

Since H= Hy, and u =0 when y =0, and since H=H, and u = u, as y — o, the
general solution becomes

H = Hy — [(Hy — He) /ue]u. (3.2.18)

Equation (3.2.18) is often referred to as the Crocco integral.

Equation (3.2.18) is very important, because when Pr =1, the solution of the
total-enthalpy energy equation (3.2.17) is given by Eq. (3.2.18) for the case of zero
pressure gradient, and there remains only to solve Eq. (3.2.12) for u.

3.2.2 TUrRBULENT FLows

We now discuss the boundary-layer approximations for turbulent flows. Although
turbulent shear flows generally spread more rapidly than the corresponding laminar
flows at the same Reynolds number, it is found empirically that Prandtl’s boundary-
layer approximations are also fairly good in turbulent cases and become better as
Reynolds number increases. The approximations involve principal mean quantities
and mean fluctuating quantities. For the principal mean quantities, we use the same
approximations we have used for laminar flows, that is, the relations given by
Eq. (3.2.10), except that now the quantities such as g, u, etc. are averaged quantities,
for example, ¢ and u.

Relationship between Temperature and Velocity Fluctuations. According to
experimental data — for example, Kistler [1] and Morkovin [2] — the Crocco integral
also holds true for turbulent flows. However, it is acceptable only for adiabatic walls
and for flows with small heat transfer. Figure 3.1 shows the measured total-
temperature (7y) profiles in non-dimensional coordinates for adiabatic compressible
turbulent flows at four Mach numbers. The measurements were made by Morkovin
and Phinney, as cited in Morkovin [2], and by Kistler [1]. The experimental results
show that a large fraction of the total temperature variation through the boundary
layer occurs quite close to the wall and that, remarkably, the total temperature
remains nearly constant in the rest of the boundary layer.

For convenience, we now use conventional time averages. In accordance with the
definition of total enthalpy, H=h + %uz, we can write
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Fig. 3.1 Mean total-temperature distribution across adiabatic turbulent boundary
layers.

_ _ 1, 2 _ 1,_, _ 1 2
H+H" = h+h”+§(u+u”) = h+h”+5(u) +uu”+§(u”) .

Then the mean total enthalpy H is

—_—

H = H+§(u)2 (3.2.19a)
and fluctuating total enthalpy H” is
1
H' =1+ + 5 W) (3.2.19b)

Since experiments have shown that for an adiabatic turbulent flow total temperature,
or total enthalpy, is constant or nearly constant, total fluctuating enthalpy must be
small and can be neglected, that is,

1
H' = +ﬁu” +§(u//)2: 0.

The second-order term (”)” in the above expression is small compared to i’ and
can be neglected. With ¢, = constant, the resulting expression can be written as

/T = —(vy — 1)M* (" /i), (3.2.20)

where M = i1/ (/.LRT)I/ 2 is the local Mach number within the boundary layer.
Experiments carried out in supersonic boundary layers and wakes by Kistler [1]

and by Demetriades [3] support the assumption that H” = 0. Figure 3.2 shows the

distribution of total-temperature fluctuations at three Mach numbers for an adiabatic
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Fig. 3.2 Distribution of total-temperature fluctuations according to Kistler's measure-
ments [1] for adiabatic walls.

turbulent boundary layer. We see that maximum total-temperature fluctuation is less
than 5% at M. = 4.67, which is negligible.

Equation (3.2.20) is for an adiabatic flow. By using the Crocco integral,
Eq. (3.2.18), it can also be generalized to include the case of heat transfer at the
surface of a boundary layer. Since

H+H' =A+B(u+u") = A+ Bu+Bu"
and
H// — h// + ﬁu//7
we can write
h// _|_ IZM” — Bu//

Using the definition of B and M in the above equation, we can obtain the following
relationship between the temperature and velocity fluctuations:

T"|T = —a(u" /i), (3.2.21)

where

a= (y - 1)M2 n [(Tw f TO) /T} (ﬁ/ue). (3.2.22)

Relationship between Density and Velocity Fluctuations. The equation of state for
a perfect gas is

p = RoT.
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In terms of mean and fluctuating quantities, that relation can be written as
p+p" =Re+")(T+T") =RET+T"e+"T), (3.2.23)

where we have assumed the second-order term ¢”T” to be negligible. According to
Eq. (2.4.6), such an assumption leads to the relationship 7 = T. As we shall see
later, in accordance with the boundary-layer assumptions, the ¢” 7" term is small and
can be neglected. Using the relation p = RTp, we can write Eq. (3.2.23) as

p'/p = (T"/T)+(d"/a)- (3.2.24)

From Eq. (3.2.24) we see that in order to find a relationship between density and
velocity fluctuations [since the relationship between temperature and velocity fluc-
tuations is given by Eq. (3.2.22)], it is necessary to estimate the order of magnitude of
pressure fluctuations. The pressure field is indicated to the unaided observer by both
the sound field associated with the turbulence and the fluctuating force on a solid
surface in contact with the turbulence. It is important to know the fluctuating pressure
field on material surfaces, since, for example, when flight vehicles are operated in
regimes of large dynamic pressures, the pressures can have significant effects. The
random forces can even cause fatigue failure in a structure, as well as undesirable
levels of structural vibration. In addition, these forces can produce sound within
a structure through the intermediate step of forcing the solid surface into motion.

According to the experimental results of Kistler [1], the temperature fluctuations
are essentially isobaric for adiabatic flows with Mach numbers less than 5. Conse-
quently, Eq. (3.2.24) can be written as

T"/T= —d"/a. (3.2.25)

Unfortunately, in the flow range above Mach 5, no detailed measurements of
turbulent fluctuations have as yet been reported. It is therefore not possible to provide
quantitative information on the subject. There is convincing experimental evidence,
however, thatin flows in the vicinity of M, = 5, appreciable pressure fluctuations existin
the boundary layer. Kistler and Chen [4] reported rms pressure fluctuations of 8-10% of
the mean static pressure at the wall for M, = 5. Under the same conditions, Laufer’s
measurement [5] of the value just outside the boundary layer was (p”2) 12 /D= 1%).

In our discussion, we shall assume the pressure fluctuations to be negligible and
make the order-of-magnitude estimates of the fluctuating quantities on that basis.
Substitution from Eq. (3.2.25) into Eq. (3.2.21) gives the desired relationship
between density and velocity fluctuations,

"o = a(/i). (3.2.26)

According to experiment, that relation is justified for compressible turbulent
boundary layers at Mach numbers up to approximately 5 [2].
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Equations (3.2.20) and (3.2.25) and Eqgs. (P3.1) and (P3.2) in Problems 3.3 and
3.4 are also valid if we substitute root-mean-square values for instantaneous fluc-

tuations (for example, W' or ). The relations in Egs. (P3.1) and (P3.2) can also
be used for rough estimates of low-speed boundary layers, respectively, to assess the
negligibility of the terms in the mass, momentum, and energy equations in which
density fluctuations appear. The relations are likely to be less satisfactory in free
shear layers, where the velocity and temperature fluctuations are less closely related,
but they should still be useful for rough estimates.

The largest value of V W/ue reached in a low-speed boundary layer in zero
pressure gradient is about 0.1. Values in high-speed flows may be even lower, but if
we use the low-speed figure in the root-mean-square version of the above formulas,

we can make generous estimates of V W/ T or Ql_/z/ 0, for high-speed boundary

layers or for low-speed boundary layers on strongly-heated walls. Typical figures are
given in Table 3.1; to express the temperature fluctuations in high-speed flow as
fractions of 7,, we have assumed that the maximum temperature fluctuation occurs
when u/u, = 0.5. The figures for infinite temperature ratio or Mach number are not
realistic, but they serve to show that the ratio of temperature fluctuation to local (or
wall) temperature does not rise indefinitely. This is easy enough to see in the case of

Eq. (P3.2), which reduces, for T,,/T, — o, to V W/Tw =V W/ue, in the case of
Eq. (P3.1), the explanation for the approach to an asymptotic value is that if the heat
transfer from a high-speed flow to a surface is not too large, the surface temperature

TABLE 3.1 Approximate estimations of temperature fluctuations
assuming Vu"? /ue = 0.1.

(a) Low-speed flow over heated wall

(Tw =T/ Te 0.25 0.5 1 2 4 ©
T, - T.for T.=300 K 75 150 300 600 1200 %
VT2 /T, from Eq.(P3.2)  0.025 0.05 0.1 0.2 0.4 oo
V2T, 0.02 0.033 0.05 0.067 008  0.10

(b) High-speed flow over adiabatic wall (zero heat transfer to surface)

Me 1 2 3 4 5 o
(Taw = T/ Te 0.178 0.712 1.6 2.85 4.45 o
VT2 T from Eq.(P3.1) 0.04 0.16 0.36 0.64 1.0 o
ﬁ/ Taw 0.017 0.047 0.069 0.083 0.092  0.112

Note: The last line of each section of the table is the more meaningful because maximum temperature fluctuations
occur near the wall.
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is not much less than the total temperature of the external stream and therefore rises
rapidly with Mach number. Values given in Table 3.1(b) are for the “‘recovery”
temperature, the temperature reached by an insulated (adiabatic) surface, T,
(see Section 4.7, Eq. (4.7.3)).

Approximations Involving the Molecular-Transport Terms. For a perfect gas,
the fluid properties u and k are functions only of temperature for a wide range of
pressures. In order to express their variation with temperature fluctuations, we write
them as

w=p+u" =p[l+W/w], k=k+k" =k[1+K'/k)]. (3227

If it is assumed that u and k are proportional to temperature, Eq. (3.2.27)
becomes

pw=p[l+(1"/T)], k = k[1+ (T"/T)]. (3.2.28)

I 3.3 Continuity, Momentum, and Energy Equations

3.3.1 Two-DiMensiONAL FLows

Let us first consider the continuity and the x-momentum equations given by Eqgs.
(3.2.1) and (3.2.2). Since ¢ = p+ 0" and u = @+ u”, the three terms ou't/, ou'v/,
and 7,, in Eq. (3.2.2) can be written as

o' = pu'v/ + "u'v |, ou'V = gu'V/ + o"gu'V. (3.3.1a)
~du N a !
Ty = L = u(l +“T) —11(1 +"é), (3.3.1b)
dy 7} dy i
Since 3/dy = O(67!), the term gu/v’ is of O(6) at most. Furthermore,
—— <1 and —<K1. 3.3.2
7(03/3) Gev (332

In each case, those ratios can be assumed to be less than 5% for Mach numbers less
than 5, if the coefficients of correlation between viscosity and velocity gradient and
between density and u'v’ fluctuation are at most 0.3.

Let us now estimate the order of magnitude of ¢”v’. Multiplying both sides of Eq.
(3.2.26) by v, rearranging, and assuming that u” =, we get

oV = a(g/u)u'V. (3.3.3)
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For moderate Mach numbers and heat-transfer rates, a is of O(1). Since W'v/ = 0(4)
and g/ii = O(1), we see that ¢"v/ = O(6). If we assume that v’ is proportional to u’,
then ¢”"u’ = O(6). Therefore, from Eq. (2.4.3b) we have

u—ia=oW/g=09uW/e o u=aua (3.3.4a)

and

U—v=¢"/g =V /g or U=10v+"V/e, (3.3.4b)

since # = O(1) and ¥ = O(0). That means that we can interchange tildes and bars
on u with the boundary-layer approximations but cannot do so on v. Also, from the
definition of i/, that is,

W= e
we see that u’ is of O(0). As a result, (1 + « /i) in Eq. (3.3.1b) is approximately
equal to u. Furthermore, Ty, >>7,, and ou'v' > o"u'u'.

With those approximations, the continuity and x-momentum equations given by
Egs. (3.2.1) and (3.2.2), respectively, become:

Continuity
do 0, _ 9,
5 T (0% +a—y(9U) =0, (3.35)
x Momentum
L P P LR e
at(gu) + ax(guu) + ay(gvu) = 6x+ 3 <'u(9y ou v). (3.3.6a)

With the use of Eq. (3.3.5), we can write Eq. (3.3.6) as

_O0u  __Ou ou g 0 Ou _——
e - i A R — 3.3.6b
Q6t+gu erQvay 8x+ay (,uay ou'v' |, ( )
where
ou = gU+ "V = pgv. (3.3.7)

Following the same line of order-of-estimate study, the y-momentum equation
(3.2.3) becomes

0 iy@w) —o. (3.3.8)

We see from Eq. (3.3.8) that for laminar flows dp/dy is of O(6) but that for turbulent
flows it is of O(1). Consequently, the pressure variation across the boundary layer is
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of 0(0), so that in comparison with the streamwise pressure variation p(x, ) it is still
small and can be neglected within the boundary-layer approximations.
For incompressible flows, Egs. (3.3.5), (3.3.6), and (3.3.8) can be simplified
further, as follows:
Continuity
du v
P + a—y =0, (3.3.9)

Momentum

D

on o dn 19 o a<
ot 0x dy o ox dy

W) (3.3.10)

We next consider the energy equation. According to the approximations dis-
cussed above, we have shown that the double-correlation terms involving ', v, o,
such as u'v/, ¢'V/, etc., are of O(J) at most, and that the triple correlation terms such as

o’V are small® compared to gu/v’. We have also shown that within the boundary-

layer approximations, &= and gv = g0 = gv + ¢”"v". Before we discuss the
boundary-layer simplifications for the total-enthalpy energy equation, let us first
show that within the boundary-layer approximations, H = H.

From the definitions of H (x;, 1), H, and H, we can write (see Section 2.4)

H-H=H-H = JH /5 = J'H" Jo. (3.3.11)

Since

oH" = oh" +iigu" = "W + ug"u", (3.3.12)

and the two terms on the right-hand side of Eq. (3.3.12) are all of O(0), we see that
oH", which is also equal to ¢”H”, is of O(d). Consequently, H = H from
Eq. (3.3.11).

By extending the boundary-layer approximations discussed in the previous
sections, we can write the total-enthalpy energy equation (3.2.4) as

o of o

0 Y +Qua+gv 3y
(3.3.13)
_ 61_7+ d (__Odu T
EPIRNF) May qy — QV ;

where g, = —k(3T/dy).

3t is generally assumed that the triple correlation terms are of 0(6?). Since "V = 0(6) and v/ = O(5),
their product must be of 0(6%).
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From the definitions of mean total enthalpy H, ys and Prandtl number, the second
term in parentheses on the right-hand side of Eq. (3.3.13) can be rewritten in
a slightly different form. The resulting expression becomes

0H _ 0H 0H

+ ou + ov

®ar T Ty
S I (33.14)
p o i e

= — — — (1 — — = _pHV .
o " ay {““ay( Pr>+Pr6y ”]

Sometimes it is more convenient to express gu'H’ in terms of static enthalpy fluc-
tuation /', which can easily be done by recalling the definition of H'. Neglecting the
second- and higher-order terms in Eq. (2.3.19), we can write the fluctuating total
enthalpy H' as

H =W+,

where we have replaced u by i, which is permissible within the boundary-layer
approximations. Multiplying both sides of that expression by gv’ and averaging,
we get

oH'V = gh'V + giiu'v'.

Substituting that expression into Eq. (3.3.14) and replacing the second term on the
right-hand side of Eq. (3.3.13) by the resulting expression, we get

_6H+__8H+_6H
@5 TG T

dy
p 9 (m oH 1\ i (315
p i o _du
=24+ L o 1— =) 2= _suvl L.
o " ay {Pr gy Y +”[( ) "5 Q””H

For an incompressible flow, the total-enthalpy equation simplifies considerably.

Noting that
L oH o aﬁ+ 0 (i
Pr dy Pr|dy dy \2/]

we can rewrite the total energy equation (3.3.15) as

(3.3.16)
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Substituting / + @#? /2 for H in Eq. (3.3.15) and using Egs. (3.3.6b) and (3.3.16), we
get the energy equation in terms of static enthalpy,

t Ox y

op _op O [(m oh _— ou  _—\ ou G317
_% 2% 9 [R O 55 o ) ou
= 8t+uax+6y<Pr oy th) +<uay qu) 3y

That equation, like Eq. (3.3.13), is still for a compressible flow. For an incom-
pressible flow, the fluid properties, g, k, Pr, and u are constant. In addition, the
pressure-work term #(dp/dx) and the dissipation term [@(di/dy) — gu/v'] (dii/dy)
are small and can be neglected. Their negligibility can be easily shown by expressing

Eq. (3.3.17) in terms of dimensionless quantities defined by

*

i=tuw/L, X=x/L, ¥=y/L U =0fue, (@) = 00/0xtex,
(W)* = Wi ji, (V) = VI e (hy — ), P = Plowiis,
Q* = E/Qooa h* = (E_Eoo>/(hw—zoo), /.L* - ﬁ/,u,w,
(3.3.18)

where the bars on independent variables, ¢, x, and y denote dimensionless quantities.
Using the definitions of Eq. (3.3.18) and then simplifying, we can write the static-
enthalpy energy equation (3.3.17) in terms of dimensionless quantities in the
following form:

A A=
I
ap- L0p 19 [u on T ¢
=E|— e — —9% ———R i
<8t tu ax>+RL ay{Pr gy~ Ree (V) (33.19)
I I v
E *au * M*
— 77R 144/ -
+RL (,u v LQ(“U)> v
v VI

Like the Prandtl number (Pr = ucp/k), the quantities Ry and E are dimensionless
quantities; they are known as Reynolds number and Eckert number, respectively, and
are defined as

R, =Uew0ol/tew, E =12 /hy —he. (3.3.20)
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Since for a perfect gas ¢, = YR/(y — 1), it follows from the definition of Eckert
number that

M.
N cp(Tw _Too)

2
o0

(3.3.21)

u

2
o (mow) = 0o (rTr)
coTow \Tyy — T Ty — Te

From Eq. (3.3.21) we see that if the temperature difference is of the same order of
magnitude as the free-stream temperature, the Eckert number becomes equivalent to
the free-stream Mach number. Thus Eckert number becomes important only for
small temperature differences at high Mach numbers. The Eckert number is quite
small in incompressible flows (M = 0), and since Ry, is large within the boundary-
layer approximations, the ratio E/Ry, is also small. Consequently, pressure-work and
dissipation terms are negligible. For incompressible flows, the energy equation
(3.3.17) then becomes

oh _Oh Oh #Ph 9 ,—
. 1 — vV— = _— h// . .22
at+”ax+”ay 03 ay( V), (3.3.22)

where « is the thermal diffusivity, « = »/Pr.
That equation can be written in terms of static temperature 7 as
oT _oT 9T = o°T
—til—+V— = a-— ——(T). 3.3.23
Rl mile o MO (3:3.23)

3.3.2 AxisyMMmETRIC FLows

In principle, the governing boundary-layer equations for axisymmetric flows do not
differ much from those of two-dimensional flows. Again, the external potential
velocity is a function of only one space coordinate, and the velocity within the
boundary region has two components. Typical examples of such flows are a flow over
a body of revolution, a wake behind an axially symmetrical body, and a jet issuing
from an axisymmetric body. The extent of the region in the radial direction is of the
order of the thickness of the boundary layer & and is usually much smaller than both
the extent of the region in the axial direction L and the radius of the body ry.

The boundary-layer equations of a steady, compressible fluid for both laminar
and turbulent axisymmetric flows for the coordinate system shown in Fig. 3.3 can be
written in a form similar to those of Egs. (3.3.5), (3.3.6b), (3.3.13), and (3.3.15). The
steady continuity, momentum, and energy (total enthalpy) equations are
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Fig. 3.3 Coordinate system for an axisymmetric flow.

Continuity
, 5 _ 0, 4
a(r"gu) +a—y( ko) = 0, (3.3.24)
Momentum
_O0u __Ou dp 1 0 [ ,( du —
— — =4+ — —— 3.2
Quax—i-gvay o + & 3y [r (’uéy ou'v' ||, (3.3.25)

Energy (Total Enthalpy)

oA, oA
Ox ¢ dy

I 1\ du p O0H ——
- — — 177 _ ~ - _ H/ / .
ot 0w) e 5]
The right-hand side of Eq. (3.3.26) can also be written as [see Eq. (3.3.15)]
1 o[ ,(m 0H — 1\ du —
- _— Z = on 1 —— )ap— —ou'v . 3.3.27
w o] ] o

where k=1 for axisymmetric flows, k=0 for two-dimensional flows and, from
Fig. 3.3,

ou
(3.3.26)

r(x, y) = ro(x) +ycosa . (3.3.28)

Although for most axisymmetric flows the boundary-layer thickness ¢ is gener-
ally small compared with, say, body radius ry, there are some flows — for example,
flows over very slender cylinders or flow over the tail of a streamlined body of
revolution — in which the boundary-layer thickness can be of the same order of
magnitude as the radius of the body. In such cases, the so called transverse-curvature
(TVC) effect must be accounted for, since such an effect strongly influences the skin
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friction and heat transfer. In equations of the form of Eqs. (3.3.24)—(3.3.27), the TVC
effect is included.

3.3.3 THRee-DIMENSIONAL FLOws

In three-dimensional steady flows, the external potential flow depends on two
coordinates in the wall surface, and the flow within the boundary layer possesses all
three velocity components, which depend on all three space coordinates. The
continuity, momentum, and energy equations for a steady compressible flow can be
written as
Continuity

o-(eu) + 5(@) + a—z(@w) =0, (3.3.29)

X Momentum

__Ou __ou __du dp 0 ( du —
— — = ——+—|p—— 3.3.30
Q”ax“LQvayﬂ*’Waz ax+ay(“ay qu>7 ( )
7 Momentum
0w _ow __ 0w p 9 [ w —
-— -— — = ———+—|b—— 3.3.31
ou (9x+Qv 8y+QW 0z 6Z+6y<'u8y o ) ( )
Energy (Total Enthalpy)
__ 61—7+_8H+” 0H
oGy T gy T g,
(3.3.32)

9 1\ 9 [+ w? noH
= lgl1==1= —— —oVH'|.
dy [“( Pr) 6y< 2 ) Thray Y ]
Another form of Eq. (3.3.32) can be obtained by using the static enthalpy in the
transport terms, as follows:

- 6H+_6H+__6H
oGy T gy T,
s o p ) ) (3.3.33)
o o B u +w
— |27 W — 1,0 11 . .
3y |Pray 1% ouvu' — gwu'w —|—,u,ay ( > )}

Here

H=h+ %(a2 +w?). (3.3.34)
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Again, the pressure gradients dp/dx and dp/dz in Egs. (3.3.30) and (3.3.31) are
known from the potential flow. At the edge of the boundary layer, the two momentum
equations reduce to

Jute ue 1 dp
Ue ox We 0z = 2 o’ (3.3.35)
Owe Owe 1 dp
— = ———. 3.3.36
Ue o + we 9z % 0z ( )

A special case of a three-dimensional flow arises when the external potential flow
depends only on x and not on z, that is,

ue = ue(x), we = const.

For a steady compressible flow, the governing equations follow from Egs. (3.3.29)-
(3.3.33).

a(éﬁ) +5(@) =0, (3.3.37)
__Ou __du  dp 9 ( Odu —
ou ax—i—gv y 6x+6y(u 3y ou'v' |, (3.3.38)
0w _dw  d [ w _—
Q”$+Qv5_ay(“ay QWU), (3.3.39)
__6FI+76H
ou 0x ev dy
, , (3.3.40)
_6_ 1\ 0 [ +w u 0H e
52w () -]
,,OI:IJr_vaH
i — -
¢ Ox ¢ dy
(3.3.41)
O [ROh o o 0 (W
_ay{Pray oV'h — oiv'u Qwvw—i—uay > .

The above equations are known as the boundary-layer equations for laminar and
turbulent flows over infinite swept wings.
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I 3.4 Mean-Kinetic-Energy Flows

For a two-dimensional compressible, unsteady turbulent flow, the kinetic-energy
equation of the mean motion, Eq. (2.7.3a), can be written as

o]« v ]« )]

ot
L ) B Y e v R TSy
= uax = vay—i—ax[u(rxx Quu)+v(ryx Qvu)
1
al., - e -
+ a[u(rxy—gu’v’) —|—v(ryy—gv’v’)] 341

II

di

+ u’u’%—l— v/ @—i— + U/U/@
¢ ax ° dx dy ¢ dy

L du v dn 00
Toax Max Yoy ooy

Of the two numbered expressions in brackets, II is much larger than I. Furthermore,

since

i(Tgy — ou'V') > 0(7yy — V),

expression 11 becomes (9/dy)[i(Ty — ou'v')]. Also,

_0p__ _0p
Ma>>l)$,
ov'u’ g—z>> w'u/ %7 ou'u! 3—27 A g—;,
i oo _ dv _ OJv

fxy a—y>> fyy @7 Tyx a, Tyx a_x

With those approximations, together with the approximations discussed in the
previous section, we can write Eq. (3.4.1) as

L Y (L Y ()
ar\2% ) Tax\ % ) T\ 29

(3.4.2)
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Equation (3.4.2) is the mean kinetic energy equation for unsteady, two-dimensional,
compressible, turbulent boundary layers. With the use of the mean continuity
equation (3.3.5), it can also be written as

(L) 4
o\ 2"

(3.4.3)

I 3.5 Reynolds-Stress Transport Equations

For convenience, let us write the two terms —u}(dp/dx;) and u}(9; /9xx) in the
Reynolds-stress transport equations given by Eq. (2.8.4) as follows:

N I
st = G—Xi(puj) trgl (3.5.1)

ot 0 ou'
1 ik I\ {/_./_ 52
Tox, — Oxy (uf T’k) T’kéxk (3-3.2)

The first term on the right-hand side of Eq. (3.5.2) represents turbulent viscous
diffusion; the second term represents furbulent energy dissipation.
Substituting these expressions into Eq. (2.8.4) and rearranging, we obtain

ai(059) + 3 ()

N d — 8 — [ —
- (5 o) - [axi@“f) )| =g (o)

_ 3.5.3)
—— 0 —— 0 0 (— — (
/o] J v 701 101
ol T GG a( T+ )
!
n 4 " au;

[ 4 L
ik 6xk jkaxk

It was previously shown that in a two-dimensional boundary-layer flow the mean
velocity within the boundary layer has two components (k= 1,2) and that the fluc-
tuation velocity components have three components (i, j = 1,...,3). Consequently, for
a two-dimensional flow, Eq. (3.5.3) yields six equations. The dependent variables for
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the velocity fluctuations are u’2, v'2, w2, w'v/, w'w, and V'w'. But since the mean
flow is two-dimensional, the last two quantities are zero by symmetry.

If we add three equations in which the dependent variables for the velocity
fluctuations are /2, v'2, and w'2, we get the turbulent kinetic energy equation
(2.8.5). Of course, the same equation can be also obtained by simply writing
Eq. (3.5.3) for i =j. Noting that within the boundary-layer approximations, u = u,
we have

W 9~ 0| (1

B (o N BV (e 3.5.4

paxi 6x,~<pu’> axk uk 2QCI ( )
di; 0

el g+ 5 () e

where ¢* = ulul.
In Eq. (3.5.4), € denotes the so-called mean turbulent energy dissipation function,
which is given by

1, ou

E =T, —.
@lkan

(3.5.5)
For an unsteady, compressible, two-dimensional flow, Eq. (3.5.3) can be
simplified considerably by using the boundary-layer approximations discussed in the
previous section. From the resulting simplified equation we can get four equations,
for W/, w2, v, and w'2.
Let us now discuss the terms in Eq. (3.5.4). Of the terms of (9/dx;)(pu.), we
observe that

2() > 2(5). 2(ow):

and, of the terms of (8 / 6xk) |f4c (% Qq2>] , we observe that

9 /1 2 9 /1 2 J / 1 2 .
ay<v2@q>>>ax<u2@q a2\ 3207 ) |5

and, finally, of the terms of ou/u; (0u;/dx;), we again observe that

U
)y QUU

d0x dy

9 -
Qu/v’—u > ou'u! —u,gv’u’
X

dy o)
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With the definition of 7/, we can write ut/; as

d /1 d , 0u;
url = 2 I oy
Tik = lu|:a k(zq ) +axi(uluk) ka :|

Of the terms of (9/dxy) [,u((?/(?xk) (4 qz)} , we observe that

2 ra(s?)|> 22 (i)

and, of the nine terms of (9/0dx) [,u((? / 0x,)(ufu;<)} , we again observe

3en]» 2w 3 bien) o

Making use of the above relations, assuming that the divergence of the velocity
fluctuations du;/dx; is negligible, and noting the relationship given in Eq. (3.3.4), we
can now write the turbulent kinetic energy equation (3.5.4) for a two-dimensional,
unsteady, compressible boundary-layer flow as

| (4
Qu bX

Ly IO P 7
7\%2) Tax 2 dy

local rate of change turbulent energy convection

of turbulent energy

—du 0 0/1— —
= — @u’v/_ +— g _q2+UI2
oy dy| 0y\2 (3.5.6a)
turbulent turbulent viscous diffusion
energy production
g (1 o — .
% v/igq2 - a*(pvl ) - €0.
Y Y turbulent
turbulent kinetic turbulent energy dissipation
diffusion pressure diffusion

In Eq. (3.5.6a) we have assumed that g >> 0" ¢2.
Multiplying the continuity equation by — %q2 and adding the resulting expression
to Eq. (3.5.6a), we obtain

ol

14>
a2
(3.5.6b)
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where e, which is given by Eq. (3.5.5), can also be written as
_ 1 o, L auk o
o @'u axk (3)(, 6xk
ou '\ 2 aw'\ 2 o' n\?
2 2 — 2 [ — —
’ <GX> " <ay> i (01> +(ay+<9X>
o' ow'\? ' aw\?
+ <a—z + E) + (3_Z + a_y) ) (3.5.7)

if the Ai(du)/dx;) term in the stress tensor is neglected.
The boundary-layer approximations for Eq. (3.5.3) are quite similar to those for
Eq. (3.54). Fori=j=1, Eq. (3.5.3) becomes

(0 + gy (mar)

_ ou’ d — d )
— 217a — Zﬁ(p” ) — O—Xk(ukgu ) (3.5.8)

ot ad ' o,
201, — +2— | [ — + L) |.
o e 2o [“ (axﬁax)]

Let us now define the operator D/Dt on any function g by

Dg dg 9, _ d, _
D = o T a8t (80

In accordance with the boundary-layer approximations discussed for the turbulent
kinetic-energy equation, Eq. (3.5.8) simplifies to

ow 00— _—— 0

= o2 — 7T oy Iy

D ou P P Vou 20u'v 3y
R T 359

O 0], 0w o

+(9y {“ay(” )] “axk Oxy

Similarly, we can write an equation for each of the turbulent energies v’ Zand w'?
by letting i =j =2 and i = j = 3 in Eq. (3.5.3), and we can write a single equation for
shear stress by letting i = 1, j =2 in Eq. (3.5.3). After the application of boundary-
layer approximations to these equations, we get
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D — a’ 0 — 0 ——
EIQUQ = 2pa—— 26—(pv’) —a—(v’gv’2)
yow Y (3.5.10)
R — ' H
— a—(v?)| = 25— —
+6y ['u(‘)y(v )} o ox”

D — ow 0 f——s d Jd — aw' on'
2o =22 L van?) + L el (W) | —om[ 22 3.5.11
Dt " P75z ay(” ew >+ay [“ay(w )] #<6xk axk>7 ( )
D ou' W 0 /——=\ ——0i
= oy = RS TE R W2 — oyl
o p(ay * ax> ay(g"“’ ) v

o’ '

9129 | = 2 ) — a2
Jr(9y {“ay(“)] ay(p”) 2M<6xk6xk>'

For incompressible flows, since the flow properties are constant, Egs. (3.5.6) and
(3.5.10)—(3.5.12) can be simplified considerably.
For example, the turbulent kinetic-energy equation becomes

0 (), .0 (2 ;0 (7
&(7)“&(7 Tz

—du (¢ —=\ 9 (v pU
— = I |- = = ) — e
uvay+vay2<2+v v\ 2 +Q €

(3.5.12)

(3.5.13)

I 3.6 Integral Equations of the Boundary Layer

Although the differential equations of the boundary layer discussed in the previous
sections have been greatly simplified from the general differential equations of fluid
flow, they are still difficult to solve, since they are nonlinear partial differential
equations. Considerable simplification arises when these equations are integrated
across the boundary layer. Then they are no longer partial differential equations, but
just ordinary differential equations. However, they are still exact equations, at
least within the boundary-layer approximations. These equations, known as the
integral equations of the boundary layer, provide a basis for many approximate
methods of boundary-layer prediction. They will now be discussed for steady two-
dimensional flows.
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3.6.1 MOMENTUM INTEGRAL EQUATION

The momentum integral equation for a two-dimensional steady compressible
flow can be obtained by integration from the boundary-layer equations (3.3.5)
and (3.3.6b).4 If we multiply Eq. (3.3.5) by (#e—u), multiply Eq. (3.3.6b) by -1,
add and subtract gu(due/dx) from Eq. (3.3.6b), and add the resulting continuity
and momentum equations, we can arrange the resulting expression in the
form

9 d du, d u __
Ee [ou(ue —u)] + a[gv(ue —u)] +E(geue —ou) = 2 (May _ Qu/v/)

Nondimensionalizing and integrating with respect to y from zero to infinity,
we get

d 5 7 ou u due /°° ou

< L L o e -2 V| -

dx [Qeue/o Oulle ( Me) y] + dx Qeue|: ) 0ulte y QwVUwle
(L
= Nay w— W

since (du/dy) and W'v/ — 0 asy — o and since w'v/ — 0 asy — 0. It is more

(3.6.1)

convenient to express Eq. (3.6.1) in terms of boundary-layer thicknesses 3" and 6.
Equation (3.6.1) then becomes

d du
a(@euge) + Qe”eé* 7): — OwVUwlle = Tw,
or, in nondimensional form,
dg 0 due  0do, 0y Vw Tw
—+— (H4+2)— 4+ ——2_ ¥~ = 3.6.2
dx + Ue (H +2) dx + 0. dx Q. ue  QuZ’ ( )

where H denotes the ratio 6*/6, which is known as the shape factor. For an ideal gas
undergoing an isentropic process, we can write
1 do, M? du

=——— 3.6.3
0. dx ue dx ( )

“For simplicity, we shall drop the bars from the principal mean quantities.
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Substituting from that equation into Eq. (3.6.2) and rearranging, we obtain the
momentum integral equation of the boundary layer for a two-dimensional
compressible flow:

dg o = (3.6.4)

where ¢y is the local skin-friction coefficient. Note that in the case of zero mass
transfer the normal velocity component at the wall v, is zero. Then Eq. (3.6.4)
becomes

due ct

H42-M2) e = (3.6.5)

il & =

o

For an incompressible flow with no mass transfer, that equation reduces to

dg 0 due ct
—+—(H+2)— = —. .6.
dx+ue( + )dx > (3.6.6)

Equations (3.6.4)—(3.6.6) are also known as the first momentum integral equa-
tions. They are applicable to both laminar and turbulent boundary layers.

3.6.2 MEAN ENERGY INTEGRAL EQUATION

The derivation of the mean energy integral equation is similar to that of the
momentum integral equation. We multiply Eq. (3.3.5) by ( ug— u?), and Eq. (3.3.6b)
by — 2u. After the resulting expressions are added and rearranged, we obtain

salenti ()]} st )

¢ 5 (3.6.7)
o u 0\ duc| U —
“1==) = = cu—(pu—-— .
eelte [u< ae> dx} “ay (“@ qu)

The right-hand side of Eq. (3.6.7) can also be written as

ot u 0
_”(Ty - 15 — Fy(ur)’ (3.6.8)
where
T = ,u(au/ay) — o'V, (3.6.9)

Substituting from Eq. (3.6.8) into Eq. (3.6.7), integrating the resulting expression
with respect to y from zero to infinity, and using the definition of energy thickness 6"
given by
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® 2
5" :/ & (1—“—2>dy (3.6.10)
0 Qelte \' 4

we get

T ) ~ e

du “u 0
2 e
+ — —(1l——|dy| =D
Gelle dx {/0 ”e( Qe) y} ’

since both gu(u2 — u?) and 1 — 0 asy — o. In Eq. (3.6.11), D is defined by

®/( u —\ Ou
D = / (,u——gu’v’) —dy
0 dy dy

and is called the dissipation integral or the shear work integral. It denotes the
viscous work done in the boundary layer by the two shearing stresses u( du/dy)
and —ou'v'.

For an incompressible flow with no mass transfer, Eq. (3.6.11) simplifies
considerably, becoming

(3.6.11)

) = = 3.6.12
mbed ) =7 (3.6.122)

In dimensionless form, that equation becomes

1d, 3« 2D
——(uZd = — =2C 3.6.12b
ug dx(ue ) ng D ( )

where Cp is called the dissipation integral coefficient.

3.6.3 TURBULENT ENERGY INTEGRAL EQUATION

Integrating Eq. (3.5.6a) with respect to y from zero to infinity, for steady state we get

d o 3 o /3 o
— / Quq— dy| = / —ou'V o dy —/ o€ dy, (3.6.13a)
dx | Jo 2 0 dy 0

since, in accordance with the boundary conditions, the diffusion terms drop out.
Equation (3.6.13a) is often written in the form

—\ =1 =P-d .6.13b
dx(zQ) , (3.6.13b)
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where 10 is an integral scale for the turbulence, defined by

10° = /0 oug?dy, (3.6.14)

and P and d represent the production and dissipation, respectively, of turbulent
energy within the boundary layer, that is,

p= / Qu'v’(au)dy (3.6.15)
0 dy

d:/ o€ dy. (3.6.16)
0

and

3.6.4 ENERGY INTEGRAL EQUATION

To derive the energy integral equation for two-dimensional compressible flows
without body force, we start with the total enthalpy equation, Eq. (3.3.27). Using the
continuity equation, Eq. (3.3.24), we can write Eq. (3.3.27) as

d 0 d
—(ouH) + —(ovH) = —(— ¢ . 3.6.17
gol0ut) + 5 (QVH) = 5o(= g +ur) (3.6.17)
where
ou — ——
T=pu——ou'v — ou, (3.6.18a)
dy
by = aT 15,/ Ve iAYA
g = —ka—y+chTU + cpd' Ty (3.6.18b)

We now integrate the above equation with respect to y from y=0 to y=h >0
to get

h
a .
/0 o) dy + gyuiHe = G- (3.6.19)

As in the derivation of the momentum integral equation, we substitute for g,vj, from
the continuity equation and write Eq. (3.6.19) as

o
/0 aolou(He — H)]dy = =4, (3.6.20)
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and then as

d * ou H 4w
— l——)dy| = -2 3.6.21
e [Qeue /0 o ug( He) y} H,’ ( )

using reasoning similar to which led to the writing of Eq. (3.6.1). Since H, - H=10
(to sufficient accuracy) for y > h, the integrand of Eq. (3.6.21) contributes only for
y < h, and so the result is independent of A.

Equation (3.6.21) shows that the rate of increase of total-enthalpy deficit per unit
span (in the z direction) is equal to the rate of heat transfer from the fluid to a unit area
of the surface. Comparing this equation with Eq. (3.6.1), we see that the rate of
increase of deficit in each case is affected by transfer into the surface (enthalpy
transfer — g,,, momentum transfer t,,); the momentum integral equation contains an
additional term depending on pressure gradient, but the fotal enthalpy is unaffected
by pressure gradients as such.

If we introduce 0y by
h
H-H,
Oy = / ou <7> dy, (3.6.22)
0 Qele H, —H,

then we can write the total-enthalpy integral equation (3.6.20) for a two-dimensional
compressible laminar or turbulent flow as

d .
dx{Qe”e (Hw _He)eH] = qy- (3.6.23)

In Eq. (3.6.22), 0y is a measure of total-enthalpy-flux surplus caused by the presence
of the thermal boundary layer. For an incompressible flow, where H is equal to the
static enthalpy #, the total-enthalpy thickness 0y is equal to the static-enthalpy

thickness.
e h—h
0, = / ou ( d ) dy, (3.6.24)
0 Q.le hw - he

where & can be replaced by ¢, T'if ¢, is constant. Noting this and taking g constant, we
can write Eq. (3.6.23) for an incompressible flow as

d q
— T, —T.)0r| = =~ 3.6.25
dx |:ue( w e) T:| oc ( )
When the wall temperature is uniform, Eq. (3.6.25) can be written as
1d
——(ueﬁr) = St (3.6.26a)

U, dx
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or as
ddixT Z—:% = St. (3.6.26b)
Here St denotes the Stanton number befined by
St = A (3.6.27)
ocp (TW — Te)ue7
and
07 — /h” ( r—Te ) dy. (3.6.28)
0 e \Tw—Te
I Problems
dp

3.1 Show that in a laminar flow with heat transfer the “compression work™ term u

in Eq. (3.3.17) is small compared to the heat-flux term (%(% g—i’,) if the tempera-

Pru?
Cp

ture difference across the shear layer, 47, is large compared to
3.2 Show that in a compressible turbulent flow the condition for the neglect of the

“compression work” term u g—i in Eq. (3.3.17) — compared to the ‘“‘heat transfer”’
- 9
a - _ .
term a—y(gh’v’) or cpa—y(QT’v’), say — is

M < 1 1 4T
¢ 10y —-1T,"

[Hint: The factor 10 is an approximation to ¢/6 in a turbulent boundary layer.]

3.3 Show that for high-speed flows

1 1
u

€=y 1)1&227 (P3.3.1)

3.4 In low-speed boundary layers on heated walls, the velocity and temperature fluc-
tuations again tend to have opposite signs. However, since the driving tempera-
ture difference T,, — T, is imposed separately from the velocity difference u,
instead of being related to it as in high-speed flow, Eq. (P3.3.1) does not hold.
Instead, if the analogy between heat transfer and momentum transfer were exact
and the effect of departure of Pr from unity were small, show that we would have

T// u//

= —— P3.4.1)
T, — T, Ue
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or

" _T/I T —T) /!
%: - ( WT ) Z_ (P3.4.2)
e

3.5 Consider the momentum equation, Eq. (3.3.5) and show that in a highspeed
boundary layer,

11\ 11\
"' = (y — 1) M2 = Qv (7 — l)M2u . (P3.5.1)
u uv

3.6 By using the arguments used to derive a typical value of ¢”v” in Eq. (P3.5.1)
show that a typical value for ¢”u” in a nearly-adiabatic highspeed shear layer is

—
o(y—1) M"‘”7 (P3.6.1)

where M is the Mach number.

3.7 Show that in a boundary layer of thickness 6 on a surface of longitudinal
curvature radius R below a stream of Mach number M., the ratio of the pressure
difference across the layer to the absolute pressure at the edge is of order
YM25/R.

3.8 Show that in a turbulent boundary layer the ratio of the pressure change induced
by the Reynolds normal stress to the absolute pressure at the edge is of order
7Mfcf /2, where ¢y is the skin-friction coefficient. [Hint: Assume that gv” 2 is
of the same order as the shear stress — ou/"v".]

3.9 Show that if in the decelerating turbulent boundary layer in an expanding
passage (a diffuser) the skin-friction term in the momentum-integral equation,
Eq. (3.6.6), is negligible and H can be taken as constant. Equation (3.6.6) gives

) (e —(H+2)
0_0 B Ue 0

where subscript 0 denotes initial conditions.
3.10 Show that for an incompressible zero-pressure gradient flow over a wall at
uniform temperature, Eq. (3.6.26b) can be written as

iy
dx

= St. (P3.10.1)

3.11 Since the governing equations for two-dimensional and axisymmetric flows
differ from each other only by the radial distance r(x,y), the axisymmetric flow
equations, Egs. (3.3.24) to (3.3.26) can be placed in a nearly two-dimensional
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form by using a transformation known as the Mangler transformation. In the
case of flow over a body of revolution of radius r( (a function of x), we find
that if the boundary-layer thickness is small compared with ry, so that
r(x, y) =ro(x), this transformation puts them exactly in two-dimensional
form. We define the Mangler transformation by

r

at = ()" &, ay " P3.11.1
v= (7)o =(7) @ (P3.11.1)
to transform an axisymmetric flow with coordinates (x, y), into a two-dimen-
sional flow with coordinates (x,y). In Eq. (P3.11.1) L is an arbitrary reference

length. If a stream function in Mangler variables (X, ) is related to a stream
function ¥ in (x, y) variables by

then

(a) show that the relation between the Mangler transformed velocity compo-
nents # and v in (X,y) variables and the velocity components u and v in
(x,y) variables is:

AN A (P3.11.2)
oM

(b) By substituting from Eqs (P3.11.2) into Egs. (3.3.24)—(3.3.26), show that for
laminar flows the Mangler-transformed continuity momentum and energy
equations are:

au_ o0
9% 9y

U=t —-= ———x+v—[(1+t)2’<%] (P3.11.3)
+ r)z"a—T} (P3.11.4)

where

1/2
2
f= 14 (1 + “"f%) . (P3.11.5)
I,
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Note that for = 0, Eqs. (P3.11.3) and (P3.11.4) in the ( X, ¥) plane are exactly in
the same form as those for two-dimensional flows in the (x, y) plane.
3.12 As discussed in Section 8.2, transformed coordinates employing similarity

variables are often used in the solution of the boundary-layer equations.
A convenient transformation is the Falkner-Skan transformation given by
Eq. (8.2.5) for two-dimensional flows. With minor changes, this transformation
can also be used for axisymmetric flows.
With the transformation defined by

n= ()5 (P3.12.1)
V(E, 7) = (uewx)f (%, ) (P3.12.2)

show that Mangler-transformed continuity and momentum equations and their
boundary conditions can be written as

1/ +1 1 / _ ,3 ! ,,(3

(bf") + mTff +m[1 - (f)z} = x(f%—f a{) (P3.12.3)
1 X
n=0, f =0 f(50)=f = (u—m/o odi  (P3124a)
n=1.,f =1 (P3.12.4b)
where

b=(1+0* m= ui %, (P3.12.5a)

2 Ad 7!
f=—1+ {1 n (f—o) 20‘2”(?) n] (P3.12.5b)
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I 4.1 Introduction

The development and the presentation of the governing equations of turbulent flows
has been discussed in Chapter 2. In Chapter 3 we have shown that the governing
conservation equations can be simplified considerably for thin shear layers. In this
chapter and in the following chapters we shall discuss the solution of the thin-shear-
layer equations for two-dimensional and axisymmetric turbulent boundary layers for
both incompressible and compressible flows.

In this chapter we shall discuss the general behavior of turbulent boundary layers.
We shall consider certain special classes of flows and discuss various empirical laws
based on dimensional analysis such as “‘the law of the wall,” “the defect law” for
predicting mean velocity distribution, and similar empirical laws for predicting the
mean temperature distribution in such flows.

I 4.2 Composite Nature of a Turbulent Boundary Layer

According to experimental data, a turbulent boundary layer can be regarded
approximately as a composite layer made up of inner and outer regions. The exis-
tence of the two regions is due to the different response to shear and pressure gradient
by the fluid near the wall. The reason for identifying two regions in a turbulent
boundary layer can best be explained by examples.

Consider an incompressible flow past a flat plate. For a laminar boundary-layer
flow, the velocity profiles are geometrically similar and reduce to a single curve if
ulue is plotted against a dimensionless y coordinate, n = (ue/vx)”zy. This is the
well-known Blasius profile. The geometrical similarity is maintained, regardless of
the Reynolds number of the flow or of the local skin friction. In a turbulent boundary
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layer there is no choice of dimensionless y coordinate that leads to the collapse of the
complete velocity profiles into a single curve, because the viscous-dependent part of
the profile and the Reynolds-stress-dependent part of the profile require different
length-scaling parameters.

When an obstacle is placed in a laminar flat-plate boundary-layer flow, the
velocity profiles downstream from the obstacle do not at first resemble the Blasius
profile. However, at low Reynolds numbers, if the layer is allowed to develop far
enough downstream, the velocity profiles slowly return to the Blasius profile. In
turbulent boundary layers, the effect of such disturbances disappears quite soon,
because of the greater diffusivity, and the velocity profiles quickly return to
“normal’’ boundary-layer profiles. The phenomenon was experimentally investi-
gated by Klebanoff and Diehl [1]. Analysis of the data of Fig. 4.1 shows that the
inner part of the turbulent layer returns more quickly to “normal” than the outer
part of the layer, which suggests that the flow close to the wall is relatively
insensitive to the flow conditions away from the wall and to the upstream condi-
tions. Figures 4.2a and 4.2b further illustrate that effect. Here, turbulent flow in
a rectangular channel passes from a rough surface to a smooth one and vice versa.
The figures show that in both cases the shearing stress near the wall very rapidly
assumes the new value corresponding to the local surface conditions, while in
layers away from the wall the shearing stress, which equals the Reynolds stress 1 =
—ou'V' here, changes very slowly. In fact, a new state of equilibrium is established
only at rather long distances x, measured from the start of the rough surface.
Although the experiment is for channel flow, the basic phenomenon applies also to
boundary layers.

Fig. 4.1 Response of a turbulent boundary layer to wall disturbances. Mean velocity
distribution of a turbulent boundary layer on a flat plate behind a cylindrical rod in
contact with the surface at x = 4ft from the leading edge [1].
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Fig. 4.2 Variation of the shearing-stress distribution in turbulent flow through a rectan-
gular channel. Flow passes from (a) a rough surface to a smooth one and (b) a smooth to
a rough one [2].

Fig. 4.3 Semilogarithmic and linear plots of mean velocity distribution across a turbu-
lent boundary layer with zero pressure gradient. The linear plot is included to show
a true picture of the thickness of various portions.

A general conclusion that may be drawn from those experimental facts is that it is
fundamentally impossible to describe the flow phenomena in the entire boundary
layer in terms of one single set of parameters, as can be done for certain laminar
layers, especially the flat plate. For that reason, it is necessary to treat a turbulent
boundary layer as a composite layer consisting of inner and outer regions, even when
the flow is along a flat plate (see Fig. 4.3).

The inner region of a turbulent boundary layer is much smaller than the outer
region, with thickness about 10 to 20% of the entire boundary-layer thickness.

It is generally assumed that the mean-velocity distribution in this region is
completely determined by the wall shear ty, density @, viscosity u, and the
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distance y from the wall. It is given by the following expression known as the law of
the wall:

ut =ufu; = ¢, (er). 4.2.1)

Here, u, = (’L'W/Q)l/ Zis a factor having the dimensions of velocity and hence called the
friction velocity. The parameter y*, which is a Reynolds number based on typical
velocity and length scales for the turbulence, is defined as y™ = yu./».

In the case of the mean-temperature distribution in the inner region of a turbulent
boundary layer, the version of the law of the wall for the temperature in incom-
pressible turbulent flows is

Ty —T
T

=T" = ¢,(y", Pr). 4.2.2)
Here T, with g,, denoting the wall heat flux,

T, = dw

= e 4.2.3)
pUr

is called the friction temperature by analogy with the friction velocity u;.

The mean-velocity distribution $1(y") and mean-temperature distribution ¢,(y™,
Pr) depend on the condition of the wall. In Sections 4.4—4.6 we shall derive ¢;(y")
for smooth walls, for rough walls, and for porous walls and derive ¢2(y+, Pr) for
smooth and rough walls. The inner region can be divided into three layers as indi-
cated in Fig. 4.3: (1) the viscous sublayer, (2) the transitional region (sometimes
called the buffer region), and (3) the fully turbulent region. In the viscous sublayer,
the stresses are mainly viscous, since turbulent fluctuations, like mean velocities,
become zero at the wall. The predominantly viscous region is uniform neither
according to time nor according to distance along the wall. The great nonuniformity
was clearly shown in Fig. 1.3. But, at any section, a time-mean value of the thickness
of the region may be distinguished. We shall denote the thickness by y,. Thus, for
y < ys, the flow may be assumed to be viscous.

In the region y > y, in Fig. 4.3, the effect of the viscosity on the flow decreases
gradually with increasing distance from the wall. Ultimately, a region is reached
where the flow is completely turbulent and the effect of viscosity is negligibly small.
The intermediate region, where the total stress is partly viscous and partly turbulent,
is called the transitional region (not to be confused with the standard laminar-
turbulent boundary-layer transition). If we denote the average distance from the wall
beyond which the flow is fully turbulent by y; the range of the transition region is
specified by y; < y < yi. In general, the thickness of either the viscous sublayer or the
transitional region is quite small in comparison with that of the fully turbulent region
(see Fig. 4.3).
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Fig. 4.4 Universal plot of turbulent (a) velocity and (b) temperature profiles in zero
pressure gradient [3].

The outer region of a turbulent boundary layer contains 80—-90% of the boundary-
layer thickness (see Fig. 4.3). According to experiments, the mean velocity distri-
bution in the outer region can be described by the following expression, known as the
velocity-defect law (see Fig. 4.4a):

(e —u)/u; = f(y/9). 4.2.4)

This form, originally written by Darcy was soon forgotten. Much later, von Karman
[4] rediscovered it and gave it permanent importance. Equation (4.2.4) is not valid
close to the wall, since there the viscosity becomes important and therefore the flow
must depend on a Reynolds number (0u,/v) as well as the ratio y/0. Obviously, at the
top of the boundary layer, when y approaches o, the function f (y/0) goes to zero. For
flat plates and pipes, the function f has been found empirically to be independent of
Reynolds number and, most significantly, of the roughness of the wall. For boundary
layers on flat plates, the function f is numerically different from that for pipe flow,
owing mainly to the presence of the free outer boundary. It is also markedly affected
by streamwise pressure gradient, and except for specially tailored pressure gradients
of which zero is one, f depends on x (see Section 4.4.5).

Similar to the representation of the mean velocity distribution in the outer
region of a turbulent boundary layer, the mean-temperature distribution can be
represented by

T.—T
T;

= Fy(v/9) 4.2.5)

which is independent of Prandtl number (see Fig. 4.4b).

According to experimental observations, as the free stream is approached, the
flow at a given point becomes intermittently turbulent. Such an on-and-off character
of turbulence is also observed in wake and jet flows. Figures 1.4, 1.5, 1.20, and 4.5
show the sharp boundary between a turbulent and a nonturbulent flow.
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Although the behavior of turbulent flow in the inner and the outer regions of the
layer is quite different, those regions are strongly coupled by the shear-stress profile
and the general diffusivity of the turbulence.

In order to see how the interference takes place, it is useful to study the transport
of energy in a turbulent boundary layer. That can be done by considering the
mean-kinetic-energy equation (3.4.3) and the turbulent-kinetic-energy equation
(3.5.6b). For a steady, two-dimensional, incompressible flow with zero pressure
gradient, they can be written as follows:

Mean-Kinetic-Energy Equation

6u2+6u2
“ox\2) Ty \2

(4.2.6)
_1e [u(,u,%—gu’v’)} L O
0 dy dy ay’
Turbulent-Kinetic-Energy Equation
d [q* d [q*
“a\2) Tl 2
4.2.7)
— o [P d (vVg? pv
Y Rt —Z | Nl - = L
uvay+vay2 2+v R —I—Q

Here, for simplicity we have again omitted the bars from the mean quantities. We
note that the mean-dissipation term 1w(du/dy)* does not appear in Eq. (4.2.6), since in
incompressible flows the term is small compared to the rest of the terms. Further-
more, except for the turbulence-dissipation term g, the two viscosity terms (9/dy)
[up(du/dy)] and v(9%/3y?) [(?/ 2) +v'2] in Egs. (4.2.6) and (4.2.7), respectively, are
small outside the sublayer and can therefore be neglected. Then for y > 65 where 5 is
the sublayer thickness, Eq. (4.2.6) reduces to

9 [u? 9 [u* —Odu 9, —
= — =) - — 4+ — ) = 4.2.
“ax(z)“ay(z) uvay+ay(uuv) 0, 4.2.8)

and Eq. (4.2.7) reduces to

o (4 d [\ —ou d| (¢ p
— | = — | = — 4= —+= = 0. 429
“ox | 2 +v6y 2 +’“’ay+ay v 2+Q te ( )

Figure 4.6a shows the distribution of the three terms of Eq. (4.2.8). The exper-
imental data are due to Klebanoff [5]. The figure shows that the loss of mean kinetic
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Fig. 4.5 Sketch of the turbulent boundary layer. At times the uncontaminated potential
flow may extend far into the boundary layer, as shown [5].

Fig. 4.6 (a) Balance of the kinetic energy of the mean flow in the boundary layer in
zero pressure gradient according to Eq. (4.2.8), from the experimental data of Klebanoff
[5]. (b) Balance of turbulent energy in the boundary layer according to Eq. (4.2.9), from
the experimental data of Klebanoff [5]. The left-hand ordinate denotes the scale for the
inner region of the boundary layer, the right-hand ordinate denotes that for the outer
region.

energy is considerable, except in the region close to the wall, where turbulent energy
production is most intense. The kinetic energy lost by the mean flow in the outer
region is transferred by the working of the mean flow against the Reynolds stress to
the inner region, where it appears as energy of the turbulent motion.

Figure 4.6b shows the variation of the four terms of Eq. (4.2.9), in dimensionless
quantities, as calculated from the measurements of Klebanoff [5]. It is seen from the
experimental plots that, in the inner region close to the wall, the dominant terms in
Eq. (4.2.9) are the one that corresponds to the production of kinetic energy due to
turbulence through action of the Reynolds stresses (6u/v//u2) (du/dy) and the one
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Fig. 4.7 Near-wall variation of k" with y*. The equation is Eq. (4.2.11) with A* = 0.05.

that corresponds to the dissipation of energy due to viscosity, €6/ u% The contribu-
tions for the total energy balance are nearly equal and opposite. In addition, it may be
observed that, in general, throughout the boundary layer the absolute values of these
two terms are greater than the values of other contributions, except near the edge.

Consequently it is apparent that, within the inner region of the boundary layer, the
energy-exchange processes are in a state of near equilibrium, with the result that the
local production of energy and the local dissipation of energy are almost compen-
sating. For that reason, the flow in the inner region is governed essentially by the
local conditions.

In the outer region of the boundary layer, however, the dominant terms are those
due to convection and those due to dissipation — both of which have the same sign —
and the balancing contribution for the diffusion term. In that region, the turbulent-
flow phenomena depend not only on the local conditions but also on the whole
history of events in the flow upstream of the point in question.

Figure 4.7 shows the variation of dimensionless turbulent kinetic energy k'
(= k/u?) with y* according to the data compiled by Coles [6] and the data of El
Telbany and Reynolds [7] as reported in [8]. In spite of the larger scatter, we see that
kT becomes maximum around y* =15 which corresponds to the location of the
maximum production of k [9]. A representative peak value for k¥ is 4.5. In the
interval 60 < y+ < 150, k™ becomes nearly constant with a value of 3.3. Since in
the log law region of a flat-plate boundary layer, the shear stress —u/v/ o u%, the data
suggest a value of around 0.30 for the ratio —u/v’ /k.

The variation of k in the immediate vicinity of the wall can be deduced from the
continuity equation and the no-slip condition. Following [10], the variation of «’, v’
and w' with distance from the wall can be written in the form

W = ayy+biy*+ - (4.2.10a)



98 Analysis of Turbulent Flows with Computer Programs

Vo= byy? + - (4.2.10b)

/

w = azy +b3y? + ... (4.2.10c)

where the coefficients a;, and b; are functions of time, but their time average is zero.
Equations (4.2.10) lead to

KT = ATy 4By 4 . 4.2.11)
where
L2,
At = 2—4((;% +a§) (4.2.12a)
MT
v
B = E(albl +a3b3) (4.2.12b)
T

The data of Kreplin and Eckelmann [11] support Egs. (4.2.10) and suggest a value
of 0.035 for A, Sirkar and Hanratty [12] give 0.05 at a higher Reynolds number,
while the data compilation of Derksen and Azad [13] suggests 0.025 < AT < 0.05,
with the higher value for higher Reynolds numbers.

Figure 4.8 shows the variation of dimensionless rate of dissipation e*(E l’;—i)
with y*. The available data for & defined by Eq. (6.1.7), '

du; u

— 6.1.7
6xk ka ( )

Fig. 4.8 Near-wall variation of e with y*. The data is due to Laufer [14].
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are quite limited and are subject to a large measurement uncertainty, especially in
the region 0 < y* < 40. Very close to the wall, the variation of ¢ can be approxi-
mated by

et =2(AT+2BTy" + ) (4.2.13)

indicating a finite ¢ at the wall value equal to 2A". Experimental values of A"
quoted earlier then indicate 0.05 < & < 0.10, with a preference for the higher value
at larger Reynolds numbers. If BY =0 is assumed, Eq. (4.2.13) indicates

de™

yh=0, —=0 (4.2.14)
dy

which can be used as a boundary condition for ¢ as will be discussed in Chapter 6.

4.3 Eddy-Viscosity, Mixing-Length, Eddy-Conductivity
and Turbulent Prandtl Number Concepts

In order to predict the mean-velocity distribution or the mean-temperature distri-
bution across a turbulent boundary layer, it is necessary to make an assumption for
or find a model for the Reynolds stresses. Over the years, several empirical
hypotheses have been used. Eddy-viscosity and mixing-length concepts are among
the more popular and extensively used concepts. All these concepts relate the
Reynolds stress to the local mean-velocity gradient, as will be shown in this section
and later more extensively in Chapters 5 and 6. The main objection to the eddy-
viscosity and mixing-length concepts is that they lack generality — they are based
on local equilibrium ideas that assume the transport terms in the governing equa-
tions to be small. A more general approach, which will be discussed in Chapter 6, is
to use ideas that consider the rate of change of the Reynolds stress in the governing
equations. The prediction methods that use these ideas are referred to as transport-
equation methods. They reduce to the methods that use eddy-viscosity or mixing-
length ideas when the transport terms are small. For a detailed discussion, see
Chapters 6 and 9.

Boussinesq [15] was the first to attack the problem of finding a model for the
Reynolds shear stress by introducing the concept of eddy viscosity. He assumed that
the turbulent stresses act like the viscosity stresses, which implies that the turbulent
stresses are proportional to the velocity gradient. The coefficient of proportionality
was called the “eddy viscosity” and was defined by

—ou'V' = gem (0u/dy). 4.3.1)
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Here, ¢, like the kinematic viscosity v, is assumed to be the product of a velocity and
a length, that is,

em ~ length x velocity. 4.3.2)

The mixing-length concept was first proposed by Prandtl [16]. According to this
concept the Reynolds shear stress is to be calculated from

du

dy

du 4.3.3)

oy — ol ’
Qu'v Q dy

The basis of Prandtl’s mixing length hypothesis is an analogy with the kinetic theory
of gases, based on the assumption that turbulent eddies, like gas molecules, are
discrete entities that collide and exchange momentum at discrete intervals.

By Eq. (4.3.1) we can write a relationship between eddy viscosity and mixing
length:

_p|% (4.3.4)
dy

€m

The length [ defined by Eq. (4.3.3) is, of course, a quantity whose value is yet to be
found. According to von Karman’s hypothesis [4], [ is given by

du/dy

4.3.5
0%u/dy? (+3.5)

=K

where « is an empirical constant known as von Karman’s constant.

Equations (4.3.1) and (4.3.3) merely represent the definitions of &, and I: the
assumption is that they will vary more slowly or simply than the shear stress and
therefore be easier to correlate empirically. The use of eddy viscosity to predict the
complete Reynolds-stress tensor is discussed later. When the characteristic length
scale is readily identified and defined, for example in a jet or wall boundary layer
with a moderate pressure gradient, the simplicity of the mixing-length or eddy-
viscosity approach is commendable and, since it can readily be specified in algebraic
form, the equations for continuity and momentum can be written with the same
number of unknowns as equations. In more complex, or rapidly-changing flows, the
algebraic correlations are inadequate. One alternative is to use the transport equation
for [ or &y, In the so-called ““one-equation” models, &, is expressed as

em = Cuk'/?1 (4.3.6)

where [ is a length scale, still related to the shear layer thickness, and k is the
turbulent kinetic energy for which a modeled partial-differential “‘transport”
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equation is solved. A more general and more popular approach requires a transport
equation for /, often in the form of the rate of turbulence dissipation

k3/2
The solution of an equation for &, together with a transport equation for k£ and the
eddy-viscosity expression, Eq. (4.3.6), forms the basis of the ubiquitous two-
equation models suggested by, for example, Jones and Launder [17] as we shall
discuss in Chapter 6. Note that this procedure simply serves to define

—u'v e
Cu="gy a2 (4.3.8)
dy

However, the k- model is sufficiently realistic that ¢, = constant = 0.09 gives good
predictions in many flows as we shall see in Chapter 9.

Analogous quantities can be defined for turbulent heat-transfer rates. Again using
Boussinesq’s eddy conductivity concept, we can write the transport of heat due to the
product of time mean of fluctuating enthalpy /4’ and fluctuating velocity v’ in the form

— oh
—oUh = 0en 5> (4.3.92)
y

or for a perfect gas

—QcpT’—v’ = QCpE) a—T . (4.3.9p)
dy
Note that a minus sign still appears; in heat transfer, as in momentum transfer, we
expect transport down the gradient of the quantity in question. The eddy conductivity
has the same dimensions as the eddy viscosity, namely, velocity x length.
Sometimes it has been found to be convenient to introduce a ‘“‘turbulent” Prandtl

number Pr, defined by

v’ Ju
Pro="" = 0 (4.3.10)
gh T/v//a_y

Each of the relations given by Eqs (4.3.1), (4.3.3) and (4.3.9) requires some
empirical values if it is to be used for quantitative calculations. In other words, it is
necessary to make assumptions for the distribution of eddy viscosity and conduc-
tivity. We shall postpone the discussion on the distribution of eddy conductivity to
Chapter 5 and here concentrate on the distributions of eddy-viscosity and mixing-
length.
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Fig. 4.9 Dimensionless (a) eddy-viscosity and (b) mixing-length distributions
across a turbulent boundary layer at zero pressure gradient, according to the data of
Klebanoff [5].

Figures 4.9a and 4.9b show such distributions on a flat plate according to the
measurements of Klebanoff [5]. The results shown in these figures indicate that in the
region 0 < y/6 < 0.15-0.20, the eddy viscosity and mixing length vary linearly with
distance y from the wall. Both variables appear to have a maximum value anywhere
from y/0 = 0.20 to 0.30. Consequently, in this inner region the eddy viscosity and
mixing length can be approximated by

Em = KUy, 4.3.11)

| = «ky, 4.3.12)

where « is a universal constant, experimentally found to be in the region of 0.40-
0.41. For y/6 greater than approximately 0.20, the eddy viscosity begins to decrease
slowly, but the mixing length remains approximately constant, so it can be
approximated by

1/6 = const, (4.3.13)

where the constant varies from 0.075 to 0.09, depending on the definition of
boundary-layer thickness o.

As the free stream is approached, the turbulence becomes intermittent; that is, for
only a fraction vy of the time is the flow turbulent. The same phenomenon has also
been observed in other shear flows that have a free boundary. The on-and-off
character of the turbulence is the reason for the irregular outline of the turbulent
boundary layer shown in Figs. 4.5 and 1.20. The intermittency is easily observed in
oscilloscope records of the u’ fluctuation in the outer region of the boundary layer,
and the records can be used both to give a quantitative estimate of the factor v and to
discern some qualitative aspects of the flow. Representative sections of oscilloscope
records taken at various positions across the boundary layer obtained on a flat plate
by Klebanoff [5] are shown in Fig. 4.10a. It can be seen that, in the outer region of the
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Fig. 4.10 (a) Instantaneous velocity u in a boundary layer, u. =50 ft/sec, timing dots
60/sec and (b) intermittency distribution across a turbulent boundary layer. Data repre-
sent three different techniques of measurement.

layer, y/6 > 0.4, there are intervals of time when the flow is not turbulent and that
these intervals become longer with increasing distance from the wall. Thus, the outer
region is divided into a turbulent part and a relatively nonturbulent free-stream part,
and the hot wire at a given position responds to alternate turbulent and nonturbulent
flow as the pattern is swept downstream.

Intermittency factors have been obtained by Klebanoff [5] and by Corrsin and
Kistler [18]. Figure 4.10b shows the distribution of intermittency factor y according
to Klebanoff’s measurements for a flat-plate flow. It can be fitted approximately by
the expression (see Section 1.7)

v = {1 —erf 5[(v/5) ~078]}. (43.14)

If the distribution of eddy viscosity is corrected for the effect of intermittency, the
dimensionless eddy viscosity ey/u.6 becomes nearly constant across the main outer
part, as is shown in Fig. 4.9a. It can be approximated by

Em = A1U0, (4.3.15a)

where «; is an experimental constant between 0.06 and 0.075.

It should be pointed out that the length and the velocity scales used to normalize
the eddy viscosity in Fig. 4.9a are not the only possible characteristic scales. Other
length and velocity scales such as 6* and u,, respectively, can also be used. Equation
(4.3.15a) then can also be written in the form

em = QU0 (4.3.15b)

where « is a constant between 0.016 and 0.02. For equilibrium boundary layers (see
Section 4.4.5), the two expressions for ey, can be shown to be the same.
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Fig. 4.11 Mixing-length distribution in a tube for (a) moderate Reynolds numbers and
(b) high Reynolds numbers, Ry> 105 x 10% according to the measurements of Nikur-
adse [19].

In Fig. 4.11 we show the mixing-length distribution in pipe flow according to the
measurements of Nikuradse [19]. From those distributions we see that although at
low Reynolds number the mixing-length distribution across the pipes varies, at high
Reynolds numbers it does not. For high Reynolds numbers, the mixing-length
distribution can be expressed with good approximation by the following equation:

1/ro = 0.14 — 0.08[1 — (y/ro)]>—=0.06[1 — (v/ro)]*, (4.3.16a)

where y denotes the distance from the wall and ry the radius of the pipe. Developing /
as a series gives

I = 0.4y —044(*/ro) + ... (4.3.16b)

Figure 4.12 shows the eddy-viscosity distribution in pipe flow according to the
measurements of Laufer [14] and Nunner [20]. The experimental data indicate that
for the core region of the pipe flow the distribution of the eddy viscosity resembles,
both qualitatively and quantitatively, the corresponding distribution for the fully
turbulent portions of the outer region of the boundary-layer flow. The eddy viscosity
first increases linearly with y/rg, then reaches a maximum at about y/rg =0.3, and
finally decreases slightly, becoming nearly constant at y/ry = 0.5.

4.4 Mean-Velocity and Temperature Distributions
in Incompressible Flows on Smooth Surfaces

The momentum equation for a two-dimensional, incompressible, turbulent boundary
layer with zero pressure gradient can be written as [see Eq. (3.3.10)]
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Fig. 4.12 Eddy-viscosity distribution in pipe flow according to the measurements of
Laufer [14] (o) and Nunner [20] (OJ).

ou du 107
— — = - 44.1
" ox v dy ody’ ( )
where 7 is the total shear stress,
9 _
T=1+17 = ,u,a—u—gu’v’. (4.4.2)
y

For a nonporous surface, (dt/dy)y, =0, since u and v are zero at the wall. Further-
more, by using the equation of continuity and the no-slip condition u,, = 0, and by
differentiating Eq. (4.4.1) with respect to y, it can be shown that (Gz‘clayz)w =0.
Hence for some small distance from the wall we can write

dt/dy = 0. 4.4.3)

That equation shows that the total shear stress 7 is constant. Experiments support that
relationship. Figure 4.13a shows the distribution of dimensionless Reynolds shear-
stress term, 27/ ng = —2W/ uZ, across the boundary layer for a flat-plate flow, as
measured by Klebanoff [5]. From a point very close to the wall to y/6 = 0.1-0.2, the
turbulent shear stress is approximately constant. As the wall is approached, the
turbulent shear stress goes to zero, as shown by the experimental data of Schubauer
[21] in Fig. 4.13b. In the region where turbulent shear stress begins to decrease,
however, the laminar shear stress begins to increase in such a way that the total shear-
stress distribution is still constant in the region 0 <y < 0.1-0.2, which is as it should
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Fig. 4.13 (a) Dimensionless shear-stress distribution across the boundary layer at zero
pressure gradient [5]. The region in the circle is shown expanded in (b). The solid dot
denotes the value of dimensionless wall shear stress.

be, according to Eq. (4.4.3). Figure 4.13a also shows the value of the dimensionless
laminar shear stress at the wall where 7, = 0:

21 21 2v (du
Sy () = ¢ (4.4.4)
oug qug  uz \9y/y,

Integration of Eq. (4.4.3) in the region of nearly constant stress leads to
T = const = 1; + 1¢; hence from Eq. (4.4.2),

u [E—
v——uv =

Tav_ 2 (4.4.5)
dy 0

? T
From Eq. (4.4.5) it can be seen that if the variation of —u/v’ with y is known or if the
relationship of —u/v’ to the mean flow is known, then Eq. (4.4.5) may be integrated to
obtain the velocity distribution in the constant-shear-stress region.

Similarly for an incompressible flow, the energy equation can be written as

or T 1 (8T p— 1 94
U v = —<k—2—gcp—T’v’> =4 (4.4.6)
Ox dy  oecp \ dy dy acp dy
where ¢ is the total heat flux,
. .. oT _
qg=q+q = —k—+oc, TV. (4.4.7)

dy

On a smooth surface, as with the momentum equation, we can write

A ~o. 4.4.8)
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Integration of Eq. (4.4.8) in the region of nearly constant heat flux leads to
q = constant = g; + ¢,; hence from Eq. (4.4.7),

dT = ..
— kE_QCPTv = g =gy = Twocpu;

or

dar TV
: Y. (4.4.9)

Prufd—y_ Usg

From Eq. (4.4.9) it can be seen that if the variation of —7”v" with y is known or if
the relationship —7"v' to the mean temperature is known, then Eq. (4.4.9) may be
integrated to obtain the temperature distribution in the constant-heat-flux region.

4.4.1 Viscous AND CONDUCTIVE SUBLAYERS

The thickness of the viscous sublayer is approximately equal to 0.1-1% of the total
thickness of the boundary layer. The mean-velocity distribution can be obtained from
Eq. (4.4.5), which for the viscous sublayer reduces to

v(du/dy) = uz, (4.4.10)

since w'v/ = 0 at y=0. Integrating that equation and expressing the result in
dimensionless parameters, we obtain
ut =yt (4.4.11)
which is, as it should be, a special case of Eq. (4.2.1). This is valid for y* less than
approximately 5 (see Figs. 4.3 and 4.13b).
In the case of the temperature profile, the heat-conduction law gives, for y*
Pr<3and y" <3 (say),

dT
T
dw dy
or
or
Tt = yT Pr (4.4.12)

which is a special case of Eq. (4.2.2).
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4.4.2 FurLy TurBULENT PART OF THE INNER REGION

In the part of the inner region where the flow is fully turbulent, the laminar shear
stress 17 is small compared to 7, and can be neglected. According to Fig. 4.13b, that
assumption applies approximately when y* > 50. Consequently, in the fully turbu-
lent part of the inner region, Eq. (4.4.5) reduces to

/o = —uv = u? (4.4.13)

Z.
Substituting the expression (4.3.1) into Eq. (4.4.13) and using the eddy-viscosity
relation (4.3.11), we get

kuzy(du/dy) = u? (4.4.14)

ol
Integration yields
ut = (1/k) In y* +ec, (4.4.15)

where ¢ is a constant whose value is between 4.9 and 5.5. Equation (4.4.15), called
the logarithmic law for velocity, can also be derived by substituting the mixing-
length formula (4.3.10), with [ given by Eq. (4.3.12), in Eq. (4.4.13) and integrating
the resulting expression.

Equation (4.4.15) can also be derived from Eq. (4.2.1) without using the mixing-
length concept. From Eq. (4.2.1) we can write

du  u?de,
dy  vdyt’
Since the right-hand side must be independent of the viscosity, it follows that

d¢; 1 du  u;
R Y
Integration of this expression gives Eq. (4.4.15).
An expression similar to Eq. (4.4.15) can also be derived for the temperature
profile by using the eddy conductivity relations discussed in Section 4.3. It can also
be obtained from Eq. (4.2.2) by writing it as

d T dg,
—(Ty —T) = S dyt

or as

;(TW 1) = I (4.4.16)



General Behavior of Turbulent Boundary Layers 109

Here «j, is an absolute constant around 0.44. Integration of Eq. (4.4.16) gives

Ty —T 1
Tl
TT Kp 14

or

1
T = . In y* +¢p, (4.4.17)
h

where cj, is a function of Pr.

4.4.3 INNER REGION

In the transition region (buffer layer) both components of the total shear stress,
namely, 7; and 7, are important. Prandtl’s mixing-length theory and Boussinesq’s
eddy-viscosity concept in their original form apply to fully turbulent flows. The flow
in the buffer layer is in a state of transition. As the laminar sublayer is approached
from above, the magnitude of the velocity fluctuations «’, v' and, consequently, that
of the turbulent shear stress, —ou/v/, approaches zero. As the region of fully
turbulent flow is approached from below, the magnitude of the velocity
fluctuations approaches the levels of the velocity fluctuations in the fully turbulent
flow. So far, various assumptions have been made for the turbulent shear-stress term
in Eq. (4.4.5) in order to describe the mean-velocity distribution there. Of the many
proposed, one has enjoyed a remarkable success. It is the expression proposed by
Van Driest [22], who assumed the following modified expression for Prandtl’s
mixing-length theory:

I = ky[l —exp(—y/A)], (4.4.18)
where A is a damping-length constant defined as 26V(’CW/Q)_1/2. In the form given by
Eq. (4.4.18), A is limited to incompressible turbulent boundary layers with negligible
pressure gradient and zero mass transfer. In Chapter 5 we shall discuss its extension
to turbulent boundary layers with pressure gradient and with heat and mass transfer.

If we now use Prandtl’s mixing-length formula (4.3.5), together with the mixing-
length expression given by Eq. (4.4.18), we can write Eq. (4.4.5) as

v(du/dy) + (ky)*[1 — exp(— y/A))* (du/dy)* = u?.

In terms of dimensionless quantities, that equation can be written as

a(y") (dutjdy™) +b(dut fdyT) —1 = 0
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or

dut —b+ (B +4a)'?

dyt 2a ’

where a(y") = (ky ") [1-exp(—y /A%, AT =26, and b=1. Multiplying both
numerator and denominator of the du't/dy" expression by [b+(b2+4a)1/2] and
formally integrating the resulting expression, we obtain

+

y
ut = / 2 7 dy*, (4.4.19)
0 b+ [b?+da(yt))

since ut =0at yt =0.

Equation (4.4.19) defines a continuous velocity distribution in the inner region of
the turbulent boundary layer and applies to the viscous sublayer, to the transition
region, and to the region of fully turbulent flow. For example, in the viscous sublayer,
a=0. Then Eq. (4.4.19) reduces to the viscous-sublayer expression given by Eq.
(4.4.11). In the fully turbulent region, b =0 and a = (Ky+)2, and Eq. (4.4.19) reduces
to Eq. (4.4.15), with ¢ =5.24.

Figure 4.14 shows that the mean velocity distribution calculated by Eq. (4.4.19)
agrees quite well with the experimental data of Laufer [14] ([J) and with the flat-
plate data of Klebanoff [5] (O) and of Wieghardt [23] (A).

Equation (4.4.17), like Eq. (4.4.15) can also be extended to include the
(conductive) sublayer by using a procedure similar to that used for the velocity

Fig. 4.14 Mean-velocity distribution in the inner region as calculated by Eq. (4.4.19).
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profile. Using the definition of eddy conductivity given by Eq. (4.3.9b), we can write
Eq. (4.4.9) as
dr+ 1
y Pr +e& h
where e; = gp/v. To integrate this equation we need an expression for e,j. Several
models for 8;{ can be used for this purpose. According to a model developed by
Cebeci [24], with turbulent number Prandtl number by
1- —y/A
pr, = &m = K 1-exp(=y/A) @.421)
e, kpl—exp(—y/B)

e; is represented by
+ 1 + dut
+ _ fm 2, )2 y u
=-m _ _ 1-— — | —. 4.4.22
€ Pry PrtK ") [ exp( AT )} dy™ ( )
The parameter B is given by a power series in logq Pr,
B+V 1 > i—1
B=-—. BT = -y > Ci(log,q Pr)’ (4.4.23)
T

i=1

where C| = 34.96, C, =28.79, C3 =33.95, C4, = 6.3 and C5 =-1.186. We can now
integrate Eq. (4.4.20) numerically to obtain 7" as a function of y* if we substitute for
e; from Eq. (4.4.22), obtaining du™/dy™ from Eq. (4.4.19). The variation of Pr; with
y ™ for a range of values of Pr is shown in Fig. 4.15, and the resulting 7" profiles are
given in Fig. 4.16.

Fig. 4.15 Variation of Pr, with y* at different values of Pr.
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Fig. 4.16 Mean-temperature distribution across the layer as a function of Pr.

4.4.4 OuTer ReGiON

In obtaining the relation leading to Eq. (4.4.19), we have approximated the
momentum equation (4.4.1) by Eq. (4.4.3), by making the assumption that u and v
are small close to the wall. In other words, we have neglected the convective term in
Eq. (4.4.1). According to experiments, the assumption is good only close to the wall,
within approximately 20% of the boundary-layer thickness for zero-pressure-
gradient flows. Since the convective term is of the same order of magnitude as the
shear-stress gradient term at a greater distance from the wall, the left-hand side of the
momentum equation must be accounted for.

In the outer region, 1; is quite small compared to 7, and can be neglected. Then
the momentum equation (4.4.1) becomes
du u 1 01t

ua—kv@ = Ea_y’ yo <y <o. 4.4.24)
where 7, = —QW and y( is at some distance from the wall. We see from Eq. (4.4.24)
that the momentum equation for the outer region of a turbulent boundary layer has
the same form as the momentum equation for a laminar boundary layer. The
resemblance between the two equations can be better illustrated by using the eddy-
viscosity concept.

We first assume an eddy viscosity &, independent of y in the outer region and call
it 9. Substituting the eddy viscosity defined by Eq. (4.3.1) into Eq. (4.4.24), we get

du  ou 6<6u> &%u

GO ou 4425
"ox tv dy  dy goay €0 dy? ( )
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Equation (4.4.25) is identical to the laminar boundary-layer equation if we replace
the kinematic eddy viscosity gy by the kinematic molecular viscosity ». The fact that
the momentum equation for the outer region of a turbulent layer is similar to that for
a laminar layer enables one to extract valuable information about the behavior of the
mean velocity distribution of the turbulent layer from the known behavior of the
laminar layer. If proper scaling variables are chosen, a close similarity between
laminar and turbulent velocity profiles in the outer region can be shown to exist, as
demonstrated by Clauser [25].
To illustrate, let us introduce the transformation

¢ = y(ue/eox)"/?, (4.4.26)

together with the definition of stream function ¥(x, y) and the dimensionless stream
function F( = y(x, y) (eouex)” 2 into Eq. (4.4.25). That gives the well-known
Blasius equation for laminar flows, namely,

1
F" + EFF” =0, (4.4.27)
where the primes on F denote differentiation with respect to {. Equation (4.4.27) is
subject to the following boundary conditions:

F(0) = 0, F'(0) = const, Vlirr})F’(C) = 1. (4.4.28)

We note that in Eq. (4.4.26) the usual kinematic molecular viscosity » is replaced by
the kinematic eddy viscosity &y, which is assumed to be constant.

Figure 4.17a shows the solutions of Eq. (4.4.27) for various values of F'(0) as
obtained by Clauser [25]. In that form of presentation, the velocity profiles do not

Fig. 4.17 (a) Solutions of the Blasius equation for various slip velocities and (b) replot
of the solutions of the Blasius equation given in (a) in terms of new coordinates.
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collapse into a single “universal” curve. However, if the solutions are to be used in
describing the mean-velocity distribution in the outer region of a turbulent boun-
dary layer, they must collapse into a universal (or nearly universal) curve, as was
shown by the discussion in Section 4.2, where the velocity profiles for turbulent layers
were seen to collapse into a universal curve when they were plotted as (ue — u)/u;
versus y/6.

To put the “laminar” solutions in the universal form, we use (u. — u)/u. and y/0 as
variables and divide them by factors that will bring the curves of Fig. 4.17a into
coincidence. The factor for y/d is elected to make the areas above the curves equal.
Two choices are available for the factor for (#e — u)/u.. Here we discuss only one. See
Clauser [25] for a further discussion. By choosing the variables

et and y{ 1 (du> }1/2 (4.4.29)
B 1/2 * I ) ST
e[ (6" ue) (atufay), | b A/

the “laminar” curves of Fig. 4.17a can almost be reduced to one universal curve.
Recalling the definition of 6* and using the transformation in Eq. (4.4.26) and the
fact that F'({) = u/ue, we can write Eq. (4.4.29) as

1-F'(§)
{FrOE() - F()

"0 1/2

The ‘“laminar” curves replotted in the new coordinate system are shown in
Fig. 4.17b.

We shall now compare the experimental velocity profiles for turbulent boundary
layers (zero pressure gradient) with the ‘“laminar” curves of Fig. 4.17a. The
experimental data considered are due to Smith and Walker [26]. Here, from the
experiment we know the velocity profile u/u, the displacement thickness 6*, and the
local skin-friction coefficient c; defined as

cr = 2ty /out = 2u?/ul.
Since we are interested only in the outer region, we see from Eq. (4.4.25) that
(du/dy), = (1/0)y,(1/€0) = u2/eo, 4.4.31)

which with the definition of ¢ can be written as

(du/dy),, = (cf/Z) (ug/eo).
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Fig. 4.18 Solutions of the Blasius equation plotted in velocity-defect form. Circles
represent the data of Smith and Walker [26].

Introducing u% /€0 from Eq. (4.4.31) into Eq. (4.4.29) and replacing & by the value of
&m in Eq. (4.3.15b), we obtain

12 )1/
(1_1> o and l*%. (4.432)
U (Cf/z) o «

If a value for « is assumed, the experimental turbulent velocity profiles can be easily
plotted in the coordinate system given by Eq. (4.4.32).

According to Eq. (4.4.32), it is necessary to know u/u., y/6*, and the ratio of
al/zl(cf/Z)l/z, in order to use the “laminar” solutions of Eq. (4.4.27). The first two
are known for a given F’(0), although which value of F’(0) is chosen is imma-
terial. The only unknown is the ratio of a'? to (Cf/2)1/2 and it must be chosen to fit
the experimental data.

Figure 4.18 shows a comparison of experimental velocity profiles and the solu-
tions of the Blasius equation plotted in the coordinates given by Eq. (4.4.32). The
experimental profiles of Smith and Walker [26] were plotted for « = 0.022. The local
skin-friction coefficient ¢, which was measured, was 2.1 x 107 at Rs* = 61,500.
The solutions of the Blasius equation correspond to the case in which F'(0) = 0.
They5 were plotted for a ratio of (cif2)'? 172 assumed to be 0.75. The figure shows
that the calculated curves fit the experimental data quite well for the outer 80-90% of
the layer. Therefore constant e, scaled on u, and 6* reproduces the observed velocity
profiles in a turbulent boundary layer in zero pressure gradient.

o«

SWe note that for Blasius’ equation y/6" = {/[¢w — F()]-
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4.4.5 EqQuiLiBRIUM BOUNDARY LAYERS

Equilibrium boundary layers constitute a class of boundary layers in which the
mainstream velocity distribution is characterized by a constant value of the
parameter

B = (6/tw) (dp/dx), (4.4.33)

which represents the ratio of pressure forces to shear forces in a section of the
boundary layer. These flows, which are called equilibrium or self-preserving flows,
were first obtained experimentally by Clauser [27] for two adverse-pressure-gradient
flows, both analogous to the Falkner-Skan flows in laminar layers. A zero-pressure-
gradient flow is a special case of an equilibrium boundary layer. In Clauser’s equi-
librium-flow experiments, long sections of two-dimensional turbulent boundary
layers were subjected to various adverse pressure gradients, and by trial and error the
pressure distributions were adjusted to give similar boundary-layer profiles when
plotted on the basis of the velocity-defect laws. For example, at first a trial pressure
distribution was adopted, and the velocity profiles at a number of x stations were
measured and from them the skin-friction coefficients determined. When the results
were plotted in terms of velocity-defect coordinates, that is, (1 — u)/u, versus y/d, the
profiles were not similar. Thus it was necessary to alter the pressure distribution
a number of times before similar profiles were obtained. When a pressure distribu-
tion was obtained for which the profiles were similar at all stations, it was found that
the function fin the defect law, Eq. (4.2.4), was different from that for zero-pressure-
gradient flow and was also different for each separate pressure distribution. However,
the function f was the same for an arbitrary number of stations for one pressure
distribution. Furthermore, it was observed that for each pressure distribution or for
each equilibrium flow the parameter § remained approximately constant. From these
experiments, Clauser determined that the outer part of an equilibrium boundary layer
can be analyzed by assuming an eddy viscosity given by Eq. (4.3.15b).

Figure 4.19 shows the velocity profiles for the two different pressure distributions
considered by Clauser [27], as well as the velocity profile for zero pressure gradient.
There is a marked difference between the velocity profiles with pressure gradient and
those with no pressure gradient. Furthermore, the difference increases with
increasing pressure-gradient parameter (3.

Equilibrium boundary layers with pressure gradient have also been measured by
Bradshaw [28] and Herring and Norbury [29]. Bradshaw [28] measured equilibrium
boundary layers in mild positive pressure gradient. In his experiment, the external
free stream velocity varied with x as

—0.15

U~ X and u. ~x 025,
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Fig. 4.19 Velocity-defect profiles for three incompressible equilibrium turbulent
boundary layers. The data for § =1.8 and 8.0 are due to Clauser [27].

Herring and Norbury [29] conducted two separate experiments, both for flows having
mild negative pressure gradients. In the first experiment, the flow had a mild negative
pressure gradient for which 8 was — 0.35. In the second, the flow had a relatively
strong negative pressure gradient for which ¢ was — 0.53.

4.4.6 VeLocity AND TEMPERATURE DISTRIBUTIONS FOR THE WHOLE LAYER
VEeLocity PrOFILE

We shall now discuss a useful velocity-profile expression that can be used to predict
the mean-velocity distributions in both the inner and outer regions. The expression,
which was proposed by Coles [30], is

ut = ¢ (v") + [H(x)/k]w(y/0). (4.4.34)

It is applicable to flows with and without pressure gradient. If we exclude the viscous
sublayer and the buffer layer, the law-of-the-wall function ¢;(y") is given by

¢1 (V") = (1/6) In y" +¢, y© > 50. (4.4.35)

The constants k and ¢, which are independent of pressure gradient, are taken to be
0.41 and 5.0, respectively. The quantity I is a profile parameter that is in general



118 Analysis of Turbulent Flows with Computer Programs

a function of x. The function w(y/d), called the law of the wake, is of nearly
universal character, according to experiments. However, it must be clearly under-
stood that it is just an empirical fit to measured velocity profiles, and it does not
imply any universal similarity of the sort implied by the velocity-defect function,
Eq. (4.2.4), for zero pressure gradient or equilibrium boundary layers. It is given by

w(y/8) = 2sin*[(w/2) (y/0)]. (4.4.36)

Evaluating Eq. (4.4.34) at the edge of the boundary layer and noting that w(1) =2,
we get

ue/ur = (1/k) In 6% 4 ¢+ (211 /x), (4.4.37)

where 67 = ou/v. If k, ¢, v, and u, are given, Eq. (4.4.37) determines any one of the
three parameters u,, 6, and II if the other two are known.

Equation (4.4.34), with ¢>1(y+) given by Eq. (4.4.35) and w by Eq. (4.4.36), gives
Jdu/dy nonzero at y = 6. To remedy the difficulty, a number of expressions have been
proposed for w. A convenient one proposed by Granville [31] uses a modification of
Eq. (4.4.34) written as

u 1 4 1 2 _ .3
— =—Iny" +c+-[I(1 —cosmn) + (n° — )] (4.4.38)
ur K K
From Eq. (4.4.38) and from the definitions of 6* and 6 it can be shown, provided that
the logarithmic law is assumed valid to the wall, that

0 Ve — 11
° = / o UMt gy = 12 <—+H> (4.4.392)
0

1. N
{2+2H[1+;Sl(7‘r)} +1.511 +E_ﬁ_0‘12925ﬂ}

(4.4.39b)

where

_
Si(m) = / [sm ”} du = 1.8519.
0 u
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Equation (4.4.39b) can also be written as

R 11 2
oM (2 r) = () (1.9123016 + 3.05601T + 1.5 (4.4.39¢)
R; Kup, \12 KU,

Evaluating Eq. (4.4.38) at n =1, we get

2 1 5
Lt _ [ In (””) +2n} te (4.4.40)
cf U K V U

For given values of cf and Ry, Eqgs. (4.4.39b) and (4.4.40) can be solved for 6 and IT
so that the streamwise profile u can be obtained from Egs. (4.4.38) in the region
+
y' > 30.
The expression (4.4.34) with ¢,(y ") given by Eq. (4.4.35) is applicable for y™ > 30.
It can, however, be extended to include the region 0 < y+ < 30 by the following formula
due to Thompson [32],

ut = {y+a y+§4

4441
c1+c In y" +c3(ln y+)2+C4(ln y+)3, 4 <yt <30 ( )

where ¢; = 1.0828, ¢, =-0.414, ¢3 =2.2661, ¢4 =-0.324.

The expression (4.4.34) can also be extended to include the region y* < 50 by
Eq. (4.4.19).

For flows with zero pressure gradient, the profile parameter II is a constant
equal to 0.55, provided that the momentum-thickness Reynolds number Ry is greater
than 5000. For Ry < 5000, the variation of II with Ry is as shown in Fig. 4.20. In
equilibrium boundary layers, by definition, II is constant, with its value depending

Fig. 4.20 Variation of Coles’ profile parameter IT with momentum thickness Reynolds
number Ré for zero-pressure-gradient flow.
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on the strength of the pressure gradient. In nonequilibrium boundary layers, IT
depends on x.

Temperature Profile

A form analogous to Eq. (4.4.34) can be derived for the temperature profile in
a boundary layer in zero pressure gradient with uniform wall temperature or wall
heat-flux rate. Again Eq. (4.4.36) provides an adequate fit to the wake function; so
combining Eqgs. (4.2.2) and (4.4.34), we can write

Ty —T
T

— ¢, (y+, Pr) n IZ—:WG) (4.4.42)

TH =
0

where Il is a constant differing slightly between the cases of uniform wall
temperature and uniform wall heat-flux rate but in either case different from IT
because Pr; # «/kj in the outer layer. I is independent of Pr; and Reynolds
number if the Reynolds number is high. Since II depends on Reynolds number for
usf/v < 5000, we must expect I to do so as well, because if viscous effects on
the turbulence change the fluctuating velocity field, they will affect heat transfer
as well as momentum transfer. In principle, II; may depend on the thermal
conductivity if the Peclet number (u.0/v)Pr is less than roughly 5000, according to
the usual argument about the analogy between heat transfer and momentum
transfer, but current experimental data are not sufficient to define the low-
Reynolds-number and low-Peclet-number behaviors, and indeed the high-
Reynolds-number value of IT; is not known very accurately; it is about 0.3.
Outside the viscous and conductive sublayers, Eq. (4.4.42) becomes

T 1, wy
T: Kp, v ky,

byt Ihy (X) (4.4.43)

T+
0

in analogy with Eq. (4.4.34); recall that ¢, depends on Pr.

The above formulas for velocity and temperature profiles can all be used in fully
developed flow in circular pipes or two-dimensional ducts, again with uniform wall
heat-flux rate or uniform differences between the wall temperature and the bulk-
average temperature of the stream. The boundary-layer thickness is replaced by the
radius of the pipe or the half-height of the duct. Values II and IIj, are smaller than
in the boundary-layer — indeed II for a pipe flow is so small that it is often
neglected. Low-Reynolds-number effects on IT and II}, in pipe or duct flow seem to
be negligible, implying that the effects in boundary layers are associated with the
irregular interface between the turbulent and nonturbulent flow, the ‘“viscous
superlayer™.

In arbitrary pressure gradients, Eqs. (4.4.34) and (4.4.42) are usually still good
fits to experimental data but IT and I1; depend on the pressure distribution for all
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positions upstream. Equation (4.4.42) is not necessarily a good fit to temperature
profiles with arbitrary wall temperature or heat-flux distributions. Consider the case
where a region of uniform wall heat-flux rate, in which Eq. (4.4.42) holds, is fol-
lowed by a region of lower wall heat-flux rate, so that 7, changes discontinuously
while the temperature profile does not. Even the inner-layer formula for Ty, — T,
Eq. (4.2.2), breaks down at a step change in g, ; it recovers fairly quickly, but the
outer layer takes much longer.

Shear Stress Distribution

Once the velocity distribution is known, the shear-stress distribution across the
boundary layer can be calculated as follows. For generality, consider a zero-pressure-
gradient flow with mass transfer. First, multiply the continuity equation by u and add
the resulting expression to Eq. (4.4.1) to get

d d 10t

a(u2) +a—y(uv) =25 (4.4.44)

Integration of Eq. (4.4.44) with respect to y yields
Y a 1
—(W)dy +w = —(t — 1), (4.4.45)
0 Ox 0

and integration of the continuity equation also with respect to y yields

y
/ u dy. (4.4.46)

With Eq. (4.4.46) we can write Eq. (4.4.28) in nondimensional form as

y 6g2 B Yog 1
Ed)’ + 8w — g/o F dy = —g(r —Tw), (4.4.47)

0 ou

where g =ulu, and Ty, = vy/ue. Next, let 7 = y/d. Then, since 0/dy = (d/dn)
(0n/0x) = — (0/6) (dd/dx) (3/0n), we can write two of the terms in Eq. (4.4.47) as
follows:

)ag
- =——/ gg'n dn,

79
g =——/ g'ndn.

0
(4.4.48)
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Integration by parts yields
ya;gzd — @ 2 /n 24
) ox Yy = dx g&n ) ganj,
Yag do n
—=dy = — - dn |.
) Ox Y . (877 /0 8 77)

Substituting the relations given by Eq. (4.4.49) into Eq. (4.4.47) and rearranging, we
get the dimensionless shear-stress distribution

2 do [ 7 "
L 1+<) ng+</ gzdn—g/ gdnﬂ. (4.4.50)
Tw cr dx \ Jo 0

Equation (4.4.50) also applies to incompressible boundary layers with pressure
gradient, provided that the term — (0n/u¢)(duc/dx) is included in the bracketed
expression.

To obtain an approximate expression for dd/dx, we use a power-law assumption
for the velocity profiles and write the following relation, which is exact for an
asymptotic layer with suction:

(4.4.49)

0/6 = const. (4.4.51)
Taking the derivative of Eq. (4.4.51) with respect to x gives
do  do o\
—=—=<] . 4.4.52
dx  dx <6) ( )

But, by definition,

0 1 [%u u 1
5 6/0 ue( ue)dy /0 g(1 —g)dn (4.4.53)

Evaluating Eq. (4.4.47) at y = ¢ yields the momentum integral equation

do _ Ty _ cr cr
_ _ & _%1+B 4.4.54
o vw+gu§ T+ 2( + B), ( )

where B = 2Uy,/c¢. With Egs. (4.4.53) and (4.4.54), we can write Eq. (4.4.52) as

1
do _ / g(1— g)dn] . (4.4.55)
0

E—E(I—FB)
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Fig. 4.21 (a) The velocity-defect law according to Coles’ expression. The solid line is
the calculation from Eq. (4.4.57); (b) the shear-stress distribution obtained by using
Coles’ velocity-profile expression. The solid line denotes the dimensionless Reynolds
shear stress; the dashed line denotes the dimensionless total shear stress; circled data
points are from Klebanoff [5].

Substitution of the expression (4.4.55) into Eq. (4.4.50) gives

1
Ti = 1+Bg+(1+B)</ g(l—g)dn) (/ngzd'r]—g/ngdn>. (4.4.56)
w 0 0 0

Let us now calculate the velocity-defect and shear-stress distributions by using
Coles’ expression (4.4.34) and then compare them with experiment for no mass-
transfer flow. Subtracting Eq. (4.4.37) from Eq. (4.4.34), we obtain the velocity
defect distribution

(e — u)/ue = —(1/x) In (y/8) + (I1/1)[2 — w(y/6)]: (4.4.57)

Figure 4.21 shows the calculated distributions and the experimental values of
Klebanoff [5]. In both cases, the agreement is excellent.

4.5 Mean-Velocity Distributions in Incompressible
Turbulent Flows on Rough Surfaces with Zero
Pressure Gradient

In the previous section, we have described the mean-velocity and shear-stress
distributions on smooth surfaces with zero pressure gradient. In this section, we shall
discuss the effect of wall roughness on mean-velocity distribution. As was discussed
in Section 4.2, the velocity-defect law, Eq. (4.2.4), is valid for both smooth and rough
surfaces. Roughness affects only the inner region, and hence we shall direct the
discussion to that region. It is of course impossible to make a surface absolutely
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smooth, but the wall is aerodynamically smooth for a turbulent boundary layer if the
height of the roughness elements k is much less than the thickness of the viscous
sublayer. Since in most cases the viscous sublayer is extremely thin, the roughness
elements must be very small if the surface is to be aerodynamically smooth. On
a given surface, as the boundary-layer thickens and its Reynolds number changes, the
surface may change from effectively rough to aerodynamically smooth.

According to experiments and dimensional analysis, the law of the wall for
a surface with uniform roughness is given by

ut = ¢y (y" k"), 4.5.1)

Here k' is a roughness Reynolds number defined by

k= kue/v. 4.5.2)

On a given surface, the surface may change from being effectively rough to aero-
dynamically smooth as u, decreases downstream.

In the fully turbulent part of the inner region, the law of the wall for a uniform
rough surface is similar to that for a smooth surface except that the additive constant
c in Eq. (4.4.15) is a function of the roughness Reynolds number k. In that region,
the law of the wall can be written as

ut = (1/k) In y© + By(k"), 4.5.3)

where we expect k to be the same as for smooth surfaces. Therefore, we can write
Eq. (4.5.3) as

ut = (1/k) In y"+c—[(1/k) In k" +c—B,],

where ¢ is constant for a smooth surface and B, = (1/k) In k™ + B, (k+). Then we
can write

ut = (1//() In y" 4+ c¢— du™, 4.5.4)
where
Aut = Aufu; = (1/k) In k* + Bs. 4.5.5)

Here B3, which is equal to ¢ — By, is a function of roughness geometry and density.
The relation between Au" and k' has been determined empirically for various
types of roughness. The results are shown in Fig. 4.22.
We see from Eq. (4.5.4) that, since for a given roughness 4u™ is known, the sol-
e effect of the roughness is to shift the intercept ¢ — 4u™ as a function of k. For values
of k' below approximately 5, the vertical shift Au™ approaches zero, except for those
roughnesses having such a wide distribution of particle sizes that there are some
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Fig. 4.22 Effect of wall roughness on universal velocity profiles [25].

particles large enough to protrude from the sublayer even though the average size is
considerably less than the thickness of the sublayer. For large values of k", the vertical
shift is proportional to In k™, with the constant of proportionality equal to 1/«.

For surfaces covered with uniform roughness, three distinct flow regions in
Fig. 4.22 can be identified. For sand-grain roughness, the boundaries of these regions
are as follows:

Hydraulically smooth: k* <5

Transitional: 5<kt <70

Fully rough: Kkt <70
The hydraulically smooth condition exists when roughness heights are so small that
the roughness is buried in the viscous sublayer. The fully rough flow condition exists
when the roughness elements are so large that the sublayer is completely eliminated,
and the flow can be considered as independent of molecular viscosity; that is, the
velocity shift is proportional to In k*. The transitional region is characterized by
reduced sublayer thickness, which is caused by diminishing effectiveness of wall
damping. Because molecular viscosity still has some role in the transitional region,
the geometry of roughness elements has a relatively large effect on the velocity shift,
as can be seen in Fig. 4.22.

Figure 4.23 shows the variation of B, with k™ according to the data of Nikuradse
in sand-roughened pipes [19]. loselevic and Pilipenko [33] give an analytical fit to
this data,

By = 5.2; k[ <2.25, (4.5.62)
By =52+ [85-52— (1/c)Ink; ]sin[0.4258 (In k! — 0.811)];

2.25 <k <90, (4.5.6b)
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Fig. 4.23 Variation of B, with K*.

By = 85— (1/k)Ink; k& >90. (4.5.6¢)

The fact that the shifts in velocity for fully rough flow are linear on the semi-
logarithmic plot can be used to express different roughness geometries in terms of
a reference roughness. It follows from Eq. (4.5.5) that for the same velocity shift

k/ks = exp[k(B3z — B3s)], 4.5.7)

where the subscript s refers to a reference roughness, commonly taken as uniform
sand-grain roughness.

Betterman [34], using two-dimensional roughness elements (rods) with varying
spacing, was able to correlate his measurements in terms of Eq. (4.5.5), with the
constant B3 as a function of spacing (see Fig. 4.24). Betterman observed that for

Fig. 4.24 The effect of roughness density on the law-of-the-wall intercept. The quantity
A is the ratio of the total surface area to the area covered by roughness.
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a certain spacing of the rods the measured value of 4u" was a maximum and that as
the spacing was increased or decreased Au" decreased. In another series of exper-
iments, Liu et al. [35] made the same observations.

Betterman found that in the density range 1 < A < 5, where A is the ratio of the
total surface area to the area covered by roughness, the variation of Au™ with
roughness could be specified by

dut =243 In kt 4 17.35(0.706 In 2 — 1), 4.5.8)

which is plotted in Fig. 4.24.

The extension of the function Au™ to roughness densities greater than 5 was
accomplished by Dvorak [36] from Fig. 4.24, which is based on the single set of data
by Bettermann in this region and on the data obtained by Schlichting [37]. The
correlation has been biased toward the two-dimensional roughness data of Better-
mann, with the slope of the curve determined in conjunction with Schlichting’s
measurements. Dvorak’s expression for 4u™ in this region is given by the following
formula:

Aut =243Ink" —595(0.479InA —1). (4.5.9)

Numerically, Egs. (4.5.8) and (4.5.9) are equal when the value of the density
parameter A is 4.68. It should be noted that Eq. (4.5.9), which applies only for fully
rough flows, requires further verification before it can be used with confidence.

The relation given by Eq. (4.4.19) can also be extended to the prediction of the
mean velocity distribution in the inner region of the boundary layer on a rough
surface by using the following model discussed by Rotta [9].

In this model, the effect of roughness is considered to be equivalent to a change in
the velocity jump across the viscous sublayer. Hence, it can be represented by a shift
of the smooth-flow velocity profile. For rough flow, the reference plane (wall) is
shifted downward by an amount 4y, and the reference plane moves with the velocity
AU in a direction opposite to that of the main flow. Figure 4.25a shows the coordinate
systems for the two flows, the smooth (yu) and the shifted (Y,U). With the
assumption that the universal law of the wall is valid for the shift, the mean-velocity
distribution for the rough flow in the ¥, U coordinate system is

Ut = ¢, (r"), (4.5.10)

where the function ¢ is given by the right-hand side of Eq. (4.4.19).
With the relationships u =U — AU and Y=y + 4y, we can write the velocity
distribution for rough flow in the physical plane as

wi = U =AU = (YY) —fi(ay™) = A0 + ") —fi(4yT). 4511
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Fig. 4.25 Mean velocity distribution on smooth and rough surfaces (a) illustrating du
and 4y shift, and (b) u,, y" plot.

Obviously, the term fi(dy") in Eq. (4.5.11) is a constant for a given 4y*. TO
determine 4y™, we observe that for y™>> Ayt f(y* + 4y")=f(y"). Hence,
from Fig. 4.25b,

ul —ut = Au* :f(Ay+). (4.5.12)

S

For a given roughness, the quantity Au™ is determined from experimental data as
a function of k™ (e.g., see Fig. 4.22). Our problem then is to establish a relationship
between Ay™ and kT. For that purpose, Eq. (4.4.19) is integrated from zero to an
unknown limit for a given Aut, thus

Ay* 2

/ 7 dyt — Aut = 0. (4.5.13)
0 b+ [P+ 4a(yt)]

The calculated results for the case of sand-grain roughness, can be approximated by

the following formula:

ayt = 0.9{(k+)1/2—k+exp(—k+/6)]. (4.5.14)

Once the shift parameter Ay is known, the mean-velocity distribution for rough-
wall flows can be calculated by using the relationship given by Eq. (4.5.11).

If we designate the integrand in Eq. (4.4.19) by ¢(y"), we can write Eq.
(4.5.11) as

y‘+Ay‘ Ay’
ut :/0 ¢>1(y+)dy+f/0 ¢ (y")ay"

ey (4.5.15)

= /A o (v )y

y+
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If we introduce the transformation

yh =34yt (4.5.16)

into Eq. (4.5.15), we can write

Al

y
wh :/O ¢ (7 + dyT)dy . 4.5.17)

Comparison of Eq. (4.5.17) with the right-hand side of Eq. (4.4.19) shows that the
velocity profile for rough flow can also be obtained from the smooth-flow condition
by shifting the independent variable in Van Driest’s formulation by 4y™, or

+

¥ 2 dvt
“r+:/ : 1/2°
0 1+(

L+ [2x(r + AyH)P{1 = exp[ - (0 + 4y%)/26])°)
(4.5.18)

The approach outlined above is limited to small values of Ay™, say less than 10,
because the integrated velocity profile is slow in gaining the expected logarithmic
variation for large values of Ay™.

4.6 Mean-Velocity Distribution on Smooth Porous
Surfaces with Zero Pressure Gradient

Consider an incompressible turbulent flow on a smooth porous flat surface with zero
pressure gradient. Close to the wall, du/dx is small and can be neglected. The
momentum equation then becomes

du ldrt

—_— = - 4.6.1
dey Qdy, ( )

where T = t1; + 1;. Integrating Eq. (4.6.1) and using the wall boundary condition,
7(0) = 7w, u(0) = 0, we obtain
T = Ty + QUwl. 4.6.2)

In the fully turbulent part of the inner region, t; = 0. If 7, is replaced by Prandtl’s
mixing-length expression given by Egs. (4.3.3) and (4.3.12), integration of Eq.
(4.6.2) gives

@/uE) (1 + i) = (1/k)Iny* + ey, (4.6.3)
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where ¢y is an integration constant and vy is the ratio of the wall value of the normal
component of velocity to the friction velocity, vi, = vy /u;. If we subtract 2/v{, from
both sides of Eq. (4.6.3), we can write

ul = (2/1);) [(1 +v$u+)1/2—1} - (1/;<)1ny+ toe, (4.6.4)

where c =c¢; - (2/ v‘ﬁ ). Equation (4.6.4) is the law of the wall for turbulent boundary
layers with mass transfer obtained by Stevenson [38].

The experimental curves for flow over both a permeable wall and an impermeable
wall may now be compared on one plot if In y™ is plotted versus u; . Stevenson used
this method in plotting his own experimental results for a permeable wall and found
that they were close to the accepted impermeable-wall curve, Fig. 4.26. The
experimental results show that the parameter ¢ varies very little with suction or
injection. Stevenson concluded that k& and ¢ in Eq. (4.6.4) were 0.41 and 5.8,
respectively.

If we now write Eq. (4.6.4) for the conditions at the edge of the boundary layer,
that is, u = u, y = 0, we get

(/e [+ odud) 2=1] = (1/6)m 6"+, (4.6.5)

where ul = uc/u; and 6" = du./v. Subtracting Eq. (4.6.4) from Eq. (4.6.5) and
rearranging, we obtain the modified velocity-defect law for incompressible turbulent
boundary layers with mass transfer [39]:

(/) [+ via) =0 w) ] = (17 o78) =1(v/9)
(4.6.6)

Fig. 4.26 Prediction of velocity profiles by Coles’ expression, Eq. (4.6.10), for mass
transfer. (a) Data of Simpson et al. [40]. (b) Data of McQuaid [42].
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The results in Fig. 4.26 show that the function f(y/0) in the equation of the modified
velocity defect law, Eq. (4.2.4), is independent of vy and u, in the outer region of the
boundary layer.

According to Stevenson’s law of the wall, the parameter c in Eq. (4.6.4), like the
parameter k, is essentially unaffected by mass transfer. Simpson et al. [39] carried
out extensive new measurements on flat plates with both blowing and suction, as
a result of which they proposed a different condition, namely, that the curve of
Eq. (4.6.4) always passes through the point um =y =K =11, regardless of the
value of vy,. Here the parameter K represents the intersection of the logarithmic
profile with the linear sublayer when vy, = 0; that is,

ut =yt = (1/k)Iny" + ¢ 4.6.7)
or
K = (1/x)In K + ¢o. (4.6.8)
Simpson’s condition for ¢, which is purely empirical, implies that

¢ = o+ (2) [0+ k) P -1] - k. (4.6.9)

Using the above expression for ¢, Coles [41] has shown that his profile expression
(4.4.34), when generalized to the form

(2/U$)[(1+v;u+)‘/2—1} = (1) iy e+ (/x)w(v/8), @610

with ¢o=35 and K=10.805, describes the experimental data for zero-pressure-
gradient flows with mass transfer very well. As in flows with zero mass transfer, the
profile parameter IT has the variation with Reynolds number given by Fig. 4.20.
Figure 4.26 shows, for two sets of experimental data, the excellent prediction of
pseudo-velocity profiles, u; , by Eq. (4.6.10).

I 4.7 The Crocco Integral for Turbulent Boundary Layers

As was discussed in Chapter 3, the Crocco integral, Eq. (3.2.18),
(H—Hy)/(He — Hy) = u/u,, 4.7.1)

provides a good approximation for adiabatic, zero-pressure-gradient flows, both
incompressible and compressible. For the compressible flow of a perfect gas, Eq.
(3.2.18) can be written as

T Tw (T 1
v <—W—1) l+YTM§l (1—1> . (4.7.22)
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Obviously, for incompressible flows it reduces to

T Ty (T
L w_ <_W_ 1) “ (4.7.2b)
To. T

According to experiments, the Crocco relationship does not apply in either
laminar or turbulent flows with heat transfer and pressure gradient, even if the wall is
isothermal and the molecular or the eddy diffusivities for momentum and heat
transfer are equal or nearly equal. Instead, the relationship between total temperature
and velocity is generally expected to depend upon the degree of flow acceleration (or
deceleration) and the amount of wall cooling (or heating), and may be influenced to
some extent by the flow speed, that is, the compressibility effect when the molecular
or the eddy diffusivities for momentum are not the same (e.g., see Bertram et al. [43];
Back and Cuffel [44,45]).

Figure 4.27 shows the relationship between measured temperature and velocity
profiles for an accelerating, turbulent-boundary-layer flow of air through a cooled,
convergent-divergent nozzle. The data are due to Back and Cuffel [43,44].
Boundary-layer measurements were made upstream, along the convergent section,
and near the end of the divergent section where the flow is supersonic. These
measurements span a relatively large flow-speed range, with inlet and exit Mach

Fig. 4.27 Relationship between measured total temperature and velocity profiles for an
accelerating turbulent boundary-layer flow of air through a cooled convergent-divergent
nozzle [44].
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numbers of 0.06 and 3.7, respectively. The operating conditions were such that the
boundary layer remained essentially turbulent, that is, laminarization did not occur in
the accelerating flow. The wall was cooled externally, with a ratio of wall to stag-
nation temperature of 0.43-0.56.

The results in Fig. 4.27 indicate that upstream of the flow acceleration region
(Station 0), the temperature—velocity relationship is essentially linear in the region
where the molecular transport is negligible. Such variation implies that the eddy
diffusivities for momentum and heat transfer are nearly equal, and the Crocco
relation applies there. The value of y™ at the closest location to the wall is noted. At
locations within the viscous sublayer, where molecular transport becomes important,
the temperature profile would lie below the velocity profile, because molecular
diffusivity for heat is larger than that for momentum transfer, that is, o = (1/0.7).
That is not evident in Fig. 4.27, because of the height of the probes relative to the
sublayer thickness, but is apparent at lower pressures, where the measurements
extend into the viscous sublayer.

At subsequent stations in the acceleration region, the temperature profiles lie
below the velocity profiles at a given distance from the wall. In the representation of
Fig. 4.27, the temperature-velocity relationship consequently bows progressively
downward as one proceeds along the convergent section (stations 1, 2, 3, and 4). The
departure of the measured total-temperature and velocity profiles from the Crocco
relation near the nozzle exit (station 5), where the Mach number is 3.6, is not much
different from the low-speed profile in the convergent section (station 4), where the
Mach number is 0.19.

Recovery Factor

The temperature distribution according to the Crocco integral is based on the
assumption that the molecular Prandtl number is unity and that the transport-of-
momentum term, —ph'v/, is equal to the transport-of-heat term, —gu/v’. For that
reason, the total enthalpy H must be constant across the boundary layer for an
adiabatic flow. However, if the molecular Prandtl number is not unity, the total
enthalpy is not constant. Total temperature variation for a laminar adiabatic flow
with Pr=0.75 is shown in Fig. 4.28a, in which the energy has migrated from
regions near the wall to regions near the free stream. It was obtained by Van Driest
[46] by solving the governing equations for a compressible laminar flow.
A manifestation of the migration is the usual experimentally observed wall
temperature of adiabatic plates, which is lower than the total free-stream
temperature. That experimental fact is specified by the so-called recovery factor r
defined by

r = (Taw - Te)/(TO - Te)7 4.7.3)
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Fig. 4.28 (a) Variation of stagnation-temperature ratio across the laminar boundary
layer at M, =3 [46] and (b) variation of recovery factor with Reynolds number [47].

where T,y and T are the adiabatic wall and the reservoir (isentropic-stagnation)
temperatures, respectively. From the steady-state energy equation for an inviscid
perfect-gas flow, we can write

To—T. = ug/Zcp.
Substituting that expression into Eq. (4.7.3) and rearranging, we get
Taw = Te{l+r[(v—1)/2]M:}. (4.7.4)

With laminar boundary layers, the recovery factor ryy, is approximately equal to
(Pr)l/ 2 for incompressible flows.

In the case of the adiabatic fully turbulent boundary layer, the recovery factor r; is
somewhat larger than it is in laminar boundary layers. According to experiments
(see Fig. 4.28b), its value is between 0.875 and 0.90 for air. It is given approximately

by (Pr)'3.
From the Crocco integral, Eq. (4.7.1a), after rearranging we can write
T y—1 ,\Te u v—1 ,Tefu 2
— =1 l+—M ) ——1| ————M,—|— | . 4.7.5
Tw + [( + 2 e) Tw Ue 2 Tw \Ue ( )

Replacing the relation 1 + [(y — 1)/2]M?2 by Ty/T, in Eq. (4.7.5) and rearranging, we
obtain

T = Ty + (To — Tw) (u/ue) + (To — To) (u/ue)*. (4.7.6)
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That expression is another form of Crocco integral. It can be extended to Prandtl
numbers differing from unity by replacing the stagnation temperature 7 by the
adiabatic wall temperature T,y. Then Eq. (4.7.6) can be written as

T = Ty + (Taw — Tw) (/tte) + (Te — Taw) (1/uc)>. 4.7.7)

In that equation, T,y should be calculated from Eq. (4.7.3). A commonly used value
for ris 0.89. For zero-pressure-gradient flows with small heat transfer, Eq. (4.7.7) can
be used quite satisfactorily to calculate the static-temperature distribution for flows
both with and without mass transfer [48,49].

4.8 Mean-Velocity and Temperature Distributions in
Compressible Flows with Zero Pressure Gradient

For two-dimensional unsteady compressible boundary layers, both laminar and
turbulent, the continuity, momentum, and energy equations are given by Eqgs. (3.3.5),
(3.3.6), and (3.3.14), respectively. For laminar layers, the equations are coupled
through the variation of density and the transport properties of the gas, such as p, k,
and c,. Although reliable experiments in variable-density flows are still few in
number, there is reasonable evidence that the structure of the turbulent velocity field
is not altered significantly in the presence of moderate density or temperature
fluctuations. This suggests that interaction between the velocity and the temperature
fluctuations is probably not strong, even in flows of moderate Mach numbers [50].
Indeed, Chu and Kovasznay [51] have shown theoretically that in a homogeneous
field the interactions are second order. Thus for compressible turbulent shear flows,
the main coupling between the equations occurs through the density variation only.

In this section we shall discuss the mean-velocity and temperature distributions in
compressible turbulent boundary layers with zero pressure gradient, and we shall
show how the various expressions developed for incompressible flows can be
modified to account for the variation of density in such flows.

4.8.1 THE LAW-OF-THE-WALL FOR COMPRESSIBLE FLOWS

In compressible turbulent flows, the velocity profile and temperature profile in the
inner part of the boundary layer depend on all the quantities that affect the velocity or
temperature profile in compressible flows (Section 4.4), and in addition the absolute
temperature (at the wall, say) must be included since, by definition, the temperature
differences in compressible flows are a significant fraction of the absolute temper-
ature. Also, if the Mach number of the flow is not small compared with unity, the
speed of sound, a, and the ratio of specific heats, v, will appear; in a perfect gas
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a = \/YRT = /(v — 1)cpT, so that either a or T or both may be used as a varia-
ble. With these additions, from dimensional analysis with u; = /7y /0y, We can
write

uizfg(@ T ,ﬁmPrw), (4.8.1)

)
T Vw  Qcpu Ty ay

:f4(ﬂ w ,ﬁ,y,PrW). (4.8.2)

T
Tw Vw 7QCpMTTW Ay

In Eq. (4.8.2) we have used T /Ty, instead of (T, — T')/Ty for convenience, and the
speed of sound at the wall, ay, is used instead of the dimensionally correct but less
meaningful quantity /c,Ty. The quantity wu./ay is called the friction Mach number,
M. The evaluation of fluid properties at the wall is adequate if, for example, v/v,, can
be expressed as a function of 7/Ty, only (the pressure being independent of y in any
case); this is the case if v o« T for some w, which is a good approximation for
common gases over a range of, say, 2:1 in temperature.

The arguments that led to the law-of-the-wall formulas for velocity and
temperature in incompressible flows (Section 4.2) can be applied again to the
compressible case if we are satisfied that the effects of viscosity are again small for
uylvy >=> 1 and that the effects of thermal conductivity are again small for (u;y/vy)
Pr > 1. Provided that the effects of fluctuations in viscosity and thermal conduc-
tivity are small and that v and ¢ do not differ by orders of magnitude from their values
at the wall so that uy, /vy is still a representative Reynolds number, molecular
diffusion should indeed be small compared with turbulent diffusion if u;y/vy, is large.
Since density varies in compressible flows, the local value of (t/g) 172 would provide
a better velocity scale than the wall value u,; it therefore seems logical to use the
local value in compressible flows also, and in the simplest case when only g and not
7, varies with y, the appropriate velocity scale is (7w / Q)l/ 2. Analogously we use ¢/g,
rather than ¢, /g,,, in the mixing-length formula for temperature; we shall see below
that ¢ always varies with y in high-speed flows. The elimination of »,, and Pr from the
lists of variables and the use of dimensional analysis on du/dy and dT/dy instead of u
and T give, instead of Eqs. (4.8.1) and (4.8.2)

u _ (1/0)'”? i (/9" (483
I P R I | 7
or q/ecp q (r/0)
— = - , , 4.8.4
(/) Py chm/g)l/z a7 @D

where we have consistently used /ocal variables in the arguments of the f functions,
even for 7. The analysis below will be restricted to the case of a constant-stress layer,
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T = Ty, Which, as was discussed in Section 4.2, is a good approximation to the inner
20 percent of a boundary layer in a small pressure gradient.

In order to equate the f functions to unity and recover effectively incompressible
versions of the mixing-length formulas, we need to neglect the effect of density
fluctuations discussed in Section 3.2. With this assumption, the heat-transfer
parameter ¢/ocp(t/ Q)l/ 2T and the friction Mach number (t/ Q)l/ ? /a — representing
the two sources of density (temperature) fluctuations — do not appear in formulas
(4.8.3) and (4.8.4) for the gradients of u and T'; they will, however, remain in the full
formulas for # and 7, Eqs. (4.8.1) and (4.8.2), because they affect the temperature
gradient in the viscous sublayer. Formulas for du/dy and 0T /dy in the viscous
sublayer would nominally contain all the variables on the right-hand sides of Eq.
(4.8.1) or (4.8.2). The assumption that turbulence processes are little affected by
density fluctuations implies, that vy, which is a measure of the difference between
adiabatic and isothermal processes, would have a negligible effect even in the
viscous sublayer, but there are not enough data to check this. With the assumption
that f,, and fr are constant outside the viscous sublayer, we can now write

ou _ (¢/0)'"

or _ _—djecy (4.8.6)

O (/o) iy

Now Eq. (4.8.6) still retains the local value of ¢, and in a high-speed flow this will
differ from the wall value, even if T = t,, because of viscous dissipation of mean and
turbulent kinetic energy into heat. The rate at which kinetic energy is extracted from
a unit volume of the mean flow by work done against viscous and turbulent stresses is
Tduldy; the part corresponding to the viscous shear stress represents direct viscous
dissipation into heat, and the part corresponding to the turbulent shear stress
represents production of the turbulent kinetic energy. We cannot immediately equate
turbulent energy production to viscous dissipation of that turbulent energy into heat
because turbulence processes include transport of turbulent kinetic energy from one
place to another. However, this transport is negligible in the inner layer (outside the
viscous sublayer), so that we can write a degenerate version of the energy equation,
with all transport terms neglected and only y derivatives retained, as

dg  du

a_y = Twa_y )
which simply states that the net rate of (y-component) transfer of heat leaving
a control volume in the inner layer is equal to the rate at which the fluid in the control
volume does work against (shear) stress. Integrating this equation, we get

4 = Gy + uty. (4.8.8)

(4.8.7)
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In a low-speed flow the work done is negligible, and g = g, corresponding to 7 = ty,.
If we divide Eq. (4.8.6) by Eq. (4.8.5), we obtain

T _ —(x/xn)q 4.8.9)
du CpTw e

where k/ky, is the turbulent Prandtl number. Substituting for ¢ from Eq. (4.8.8) and
integrating with respect to u, we get

(k/kn) gy (k/Kn)u?
CpTw 2¢p

T =

+ const. (4.8.10)

Here the constant of integration is not exactly equal to T, because the formulas
(4.8.5) and (4.8.6) are not valid on the viscous or conductive sublayers, but it is
conventionally written as c¢;T, where c; is close to unity and is a function of
Gw/0wCpit:Tw, ur/ay, and the molecular Prandtl number Pr. That is,

. 2
T = o1, - KRnddwu  (k/kn) “8.11)
CpTw 2¢p

Noting that ¢ = ¢, Tw/T, we can use Eq. (4.8.11) to eliminate ¢ from Eq. (4.8.5).
The integral required to obtain u as a function of y from Eq. (4.8.5) then becomes

dy / du/u,
@ _ (4.8.12)
/k)’ [cl — (K/Kh)qwu/cpTwrw — (K/Kh)u2/26‘pTw]l/2

Replacing ¢, Ty, by a%vl(y — 1) and integrating Eq. (4.8.12), we obtain the law of the
wall for compressible turbulent flows:

* *
n_ Ve g (R”_) _H[l — cos (1#‘—)], (4.8.13)
Ur R Urg Ur
where
)12 . 1 : 2
o M{M] oo O o G ("W) L (@814
Ay 2Ky, Twlt ('Y - 1) QWCPMTTW Ue
1
u* = - In y + const. (4.8.14b)

Recalling from Eq. (4.8.1) that y appears in the group u;y/vy, we rewrite

]
—-—m% . (4.8.14¢)

*
Uz K Vw
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If g, =0 and u/ay, — 0, then H=0, R — 0, and

u u*
— = —. 4.8.15
i Vel . ( )

It can be shown that if u./a,, is small, then ¢; = 1 — O( ¢,,), for compatibility with the
logarithmic law for temperature in incompressible flows, Eq. (4.4.17), so that u = u*
for small g, ; thus the constant ¢ in Eq. (4.8.14c) can be identified with the additive
constant ¢ in the logarithmic law for constant property wall layers. In general c, like
c1, is a function of the friction Mach number M; and of B, defined by
Gw
B, = ———. (4.8.16)
! chp U TW

The above analysis is originally due to Rotta [9] and is an extension of that of Van
Driest [46].

4.8.2 VAN DRIEST TRANSFORMATION FOR THE LAW OF THE WALL

Simpler versions of Eq. (4.8.13) and the accompanying temperature profile Eq.
(4.8.11) have been proposed by many authors. Van Driest [46] assumed c; = 1 and
k/kp =1 (recall that «/ky, is a turbulent Prandtl number in the fully turbulent part of
the flow, and note that ¢; = 1 implies that the effective Prandtl number in the viscous
and conductive sublayers is unity). Van Driest presented the inverse of Eq. (4.8.3)
giving u* in terms of u. In our more general notation this is

£ 1 R H RH
WL (g1 Rl T H) 1)2 R (4.8.17)
ur R (c1 + R2H2)Y (c1 + R2H2)

This formula is called the Van Driest transformation; it can be regarded as trans-
forming the inner-layer part of the compressible boundary-layer profile u(y) to an
equivalent incompressible flow u*(y) that obeys the logarithmic formula, Eq.
(4.8.14c). However, it is simpler to regard Eq. (4.8.13), with Eq. (4.8.14) as direct
prediction of inner-layer similarity theory for the compressible boundary layer.

If there is no heat transfer through the surface, H is zero, the second term on the
right of Eq. (4.8.13) disappears, and Eq. (4.8.17) reduces to

0 R
W 2! <_i> (4.8.18)

which is easy to identify as the inverse of Eq. (4.8.13) without the second term on the
right and of course reduces to u* =uas R — 0 and ¢; — 1.

The basic assumptions imply that x and kj, are the same as in incompressible flow.
As we have seen, c; and ¢, which are constants of integration in Egs. (4.8.9) and
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(4.8.12), respectively, must be expected to be functions of the friction Mach number
and the heat transfer parameter. Experimental data reviewed in great detail by
Fernholz and Finley [52] support the extension of inner-layer similarity to
compressible flow but fail to provide definite evidence about the variation of ¢ and c;.
The low-speed values ¢ = 5.0 and ¢y =1 fit the data as a whole to within the rather
large scatter, but Bradshaw [53] presents formulas for variable ¢ and ¢ based on
a selection of the more reliable data.

If we replace H by the expressions given in Eq. (4.8.14a) and (4.8.11), use the
definition of Mach number, M, =u, /a,, take ¢; =1 and k/k;, =1 following Van
Driest [46], and note that gw/g. = Tc/Ty, then Eq. (4.8.17) can be written as

x 1 ( A (er/2) (Tw/Te) (u/uc) — B/2A
— = Sin
oA (g/2)(Tw/Te) o+ (B/24) (4.8.19)
+Sm_lB/2A>
1+ (B/2A)?
or as
2 _
o= e gin! quin—l% (4.8.20)
A (Bz —|—4A2) / (B2 +4A2) /
where
_ 2 1 —1)/2M?
2 _ Y1 M, +(r-1)/M; (4.8.21)
2 Ty/T. Ty/Te

Note that the above relations assume that the recovery factor r = (T, /Te — 1)
[(y — 1)/2M?], where T, is the temperature of an adiabatic wall, is 1. To account for
the fact that r is less than unity (about 0.89) we rewrite Eqgs. (4.8.21) as

R OV L S R e Vil

, 1 4822
Tu/T Tu/Te (4.822)

4.8.3 TRANSFORMATIONS FOR COMPRESSIBLE TURBULENT FLOWsS

The Van Driest Transformation for the Whole Layer

The Van Driest transformation, Eq. (4.8.17), applied to the fully turbulent part of the
inner (constant-stress) layer of a compressible boundary layer produces the loga-
rithmic profile, Eq. (4.8.14c). Applying the transformation to the outer layer of



General Behavior of Turbulent Boundary Layers 141

a constant-pressure compressible boundary layer, we obtain a profile that looks
qualitatively like that of a constant-pressure constant-density boundary layer. In
particular, the transformed profile #*(y) can be described, more or less as accurately
as an incompressible profile, by the wall-plus-wake formula given by Egs. (4.4.34)—
(4.4.36),

LA @+c+g(1fcosz). (4.8.23)

Uz K Vw K 0
However, this convenient data correlation is a consequence of the strong constraint
on the wake profile, which has to have zero slope and zero intercept at y = 0, whereas
the profile as a whole has zero slope at y = 6 also, the “wake parameter” II and the
boundary-layer thickness ¢ are constants that can be adjusted to optimize the fit of
Eq. (4.8.23) to any real or transformed profile. We must, therefore, not claim that the
success of Eq. (4.8.23) proves the validity of Van Driest’s inner-layer analysis in the
outer layer.

As was discussed in subsection 4.4.6, I1 is constant in incompressible constant-
pressure flows at high Reynolds number and equal to about 0.55. The value of I1 that
best fits a transformed profile is expected to be a function of the friction Mach
number M; (= u/ay) and of the heat-transfer parameter B, (= ¢, / ocpuTy).
Evaluation of this function from experimental data is hampered by the low Reynolds
number of most of the compressible-flow data and uncertainty about the definition of
Reynolds number that should be used in correlating low-Reynolds-number effects on
the velocity-defect profile. If it is accepted that these originate at the irregular
interface between the turbulent fluid and the nonturbulent ‘‘irrotational’ fluid, then
the fluid properties in the Reynolds number should be evaluated at freestream
conditions. Now the largest-scale interface irregularities seen in flow-visualization
pictures have a length scale of order o, being the result of the largest eddies that
extend across the full thickness of the shear layer. Therefore 0 is the appropriate in-
terface scale and, since it is found that the shear-stress profile plotted as t/ty, = f(y/0)
has nearly the same shape at any Reynolds number, we can use 1, as a shear-stress
scale and (‘cW/Qe)]/2 — evaluated using the freesteam density — as a velocity scale.
Therefore the appropriate Reynolds number is (rwlge)”zé/z/e = (uo/v,) - (QW/Qe)l/ 2
rather than the Reynolds number u.0/v,, that arises naturally in the Van Driest
transformation. However, Fernholz [54] has shown that the Reynolds number g,u.0/
uy gives excellent correlations of data over a wide range of Mach numbers and
Reynolds numbers.

If the physics of low-Reynolds-number effects is the same in compressible flow
as in incompressible flow, then the wake parameter IT of the transformed profile
should be independent of Reynolds number for (rW/Qe)“ 26/ve > 2000 approximately
(corresponding to u.0/v > 5000 in the case of a low-speed boundary layer). Since IT
is nominally a function of M; and B, it is not possible to predict the trend with
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Reynolds number explicitly, but it is probably adequate to assume that the ratio of IT
to its high-Reynolds-number asymptotic value is the same function of the chosen
Reynolds number as in incompressible flow. In fact, although the data are rather
scattered by low-speed standards, it appears that IT decreases only very slowly with
increasing Mach number [55] in adiabatic-wall boundary layers (g, =0) and
therefore that IT = (.55 is an adequate high-Reynolds number value for all M.

If ¢ and ¢ are known as functions of M; and B, and if IT is known as a function of
M., B,, and Reynolds number, then putting y = 6 and u = u, in Eq. (4.8.17) and using
Eq. (4.8.23) to substitute for u*, we obtain u, /u; as a function of u.6/vy, . In practice we
require the skin-friction coefficient ty, /%Qeug as a function of u,0/v, or Fernholz’s
variable g.u.0/uy given M, (and T,) and either g, or Ty. This requires iterative
calculation, starting with an estimate of 7. Also, the velocity profile of the
compressible flow has to be integrated at each iteration to obtain 6/6 for conversion
from the “input” Reynolds number u,0/v, to the Reynolds number u.0/vy, that appears
in the transformation [53]. Skin-friction formulas are discussed in subsection 7.2.3.

The Van Driest transformation could be regarded as a solution of the
compressible-flow problem only if the coefficients ¢, ¢ and II were independent of
Mach number and heat-transfer parameter. However, we can use the transformation,
plus compressible-flow data for ¢, ¢| and II, to correlate the mean properties of
constant-pressure compressible boundary layers. As noted above the change in the
coefficients is almost within the (large) experimental scatter.

In pressure gradients the transformed boundary-layer profile still fits Eq. (4.8.23)
as does its true low-speed equivalent, but, as at low speeds, there is no simple formula
to relate the shape parameter I to the local pressure gradient. Moreover, the vari-
ation of u,, I1, and ¢ with x will not generally correspond to any realizing low-speed
boundary layer; that is, it may not be possible to choose a pressure distribution p(x)
for a low-speed flow that will reproduce at each x, the same velocity profile as in the
compressible flow. The spirit of Van Driest’s transformation, although not its details,
would be retained if compressible boundary layers were calculated using the mixing-
length formula to predict the shear stress and the assumption of constant turbulent
Prandtl number to predict the heat transfer. We consider such calculation methods in
Chapter 8.

Other Transformations

While the transformations between compressible and incompressible laminar
boundary layers are rigorous but limited in application, transformations for turbulent
flow are necessarily inexact because our knowledge of the time-averaged properties
of turbulent motion is inexact. As in the case of laminar flow the need for trans-
formation has decreased as our ability to do lengthy numerical calculations has
increased, and the assumption that density fluctuations have negligible effect on
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turbulence has permitted low-speed models to be cautiously extended to
compressible flow. The Van Driest transformation relies on the application of this
assumption to the inner-layer (mixing-length) formula. In the outer layer where the
mixing length departs from its inner-layer value «y, the Van Driest analysis is not
exact and the transformation will not eliminate compressibility effects though it
certainly reduces them, apparently within the scatter of current experimental data.

The transformations between compressible and incompressible flow fall into two
classes: (1) transformations for the complete velocity profile (and by implication the
shear stress profile) and (2) transformations for integral parameters only (specifically,
skin-friction formulas). It is generally recognized that transformations for
compressible flows in pressure gradient do not necessarily lead to realizable low-
speed flows, and we will discuss only constant-pressure flows here.

The paper by Coles [56] is a useful review of previous work and presents one of
the most general transformations so far proposed. The two main assumptions are that
suitably defined ratios of coordinates in the original (high-speed) and transformed
(low-speed) planes are functions only of x and not of y, and that the ratio of the
stream functions in the transformed and original flows is equal to the ratio of the
(constant) viscosity in the transformed flow to the viscosity evaluated at an,
“intermediate temperature”” somewhere between Ty, and T in the compressible flow.
The justification for the latter assumption is carefully discussed by Coles, but the
choice of intermediate temperature is necessarily somewhat arbitrary. Coles chooses
the temperature at the outer edge of the viscous sublayer, but in order to fit the
experimental data for skin friction it is necessary to locate the sublayer edge at
uy/lv =430 in the transformed flow, whereas the thickness of the real sublayer is
only about one-tenth of this. Coles conjectures that the relevant region is perhaps not
the viscous sublayer as such but the whole turbulent boundary layer at the lowest
Reynolds number at which turbulence can exist; this boundary layer indeed has u;6/v
of the order of 430. Coles’ transformation should not be confused with the simpler
intermediate-temperature assumption that any low-speed skin friction formula can
be applied to a high-speed flow if fluid properties are evaluated at a temperature 7;
somewhere between Ty, and T [57].

4.8.4 Law ofF THE WALL FOR COMPRESSIBLE FLOow wiTH MASs TRANSFER

Stevenson’s law-of-the-wall expression, Eq. (4.6.4), discussed in Section 4.6, has
also been extended to compressible turbulent boundary layers with mass transfer by
Squire [58]. Again assuming that derivatives in the x direction are negligible
compared to derivatives in the y direction, one can integrate the continuity equation
to give

0U = const = Qg Uy, (4.8.24)
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and with that result, the momentum equation can be integrated to give
OwUwll = T — Ty. (4.8.25)

By means of Prandtl’s mixing-length formula, Eq. (4.8.25) can be formally inte-

grated to give
‘(i Loy
/ PN T Rl In (—), (4.8.26)
u (Qyuwt + Tw) K Yy

where the subscript a designates values at the inner edge ot the fully turbulent region.
Equation (4.8.26) may be rearranged to give

/u (Q)I/Zdu—/ —l In b —1 In M"—/MU (Q)I/Zdul
0 ( K K 0o (

Qwkul + Tw)l/z B Vw Vw QWUWM/ + TW)I/Z
1 u
=—In }:—i—c.
K Ve

4.8.27)

Before the left-hand side of that equation can be integrated, it is necessary, as
before, to know the density or the temperature. That can be obtained from Eq. (4.7.6)
since gy, /0 = T/Ty.

With Eq. (4.7.6), the left-hand side of Eq. (4.8.27) may be written

(Te>l/2/¢ (QWUW p ] )_1/2
- W 4 e
Ty 0\ Qelle 2 (4.8.28)

_ _T -1/2
X <1 + Taw = Tw ¢+ Te — Taw (¢)'2) d¢' = u;,

Ty Ty

where ¢ = u/u.. Thus the law of the wall for compressible turbulent boundary layers
with mass transfer is

uh = (1/;<) In (yur/vw> te (4.8.29)

For incompressible, constant-temperature flows, u; reduces to

¢ 1 —1/2 2 2\ 1/2
/ <U—W¢’+—cf) d¢’' zﬁ[(ﬂrvwlf) —1}
0o \le 2 UwZ ug
Thus the law of the wall for incompressible flows with mass transfer can be written as
() [0+ ou) 1] = (1/0) I y* e,

the law of the wall obtained by Stevenson [38] [see Eq. (4.6.4)].
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According to Stevenson’s study [38], which was discussed earlier, the parameters
k and ¢ were virtually independent of the mass-transfer velocity vy/u. . However,
when Danberg [48] evaluated u;{ for his experimental data at M, = 6.5, he found that
the parameter c fell with increase in blowing rate, with the result that, for a blowing
rate of gyUw/gette = 0.0012, ¢ was 2.5, as compared to a value of 10 for the solid wall
at the same Mach number and with the same ratio of Ty/T;. According to Squire’s
study, the mixing-length constant x in a compressible turbulent boundary layer with
mass transfer is independent of Mach number and mass-transfer rate. However, the
additive parameter ¢ in the law of the wall varies with both Mach number and
injection, and the value depends critically on the measured skin friction. In general,
the additive parameter decreases with increasing injection rate at fixed Mach
number, and the rate of fall increases with increase in Mach number. Figure 4.29
shows the variation of ug‘ with y+(: yulvy) at M. = 3.55 for several blowing rates,
F = owuw/Qette-

4.9 Effect of Pressure Gradient on Mean-Velocity
and Temperature Distributions in Incompressible
and Compressible Flows

In Sections 4.4—4.8, we have discussed the mean-velocity distributions in flows with
zero pressure gradient. Here, we shall discuss the effect of the pressure gradient on
the mean-velocity and temperature distributions. We shall not consider rough
surfaces. If the roughness is reasonably small compared to the boundary-layer
thickness, it will just have the effect of a velocity shift in the sublayer, according to
the analysis presented in Section 4.5. Therefore, nothing unusual will happen to the
mean-velocity distribution since the inner region is not much affected by the pressure
gradient. For that reason, the discussion for smooth surfaces also applies for rough
surfaces, except for the velocity shift.

Although it is useful and important to study special flows such as equilibrium
flows, in most flows with pressure gradient, the external velocity distribution does
not generally vary with x in a special way, and the parameter § [see Eq. (4.4.33)] does
not remain constant. Flows with arbitrary external velocity distribution are of great
interest and it is best to determine the effect of pressure gradient on mean-velocity
and temperature distributions by obtaining solutions of turbulent boundary-layer
equations by differential methods or by Navier-Stokes methods. Integral methods
can also be used for this purpose (see Section 7.3) but they are restricted to boundary
and flow conditions and their accuracy is not comparable to differential methods
discussed in Chapters 8 and 9.

For a given two-dimensional or three-dimensional body, which implies that
the external velocity distribution can be determined and that the surface
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Fig. 4.29 Variation of uj with y" at M.=3.55 [58].

boundary condition is known, the momentum- and heat-transfer properties of the
flow can be obtained by solution of the continuity, momentum and energy
equations with accuracy sufficient for most engineering purposes. A general
computer program for this purpose is presented and discussed in Chapter 10 for
two-dimensional flows; it utilizes the eddy-viscosity formulation of Cebeci and
Smith and the so-called Box scheme. This and other similar methods (Chapters
9, 10) allow the calculation of turbulent boundary layers, including free shear
layers, for a wide range of boundary conditions. For more complicated flows or
configurations, it may be more appropriate and necessary to use Navier-Stokes
methods.

I Problems

4.1 The process of dimensional analysis discussed for the law of the wall, Eq.
(4.2.1), can be performed more rigorously with the ‘“matrix elimination”
method discussed by E. S. Taylor [59]; its advantage over other methods is
that dimensionless groups that are already known can be inserted easily, making
the analysis much shorter than in methods that start from a position of total igno-
rance. For an example of its use, let us apply it to the inner-layer velocity profile.
We first identify all the relevant variables, namely u, y, T, 0, and i, and construct
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a matrix whose columns give the mass, length, and time dimensions of the vari-
ables in each row:

M L T
u |0 1 -1
y [0 1 0
|1 —1 =2
w0 -1 -1
o 10 =3 0

The dimensions of 1,,, for example, are those of pressure or stress and can be constructed
by noting that Q,u2 has the same dimensions as pressure, which are therefore ML3(L°T~
2). We now eliminate the mass dimension by dividing all but one of the variables
containing the mass dimension by the remaining variable containing mass; our
knowledge of fluid dynamics prompts us to choose the density g as the dividing variable:

M L T
u |0 1 —1
y |0 1 O
T
~ 1o 2 =2
0
P olo 2 -1
0
e |1 =3 0

Obviously the density cannot appear in any dimensionless group in this problem
except as 1,/0 of u/g — there is no other way of canceling its mass dimension, and we
can therefore drop it from the matrix.

Next we eliminate the time dimension, simply because in this case the T (time)
column contains more zeros than the L (Ilength) column. Again using our knowledge
of fluid flow to choose physically useful combinations of variables, we get

., LT
w/e |00

y 1 0
we |y g
Tw/e

By inspection, the length dimension can be eliminated by forming y+/7,,/0/(1t/9).
No other independent dimensionless groups can be constructed: so we have

[ u y TW/Q

/o M/

which, with our usual notation, is equivalent to Eq. (4.2.1).
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Derive the “law of the wall” for temperature, Eq. (4.2.2), by using the matrix
elimination procedure discussed above. Start by deriving the matrix shown below, in
which the rows represent the exponents of mass, length, time and temperature (M, L,
T and 6) in the dimensions of the variables shown at the left

M L T 0
T,—-T |0 0 0 1
y 0 1 0 0
T 1 -1 -2 0
v 1 0 -3 0
0 1 =3 0 0
i 1 -1 -1 0
k 11 -3 —1
¢ 0 2 -2 -1

4.2 Using the matrix elimination procedure, show that the law of the wall for
velocity on a rough surface is

ut = ¢(y" k). (P4.1)

4.3 For the inner region of a turbulent boundary layer, Reichardt [60] used the eddy-
viscosity formula given by Eq. (4.3.11) and modified it to account for the viscous

sublayer,
Em = KUgy [1 — (}l> tanh (X>] (P4.2)
y Yi

Here y; denotes the viscous sublayer thickness. Show that ¢, is proportional to y3 for

Oly) < L

4.4 Show that the continuity equation requires that #/v/ should vary as at least the
third power of y in the viscous sublayer, whereas the Van Driest formula for mix-
ing length, Eq. (4.4.18) implies u/v' ~y* for small y.

4.5 Show that the “‘kinematic heating” parameter Qu% /4, 1s equal to

(v = D(uc/an)?
C}w/(QCpurTw

where a,, = \/YRT,,.
4.6 Show that Eq. (4.6.3) reduces to Eq. (4.4.15) as v,, — O.

4.7 Show that the viscous shear stress at y™ = 50 is about 5% of the wall shear stress.
4.8 If the expression for the whole velocity profile, Eq. (4.4.34) with ¢1(y") given
by Eq. (4.4.35), is evaluated at y = 0, the profile parameter II can be related
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to the local skin-friction coefficient ¢y = 21,/ ng and to boundary-layer
thickness ¢ by

16 211
e A N Ay (P4.3)
K 14 K

Show that it can also be related to the displacement thickness 6* and to the
momentum thickness 8 by

k
0%ue 4 (P4.4)
Ou;
and
5 (6% — 0)u? 1. 3,
~— 2 =242|1+-S I+ =IT P4.5
‘ ou? Ll R i(m)| 1T+ 2 (B4.5)
Also show that
I u, 1
II—-1«u, «kG () (P4.6a)
1+11
F(II) ks (P4.6b)

T 24 2[1 + 1/ Si(m)] 1T + 3201

where Si(T) = fo " [sin u/u] du=1.8519 and G is the Clauser shape parameter.

o= () ()
a= ), ()

4.9 Using Eq. (P4.3), find the skin-friction coefficient in a constant pressure
boundary layer at u,6*/v = 15,000 and then use Eq. (P4.6) to calculate u,0/v.
Take k=0.41 and ¢ =5.0.

4.10 Find the velocity profile in the inner layer but outside the viscous layer if
T=1, + oy, where « is a constant. On what dimensionless parameter does
the final constant of integration depend?

4.11 Determine the equivalent sand-grain height of the square-bar roughness
distribution tested by Moore and shown in Fig. 4.22. Assume fully rough
conditions.
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4.12 Consider the flat-plate problem in Problem 4.11, that is, a flat plate covered
with square-bar roughness distribution. Compute the local skin-friction coeffi-
cient at x =1 m for u./v = 10’ m™! and k (the roughness height) = 0.1 cm.

4.13 A thin flat plate is immersed in a stream of air at atmospheric pressure and at
25 °C moving at a velocity of 50 m s”'. Calculate the momentum thickness,
boundary-layer thickness, local skin-friction coefficient, and average skin-
friction coefficient at x=3m. Assume that v=15x10" m? s and
R, = 3x10°

4.14 Consider the flat-plate problem in Problem 4.13, but assume that (a) the plate
surface is covered with camouflage paint (see Table P4.1) applied in mass
production conditions and (b) the plate surface is a dip-galvanized metal
surface. Calculate the momentum thickness, boundary-layer thickness, local
skin-friction coefficient, and average skin-friction coefficient at x =3 m. As
a simplification assume that roughness causes the transition to be at the leading
edge so that we can neglect the contribution of laminar flow.

TABLE P4.1 Equivalent sand roughness for several types of surfaces.

Type of surface ks, cm
Aerodynamically smooth surface 0
Polished metal or wood 0.05-0.2 x 107
Natural sheet metal 0.4 %107
Smooth matte paint, carefully applied 0.6 x 107
Standard camouflage paint, average application 1x107
Camouflage paint, mass-production spray 3x107
Dip-galvanized metal surface 15 %107
Natural surface of cast iron 25x 107
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I 5.1 Introduction

It was shown in Chapter 4 that an accurate calculation of velocity and temperature
boundary layers in turbulent flows is complicated by the fact that the governing
equations contain fluctuation terms that are at present impossible to relate correctly
to the dependent variables in the equations. As discussed in Chapter 1, direct
numerical solution (DNS) of the instantaneous Navier-Stokes equations for turbulent
flows offers exciting possibilities. The computer requirements of DNS, however, are
large, and it is unlikely that this approach can be used for turbulent flow calculations
on complex bodies in the near future. For this reason, in order to proceed, it is
necessary to use time-averaged equations and introduce some empiricism to them.
Over the years, several approaches have been taken, and various models for the
Reynolds stresses have been proposed. Algebraic turbulence models based on
Prandtl’s mixing-length and Boussinesq’s eddy-diffusivity concepts are typical
examples of such models. They are mostly justified for local equilibrium flows.
Although the expressions obtained from those models do not necessarily either
describe the microscopic details of a turbulent flow or provide basic information
about the turbulence mechanism, they are very useful engineering tools.

In this chapter, we discuss algebraic turbulence models suitable for calculating
turbulent boundary layers, transport coefficients that account for various effects such
as pressure gradient and heat and mass transfer. They have been used in many
calculations methods based on the solutions of the boundary-layer and Navier-Stokes
equations and found to give results that usually agree well with experiment. Other
turbulence models based on the solution of transport equations such as Reynolds
stresses, turbulent kinetic energy, dissipation of equations will be discussed in the
following chapter. The calculation methods employing these models are more
general than those that employ algebraic models because they can handle a larger
class of flows than algebraic models.

I 5.2 Eddy Viscosity and Mixing Length Models

The conservation equations for a compressible turbulent flow were derived in
Chapter 2. Let us now consider an incompressible flow and write the continuity and
momentum equations for it. From Eqgs. (2.5.3) and (2.5.4) we can write

aﬁj/axj' =0, s.2.1)

du; _ Ou; dap d ,_ —
— i— | = —4+—(7;; + R 2.2
Q(at + M]ax]) 0x; + axj(TU + l])7 € )
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where R;j is the Reynolds stress tensor defined by

Ryj = —oux. (5:23)

With Boussinesq’s eddy-viscosity concept discussed in the previous chapter we can
write the Reynolds stress tensor as

_ « (O0u;  Ou;
R: = oe __|__]>7 (5.24
Y €m <8xj 0x; )

which is similar to 7;; defined in Eq. (2.2.4), that is,

Y
=k ax]' ax,- '

Equation (5.2.4) is a definition 5;’ but see Eq. (5.2.5).

According to Boussinesq’s concept, the eddy viscosity efn has a scalar value.
Originally, Boussinesq assumed directional constancy, but in the application of the
theory to turbulent flow through channels, he assumed that sl*n was spatially
constant also. Such a constant value can be expected to occur only if the turbulent
flow field is at least homogeneous. In a few cases of free shear flows that are not
homogeneous and show a pronounced velocity gradient and a shear stress in one
direction, it is possible to describe the overall flow field in a satisfactory way on the
assumption of a constant eddy viscosity. However, a constant value cannot be
expected as a general rule. For example, as was discussed in Section 4.3, in
turbulent flows near walls, e; is not a constant in the boundary layer, but varies
approximately linearly with y.

If the concept of a scalar eddy viscosity is to be used, a more accurate procedure
would be to extract the average turbulence pressure from the turbulence stresses as
a separate term and write the Reynolds stress tensor as

Ri' 2 ou; du;
R;i=—2 = Zkébj; — 4 5.2.5
=, 370 + €m (6xj + éxi) ( )

where k = ¢*/2.
Another closure approach to model the Reynolds stress tensor is the ‘“‘mixing
length” approach, in which Eq. (5.2.5) is written in the form

2 om  om\ (om Om;
Ri = 2k + P(—+—-) (—=+=2). 5.2.6
i~ 30 (axj+axi) (axj+axi> (5:26)
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Occasionally the approaches are mixed. Comparison of Eq. (5.2.6) with Eq. (5.2.5)
shows that

em = 12 <% + %), (5.2.7)

0x i 0x i

where [ is a turbulence length scale.
For a two-dimensional, incompressible, steady flow, the boundary-layer forms of
Egs. (5.2.1) and (5.2.2) are

Ly, (5.2.8)

du  du ldp  du d——
e v— = — 2y = . 529
u6x+U6y de+v0y2 ay”U ( )

The relation between Reynolds shear stress and mean velocity gradient is

2
—uv = gm@ =P u . (5.2.9b)
dy dy

For the sake of simplicity, we have neglected the bars over the mean quantities in
these equations. For convenience, we shall call —u/v/ the Reynolds shear stress
(actually —ou/V’ is the shear stress).

Information on the distribution of / and &, in turbulent flows comes from
experimental data. The distribution of / across a boundary layer can conveniently
be described by two separate empirical functions. In the fully turbulent part of the
inner region, / is proportional to y, and in the outer region it is proportional to 6.
Therefore,

li=xy yo<y<y, (5.2.10a)

lp =16 y.<y<y, (5.2.10b)

where y( is a small distance from the wall and y. is obtained from the continuity of /.
The empirical parameters k and «; vary slightly, according to the experimental data.
Here, we shall take them to be 0.40 and 0.075, respectively. Later, we shall discuss
the universality of these parameters (see subsection 5.3.1).

Similarly, according to experiments with equilibrium boundary layers, &y, also
varies linearly with y in the inner region and is nearly constant (except for the
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intermittency) in the outer region (see Section 4.3). Its variation across the boundary
layer can conveniently be described by the following formulas:

(em); = 12|6u/6y| Yo <y <Yy, (5.2.11a)

(em)g = auedpy  ye <y <. (5.2.11b)

)
5 :/ (1—”>dy
0 Ue

and vy is given by Eq. (4.3.14) which can be approximated by

=[]

where 0 is defined as the location where u/u, = 0.995.

Although it varies somewhat with Reynolds number when Ry < 5000,
the parameter « in Eq. (5.2.11b) is generally assumed to be a constant equal to
0.016-0.0168. Later, we shall also discuss its universality (see Section 5.4).

The mixing-length and eddy-viscosity expressions given by Egs. (5.2.10) and
(5.2.11) apply in the fully turbulent part of the boundary layer, excluding the
sublayer and buffer layer close to the wall. They can be modified, in order to make
them applicable over the entire boundary layer, by using various empirical expres-
sions. Here, we use the expression proposed by Van Driest [1] and write the mixing
length as

Here 6;: is defined by

L = [[1 —exp(—y/A)]. (5.2.12)

where
A = Aty(y /o) V2 (5.2.13)

Here ATis a dimensionless constant. The parameter A is often referred to as the Van
Driest damping parameter.

For the inner region of the boundary layer, where the law of the wall applies, the
mixing length [ is proportional to the distance y from the wall: [ = ky. Taking
k = 0.40 and comparing his model with experimental data at high Reynolds number
(Rg > 5000), Van Driest empirically determined the constant A™ in Eq. (5.2.13) to
be 26. With those assumptions and constants, the eddy viscosity for the inner region
becomes

(em); = (ky)*[1 — exp(~y/A)]*|du/dy|. (5.2.14)
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Over the years several algebraic eddy viscosity and mixing-length models have
been developed and their accuracy have been explored for a range of turbulent shear
flows: the Cebeci-Smith (CS), Mellor-Herring (MR), Patankar-Spalding (PS) and
Michel-Quemard-Durant (MQD) models are typical examples. The CS [2] and MH
[3] models use the eddy viscosity approach and the PS [4] and MQD [5] models use
the mixing-length approach. All four treat the boundary layer as a composite layer
characterized by inner and outer regions and use separate expressions for &y, or / in
the two regions. The main differences lie in the numerical method used to solve the
equations. Also the treatment of the empirical functions &, or 1% in the inner region
very close to the wall and in the outer region differ.

Of these algebraic turbulence models, the CS model has been extended and tested
for a wide-range of turbulent flows, mostly for boundary-layer flows, and is dis-
cussed here in some detail for momentum and heat transfer.

l 5.3 CS Model

The CS model is based on a two-layer eddy-viscosity formulation given by Egs.
(5.2.11), (5.2.12) and (5.2.13) and contains several modifications to the inner and
outer expressions. For example, the expression (5.2.13) was obtained for a flat-plate
flow with no mass transfer and should not be used for a turbulent boundary layer with
strong pressure gradient and heat and mass transfer. That there must be no strong
pressure gradient is quite obvious, since for a flow with an adverse pressure gradient,
Ty may approach zero (flow separation), in which case the inner eddy viscosity
predicted by the Van Driest formula will be zero.% For that reason the expression was
extended by Cebeci [6,7] to flows with pressure gradient, mass transfer, and heat
transfer. According to this extension, the damping-length constant A in Eq. [5.2.13]

is given by
—-1/2 1/2
A= A+1<T—W) (£> , (5.3.1)
N\oy Ow
where

2 4 1/2
N = {ﬂ<g—e> - [1 —exp(ll.SM—vat)} +exp(11.8“—wu§)} (5.3.2a)
He \Qw/ V3, u I

SWriting the ratio of y/A in the exponential term as y"/A™, we see that, if t, = 0, [1 — exp(-y/A)] will be
zero. Hence (&), = 0.
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pt = (veue/uf) (due/dx), vl = v /U, up = (Tw/gw)l/z. (5.3.2b)

For flows with no mass transfer, N can be written as

1/2
N = [1 —11.8(,uw/,ue)(ge/gw)2p+} . (5.3.2¢)

5.3.1 Errect oF Low ReyNoLDS NUMBER

After an extensive survey of mean-velocity-profile measurements in flows with zero
pressure gradient, Coles [8] showed that the mean-velocity distribution across an
incompressible boundary layer outside the sublayer at low Reynolds number can
accurately be described by the expression

ut = (1/k) ny* + ¢+ (I/x)w(y/9), (4.4.23)

with k = 0.41 and ¢ = 5.0, provided that the profile parameter II varies with Ry
according to the curve of Fig. 4.20. There, it can be seen that for Ry > 5000, I is
a constant equal to 0.55. The variation of Il with Ry can be approximated by

T =055 [1 —exp (— 0.24371/% - 0.298z1)} : (5.3.3)

where z; = (Rg/425 - 1).

There has been a number of studies conducted to see whether the parameters «
and ¢ in Eq. (4.4.23) were not constant. On the basis of his experimental data,
Simpson [9] reported that for values of Ry < 6000, they varied with Ry by the
following empirical formulas:

k = 0.40(Ry/6000)"1/3, (5.3.4a)
¢ = Ry*[7.90 — 0.737 In [Ry]]. (5.3.4b)

Furthermore, the parameter «; in the outer mixing-length formula (5.2.10b) and the
parameter « in the outer eddy-viscosity formula (5.2.11b) were not constant; for
values of Ry < 6000, they varied with Ry.

Simpson approximated the variation of a with Ry by the following expression:

« = 0.016R, . (5.3.5)

In their eddy-viscosity method for calculating compressible turbulent boundary

layers, Herring and Mellor [3] observed that, if k was kept constant and « varied with
Reynolds number as
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a = 00161+ (1100/RS)2}, (5.3.6)

the calculated results agreed much better with experiment than those obtained with
constant « (= 0.016). In Eq. (5.3.6), Ry is defined by

Ry = ueé]t/yw (5.3.7)

where vy is the kinematic viscosity at the edge of the sublayer.

Cebeci and Mosinskis [10] varied x and the damping-length constant A™ and

showed that when Eq. (5.2.11b) (with « = 0.0168) and Eq. (5.2.14) were used as the

eddy-viscosity formulation in the solution of the boundary-layer equations by the CS

method, the agreement with experiment was improved. The variation of x and A"

were related to Reynolds number by the following interpolation formulas:
0.19 " 14

kK =040+—"——5 A" =26+—7,
1+Z2

: 538
1 +0.4923 638

where z, = Ry x 107 > 0.3.

Huffman and Bradshaw [11] obtained a correlation in terms of A* and dt* /dy™
that is valid for a number of flows ranging from axisymmetric wall jets to two-
dimensional boundary layers. They concluded that the von Karman constant « in the
mixing-length formula is a universal constant.

Bushnell and Morris [12] analyzed measurements in hypersonic turbulent
boundary layers at low Reynolds numbers. They observed variations with Reynolds
number of the parameters k and « in the inner and the outer eddy-viscosity formulas
similar to those in Egs. (5.3.5) and (5.3.8).

The universality of the parameters k and « was also studied by Cebeci [13]. The
study showed that « is not a universal constant at low Reynolds numbers, but that it
varies with Reynolds number. According to his study, « is given by

a = ag(1 + Io)/(1 + 1T), (5.3.9)

where I1y = 0.55, « = 0.0168 and II is given by Eq. (5.3.3).

Figure 5.1 shows a comparison of calculated local skin-friction values for a flat
plate for a range of Ry of 425 to 10,000. The calculations were made by using the
eddy-viscosity formulation given by Egs. (5.2.11b), (5.2.14), and (5.3.9) with
k = 0.40, AT = 26. In one set of calculations, « was kept constant (= 0.0168), and in
another set o was varied according to Eq. (5.3.9). The results in Fig. 5.1 show that
when « is constant, the calculated skin-friction values differ considerably from those
given by Coles [8]. However, when « varies according to Eq. (5.3.9), the calculated c¢
values are in very close agreement with those of Coles.

Figure 5.2a shows the calculated Ry and H values as functions of R, obtained with
the same values of « as in Fig. 5.1. As can be seen, the value of o has an important
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Fig. 5.1 Effect of a on local skin-friction coefficient. The calculations were made by the
CS method [2].

Fig. 5.2 (a) Effect of variable & on H and R, and (b) variation of & with Reynolds
number.

effect on the calculated results. Table 5.1 gives a comparison between the calculated
shape-factor values and those given by Coles for various Ry values.

Figure 5.2b shows the variation of o« with momentum-thickness Reynolds
number Ry. The experimental data of Simpson [9] and the curve calculated by the
Herring and Mellor [3] formula (5.3.6) are shown in the same figure. That formula
was used to improve their computed results only for values of Ry higher than
2000. For that reason, in Fig. 5.2b the formula was not used for values of Ry below
2000.

Cebeci [13] has also extended Eq. (5.3.9) to compressible flows by replacing the
momentum-thickness Reynolds number in Eq. (5.3.3) by the kinematic quantity Ry,
defined by

Ry, = ucby/vw, (5.3.10)

where vy, is the wall kinematic viscosity and 6 is the kinematic momentum thickness
defined by
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TABLE 5.1 Comparison of calculated values of shape factor H for
a flat plate at low Reynolds numbers

H
Ry Coles [8] Cebeci [13]° Cebeci [14]°
1150 1.445 1.472 1.446
1450 1.425 1.447 1.424
2050 1.403 1.420 1.402
2650 1.390 1.397 1.387
4150 1.365 1.365 1.363
5650 1.350 1.346 1.350

9o = constant.
bo = variable.

=
0

u

Ue

=
Ue

)as

(5.3.11)

Figures 5.3a and 5.3b show comparisons of calculated velocity and Mach-
number profiles with experiment. Figure 5.3a is for an adiabatic, zero-pressure-
gradient flow, and Fig. 5.3b is for a flow with heat transfer. The calculations were

Fig. 5.3 Effect of a on the (a) velocity and Mach profiles for an adiabatic compressible
flow, Mo = 3.4, Ry = 2.76 x 10°, and (b) velocity profiles for a compressible flow with
heat transfer, M, = 6.6, T,,/T, = 5.2.
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made by the CS method. In one set of calculations, the parameter « was held constant
(= 0.0168); in the other, it varied according to Eq. (5.3.9), with Ry, given by
Eq. (5.3.10). Clearly, in all cases the agreement with experiment is better if « is
varied.

5.3.2 Errect OF TRANSVERSE CURVATURE

First-order boundary-layer theory is based on the assumption that the boundary-layer
thickness 6 is small in comparison with a characteristic length L. There are some
flows for which this assumption fails. Typical examples are long, slender bodies of
revolution with slender tails. In flows past these bodies, the thickness of the boundary
layer may be of the same order as, or larger than, a characteristic length, for example,
the body radius ry. As an example, consider an axial flow at zero incidence along
a cylinder. If the radius of the cylinder is large in comparison with the thickness of
the boundary layer 0, the flow is essentially two-dimensional and is not significantly
different from flow past a flat plate. However, if the radius of the cylinder is small in
comparison with 6, we may expect the flow to differ from the two-dimensional case,
since in that case the flow tends to wrap itself around the body. The effect, called the
transverse curvature (TVC) effect, strongly influences the skin-friction and heat-
transfer characteristics and must be taken into consideration in calculating the flow.

If thick axisymmetric turbulent boundary layers are to be calculated by means of
an eddy-viscosity concept, the question of the applicability of the two-dimensional
eddy-viscosity distribution immediately arises. If that distribution is not applicable,
how can the proper distribution for such flows be found?

The question was considered by Cebeci [16]. According to his study, the inner
eddy-viscosity distribution in such layers differs from the two-dimensional eddy-
viscosity distribution, but the outer eddy-viscosity distribution does not change, that
is, it is given by Egs. (5.2.11b), (5.3.9), and (5.3.10). For thick axisymmetric
turbulent boundary layers, the inner eddy-viscosity formula is

V()du
(em); = 27d—y, (5.3.12)
where
L = 04rIn (r/ro){l _ exp[—ro In (’)] } (5.3.13)
A ro

As before, the damping length parameter, A, in Eq. (5.3.13) is given by Eq. (5.3.1).

Figures 5.4a and 5.4b show the comparison of calculated and experimental
velocity and Mach-number profiles. The experimental data are due to Richmond
[17]. The calculations were made by the CS method with the two-dimensional
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Fig. 5.4 Comparison of calculated and experimental dimensionless (a) velocity profiles
for two cylinders in incompressible flows and (b) velocity and Mach-number profiles for
compressible adiabatic flows. M, = 5.825, Ry = 4390, cylinder diam. = 0.024 in. In (a)
the experimental u™ values are obtained by normalizing the measured u values by the
calculated friction velocity u,. The lower y* scale refers to the 0.024 in. cylinder. — refers
to the modified eddy viscosity formulation and - - - to the 2-d formulation.

eddy-viscosity distribution given by Egs. (5.2.11b), (5.2.14), (5.3.1), (5.3.9), and
(5.3.10) and the extension of that formulation to thick axisymmetric boundary layers,
namely, Egs. (5.2.11b), (5.3.12), (5.3.13), (5.3.19), and (5.3.55). Figure 5.4a shows
comparisons of velocity profiles for two cylinders with diameters of 0.024 in. and 1
in. for an incompressible flow. Figure 5.4b shows the comparisons for a cylinder
with a diameter of 0.024 in. for an adiabatic compressible turbulent boundary layer
for M, = 5.825. As can be seen, modifying the two-dimensional eddy-viscosity
distribution for thick axisymmetric boundary layers improves the calculations.

5.3.3 Errect OF STREAMWISE WALL CURVATURE

Streamwise wall curvature may increase or decrease the intensity of the turbulent
mixing, depending on the degree of the wall curvature, and it can strongly affect the
skin friction and the heat-transfer rates. For example, Thomann [18] showed that the
rate of heat transfer in a supersonic turbulent boundary layer on a concave wall was
increased by the streamwise curvature of the wall. For the configuration he inves-
tigated, the pressure was held constant along the wall, and the increase of about
200% was therefore due only to the wall curvature. Under the same conditions, he
found a comparable decrease for a convex wall.

To some extent, the streamwise curvature effect can be incorporated into the
eddy-viscosity expressions [19] by multiplying the right-hand side of Eq. (5.2.11)
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Fig. 5.5 Comparison of calculated (a) local skin-friction coefficients and (b) velocity
profiles with experiment.

with the inner eddy-viscosity expression (5.2.14) by $?, an expression given by
Bradshaw [20]. Bradshaw’s expression, which is based on an analogy between
streamline curvature and buoyancy in turbulent shear flows, is

1 2u (du\ !
- Rri=2% 3.14
S=Tvme M A(ay) ’ (5:3.14)

where Ri is analogous to the Richardson number and 4 is the longitudinal radius of
curvature. The parameter ( is equal to 7 for a convex surface and 4 for a concave
surface, according to meteorological data and the use of the above analogy. The
radius of curvature is positive for a convex surface and negative for a concave
surface. According to Bradshaw, the effects of curvature on the mixing length or
eddy viscosity are appreciable if the ratio of boundary-layer thickness to radius of
curvature, 0 : /, exceeds roughly 1 : 300.

Figure 5.5a shows the effect of wall-curvature modification on the computed
skin-friction for the experimental data of Schubauer and Klebanoff [21]. Figure 5.5b
shows the effect of wall-curvature modification on the computed velocity for profiles
for the data of Schmidbauer [22]. In the former case, ¢ : A is around 1 : 100; in the
latter case, it is around 1 : 75. The wall-curvature correction seems to improve the
calculations.

Bradshaw’s expression for curvature effect has also been used in the mixing-
length expressions. For example, Bushnell and Alston [23] modified the mixing-
length expression by using

1/6 = (1/6)(1 — BRi) (5.3.15)

and obtained better agreement with the experimental data of Hoydysh and Zakkay
[24] than without any correction. Their calculations were made for hypersonic
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turbulent boundary layers. In Eq. (5.3.15), (//6)o represents the mixing-length
distribution given by Eq. (5.2.10b).

5.3.4 THEe Errect OF NATURAL TRANSITION

In most practical boundary-layer calculations, it is necessary to calculate a complete
boundary-layer flow. That is, for a given pressure distribution and for a given tran-
sition point (natural), it is necessary to calculate laminar, transitional, and turbulent
boundary layers by starting the calculations at the leading edge or at the forward
stagnation point of the body. In most boundary-layer prediction methods, however,
the calculation of transitional boundary layers is avoided by assuming the transi-
tional region to be just a switching point between laminar and turbulent regions. In
general, especially at low Reynolds numbers, that is not a good procedure, and it can
lead to substantial errors. The point can best be described by an example. Consider
the flow past a turbine or compressor blade and assume two blade Reynolds numbers,
Ry = 10° and 10°. The extent of the transitional region on the blade at each of those
two Reynolds numbers can be estimated by using a correlation given by Chen and
Thyson [25]:

Rar = R, —R,, = CRZ?, (5.3.16)

where Ry, is the extent of the transition region, R, _is the Reynolds number based on
the distance to the start of the transition, and R, is the Reynolds number based on the
completion of transition. C is an empirical expression given by

C = 60 +486M!%  0<M. <5 (5.3.17)

The expressions (5.3.16) and (5.3.17) are based on the correlation of incompressible
and compressible adiabatic data for Mach numbers less than 5. If we assume that
transition starts at two points, namely, at the 10% and 50% chord points, the extents
of the transitional Reynolds number Ra, for two blade Reynolds numbers Ry,
according to Eq. (5.3.16), are shown in Table 5.2.

The tabulated values of R, clearly show that the transitional region is very
important and that it must be accounted for in order to make accurate boundary-layer
calculations. For example, for R, = 1 x 10° and transition starting at x/c = 0.5, the
transition region is 0.81c¢ in length, which means that the flow on the body from the
start of transition right up to the trailing edge is in a transitional state.

Naturally developing transition does not occur as a sharp, continuous front.
Instead, random spots of turbulence arise. Outside of these spots, the flow is still fully
laminar. The spots grow because fluid in contact with them is contaminated. While
growing, they are carried along by the flow. The net result is that they sweep out
wedges of about 8 or 9° half angle. As more and more spots are formed throughout
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TABLE 5.2 Extent of transitional Reynolds number R4, at two blade
chord Reynolds numbers Ry, with M, = 0

Start of transition Length of transition End of transition

Ry R,, x 107 Rax x 107° R, x 107
1 0.1 0.28 0.38
1 0.5 0.81 1.31
10 1.0 1.30 2.30
10 5.0 3.80 8.80

the transition region and as the existing ones grow in size, the flow reaches a point
where no laminar gaps are left, so that it has become fully turbulent. Emmons [26]
first identified these spots and the intermittency by observation of water flow in
a shallow channel. In his paper he laid down the foundations of a statistical theor-
y for analyzing their effect and the coalescing process. He introduced an intermit-
tency factor vy, such that Y = 0 corresponds to fully laminar and y = 1 to fully
turbulent flow.

The eddy-viscosity distribution given by Eq. (5.2.11) can be modified to
account for the transition region in both incompressible and compressible flows
[19]. The transition region can be accounted for by multiplying Eq. (5.2.11) by an
intermittency expression given by Chen and Thyson [25]. That expression was
developed from the point of view of intermittent production of turbulent spots and
is a further extension to compressible flow with pressure gradient of Emmons’ spot
theory and Dhawan and Narasimha’s intermittency expression [27] for incom-
pressible flows. According to Chen and Thyson, the intermittency factor vy is

given by
*dx *dx
Yo = 1 —exp {Gro(xtr)(/ > </ )}, (5.3.18)
xe 70 x, Ue

r

where G is a spot-formation-rate parameter

G = (3/¢*) (/)RS (5.3.19)

and x is the location of the start of transition. The transition Reynolds number is
defined as R,, = uexy/v. For simple shapes, Eq. (5.3.18) can be simplified consid-
erably. For example, for a straight tube or for a flat plate, it becomes

Yo = 1— exp[— (G/ue) (x — xtr)z} . (5.3.20)
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For a cone in supersonic flow,

Yo = 1 —exp { — G <1n 1) (x _x”ﬂ . (5.3.21)
Xtr Ue

It should be pointed out that for incompressible two-dimensional flows, the start of
transition can be satisfactorily calculated by using several empirical correlations.
One such useful expression is based on a combination of Michel’s method [28] and
Smith and Gamberoni’s ¢’ correlation curve [29]. Tt is given by Cebeci et al. [30] as

Ry

= 1.174[1 + (22400/Rx">}R2[;46‘ (53.22)

Figures 5.6a and 5.6b show comparisons of calculated and experimental results of
using the CS method in Chapter 8 for two different flows. Figure 5.6a is for an
incompressible flow at relatively low Reynolds number. Figure 5.6b is for a super-
sonic adiabatic flow. In both cases, the calculations that use the product of the
intermittency distribution given by Eq. (5.3.18) and the eddy-viscosity formulation
given by Egs. (5.2.11), (5.2.14), (5.3.1), and (5.3.9) seem to account for the transition
region rather well.

Studies of methods of calculating the transition region between the laminar part
and the turbulent part of a boundary layer have also been conducted by Adams [33]
and by Harris [34]. Both authors used Dhawan and Narasimha’s intermittency
expression and obtained good agreement with experiment. Figure 5.7 shows
a comparison of calculated and experimental velocity profiles for laminar, transi-
tional, and turbulent boundary-layer flows over a hollow cylinder. The calculations
were made by Harris [34]. The experimental data are due to O’Donnell [35]. For
a unit Reynolds number of 2.2 x 10° per meter, the boundary layer was laminar
throughout the measured area. The velocity profiles are similar, and the agreement

Fig. 5.6 Comparison of calculated laminar, transitional, and turbulent local skin-
friction coefficients with experiment for (a) incompressible flows and (b) for adiabatic
compressible flows, M, = 1.97.
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Fig. 5.7 Comparison of calculated and experimental velocity profiles for laminar, tran-
sitional, and turbulent boundary flows over a hollow cylinder. The calculations were
made by Harris [34]; L = 2.54cm. (a) Laminar flow, R/m = 2.2 x 10°. (b) Laminar, tran-
sitional, and turbulent flow, R/m = 9.45 x 10°.

between the calculated results and experiment is very good (see Fig. 5.7a). For unit
Reynolds numbers of 9.45 x 108 per meter, laminar, transitional, and turbulent flow
occurred. Again the agreement between the calculated results and experiment is very
good, as is shown in Fig. 5.7b.

Separation-Induced Transition

The length of the transition region is also susceptible to the degree of freestream
turbulence, especially of large scale, flow separation and surface roughness,
decreasing rapidly as these features of the flow become more pronounced. While
these features are difficult to incorporate into expressions like Eq. (5.3.18), or to
correlate with data, in the case of two-dimensional low Reynolds-number flows, Eq.
(5.3.18) was extended by Cebeci [36] to model the transition region in separation
bubbles. The parameter C in Eq. (5.3.19) was expressed in terms of R, and its
variation with R, , with the onset of transition obtained from the ¢"-method [38], is
shown in Fig. 5.8a, together with the experimental data obtained for four airfoils. The
data encompass a typical low Reynolds number range from chord Reynolds R, = 2.4
x 10° to 2 x 10°. They fall conveniently on a straight line on a semilog scale and can
be represented by the equation

C* = 213(log Ry, —4.7323). (5.3.23)

Figure 5.8b shows the results obtained with this modification to the CS model for the
ONERA-D airfoil examined by Cousteix and Pailhas [37] in a wind tunnel with
a chord Reynolds number, R, of 3 x 10° at zero angle of attack. The calculations
were made by using the interactive boundary layer method described in [38], with the
onset of transition calculated with the e”-method.
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Fig. 5.8 (a) Variation of C*/3 with R, and (b) comparison of calculated (solid lines) and
measured (symbols) velocity profiles for the ONERA-D airfoil for & = 0°, R.= 3.0 x 10°.

The airfoil and mean velocity profiles shown in Fig. 5.8b indicate excellent
agreement between the measured and calculated results. For this flow, transition
occurred within the separated flow region and caused reattachment shortly
thereafter. The calculations revealed transition at x/c = 0.81 with the e¢"-method
in comparison with measurement which revealed transition at x/c = 0.808.
Additional comparisons between calculations and experimental data are given
in [38].

5.3.5 Errect OF ROUGHNESS

The CS model discussed in the previous subsections was also extended by Cebeci
and Chang [39] to represent flow over rough walls without and with pressure
gradients. This was done by modifying the inner eddy viscosity formula with the help
of Rotta’s model [40] which recognized that the velocity profiles for smooth and
rough walls can be similar, provided that the coordinates are displaced; we rewrite L
in Eq. (5.2.12) with [ given by Eq. (5.2.10a) as

L = 0.4(y+ Ay)[1 —exp{ — (v + Ay)/A}] (5.3.24)

and express Ay as a function of an equivalent sand-grain roughness parameter

kf(=kguc/v), ie.
Ay = 0.9(v/u;) {\//g ~ KFexp <_ kj/é)]
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given by Eq. (4.5.14) which is valid for

4.535 < k < 2000

with the lower limit corresponding to the upper bound for hydraulically smooth
surface.

It remains to provide a link between k; and the geometry of a particular rough
surface. As was discussed in Section 4.5, Schlichting determined experimentally
equivalent sand roughness for a large number of roughnesses arranged in a regular
fashion. Dvorak established a correlation between the velocity shift Au and the
roughness density from which the equivalent sand roughness can be determined [41].
For the roughness elements other than the ones investigated by Schlichting and
Dvorak, the equivalent sand roughness must be determined experimentally or by
some empirical methods.

As we shall discuss later, for turbulent flows, it is sometimes more convenient to
use “wall”” boundary conditions at some distance yg away from the wall. Usually this
Yo is taken to be the distance, given by

yo = (v/ue)yg

with yg given by 50 for smooth surfaces. In that case, the “wall” boundary
conditions for u and v can be represented by

1
"o = L In y“j‘wc} (5.3.25a)
uoyo dit;
— _toyodtt: 5.3.25b
Yo u; dx ( )

Here c is a constant equal to 5.2. Equation (5.3.25b) results from integrating the
continuity equation with u given by Eq. (4.2.1). The shear stress at y(, namely 7o, is
obtained from

d, du; ¥ 2
T =1+ Py e <1> dy+ (5.3.26)
X 0

In the viscous sublayer and in the buffer layer (y™ < 30), u/u, can be obtained from
Thompson’s velocity profile given by Eq. (4.4.41). For y© > 30 we can use the
logarithmic velocity formula, Eq. (9.3.1a). See subsection 9.3.1.

The above equations are also applicable to flows over rough walls provided we
replace ¢ in Eq. (5.3.25a) with B, given by Eq. (4.5.6). The use of these boundary
conditions are especially advantageous for fully rough flow conditions because they
do not directly require “low Reynolds number”” modifications.
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Cebeci and Chang modification to the CS model to account for wall roughness
has been investigated for several flows by using the differential boundary layer
method described in Chapter 8 and in [38]. Here, of the several flows considered in
that study, two are presented below to demonstrate the accuracy of this model for
flows over rough walls.

Figure 5.9 presents measured values of momentum thickness, displacement
thickness, and skin-friction coefficients, reported by Betterman [42], together with
lines corresponding to the Cebeci-Chang calculations. The measurements corre-
spond to values of roughness density of 2.65 to 4.18 and roughness height between
2.4 and 4.0 mm. The equivalent sand roughness heights were calculated as described
in Section 4.5 based on the correlated results presented by Dvorak [41]. The
measured crand Ry at the 0.4-m station, where initial perturbations have died down,
were used to generate initial data. As can be seen, the agreement is generally very
good, with the maximum discrepancy in skin-friction coefficient and integral
thicknesses amounting to approximately 5% and corresponding to the results
obtained with the longest roughness height.

Fig. 5.9 Results for Bettermann’s data (— computed, x A 0O data): (a) k = 3 mm,
A =265 k=126 mm; (b) k=3 mm, A = 3.30, k, = 3.8 mm; (c) k = 2.4 mm,
A =413, k, = 9.26 mm; (d) k = 4.0 mm, 2 = 4.18, k, = 14.0 mm. In all cases,
Ue=30m/s, v=1.44 x 107° m%s.
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Fig. 5.10 Results for Perry and Joubert’s data for two different external velocity distri-
butions (— computed, o data). In both cases, k = 0.0104 ft, A = 4.0, k, = 0.0346 ft,
vi=1.56 x 107" ft*/s, trer = 100 ft/s.

Perry and Joubert’s data serve as another test for flows over rough walls with
adverse pressure gradient [43]. They measured the boundary layers in a closed-
circuit-type wind tunnel over rough surface made of 0.125-in.-square bar elements
with roughness density of 4 held to the plate by strips of double-coated adhesive tape.
Because of difficulty in accurately determining ¢y for flows with pressure gradients
from the measured velocity profiles based on Clauser’s plot, they deduced the wall
shear stress based on Coles’ wake function. In general, the agreement between the
calculated and experimental results is good, as shown in Fig. 5.10.

5.4 Extension of the CS Model to Strong
Pressure-Gradient Flows

Extensive studies, mostly employing boundary-layer equations, show that while
many wall boundary-layer flows can satisfactorily be calculated with the CS model
discussed in the previous section, improvements are needed for flows which contain
regions of strong pressure gradient and flow separation, for example, flows either
approaching stall or post-stall. The main weakness in this model is the parameter
o used in the outer eddy viscosity formula, Eq. (5.2.11b), taken as 0.0168. Experi-
ments indicate that in strong pressure gradient flows, the extent of the law of the wall
region becomes smaller; to predict flows under such conditions, it is necessary to
have a smaller value of « in the outer eddy viscosity formula. The question is how to
relate « to the flow properties so that the influence of strong pressure gradient is
included in the variation of «.

5.4.1 JoHNSON-KING APPROACH

One approach developed by Johnson and King [44] and Johnson and Coakley [45] is
to adopt a nonequilibrium eddy-viscosity formulation &y, in which the CS model
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serves as an equilibrium eddy viscosity (em)eq distribution. An ordinary differential
equation (ODE), derived from the turbulence kinetic energy equation, is used to
describe the streamwise development of the maximum Reynolds shear stress,
—(ou'V'),,,, or (—u'V'),, for short, in conjunction with an assumed eddy-viscosity

distribution which has y/(—u/v/)y, as its velocity scale. In the outer part of the

boundary layer, the eddy viscosity is treated as a free parameter that is adjusted to
satisfy the ODE for the maximum Reynolds shear stress. More specifically, the
nonequilibrium eddy-viscosity distribution is defined again by separate expressions in
the inner and outer regions of the boundary layer. In the inner region, (&y); is given by

(em); = (em) (1 = 7v2) + (em)J — K72 (5.4.1)

where (&)1 is given either by (Ky)zaulay or u;y. The expression (en) J — K is

(5m,)J,K = DZKyum (5.4.2)
where
Uy = max <uf, (—u’v’)m) (5.4.3a)
and D is a damping factor similar to that defined by Eq. (5.2.12)
D =1-exp(/(Cuv) —— (5.4.3b)
m opA+

with the value of A™ equal to 17 rather than 26, as in Eq. (5.2.12). The parameter vy,
in Eq. (§.4.1) is given by

Y2 = tanh(%,) (5.4.3¢c)

(4
where, with y,, corresponding to the y-location of maximum turbulent shear stress,
(_u/v/)m,
/ Uq

= L 544
PR (4.4

with

{O.4ym Ym < 0.2256
L =

0.096 ym > 0.2250. (5:4:5)

In the outer region, (ey), is given by

(em), = 0(0.0168%6*7) (5.4.6)
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where o is a parameter to be determined. The term multiplying ¢ on the righthand
side of Eq. (5.4.6) is the same as the expression given by Eq. (5.2.11b) without vy,
and with o = 0.0168.

The nonequilibrium eddy viscosity across the whole boundary-layer is computed
from

ém = (&m), tanh [%] (5.4.7)

The maximum Reynolds shear stress (—=u'v)py, is computed from the turbulence
kinetic energy equation using assumptions similar to those used by Bradshaw et al.
(see subsection 6.3.1). After the modeling of the diffusion, production and dissipa-
tion terms and the use of

)
(Z—v)m — a = 025
m

the transport equation for (—u/v'),, with uy, now denoting the streamwise velocity at
YVm, 18 Written as

d, —_ ai(—uV) — 12 a2 @
a(— M’U,)m = Tmm{(—u’v’)m’eq — (M,U/)m :| —EDIH (548)

where, with cgif = 0.5, the turbulent diffusion term along the path of maximum

(—u'V') is given by
—\3/2 i 1/2
e o) [ [ (), 1) (5.4.9)
ab [0-7 - (y/é)m} (7 ulv,)m,eq

To use this closure model, the continuity and momentum equations are first
solved with an equilibrium eddy viscosity (em)eq distribution such as in the CS
model, and the maximum Reynolds shear stress distribution is determined based on
(&m)eq> Which we denote by (—W)m,eq. Next the location of the maximum Reynolds
shear stress is determined so that yy, and uy, can be calculated. The transport equation
for (—u/v/)n, is then solved to calculate the nonequilibrium eddy-viscosity distribu-
tion ey given by Eq. (5.4.7) for an assumed value of ¢ so that the solutions of the
continuity and momentum equations can be obtained. The new maximum shear
stress term is then compared with the one obtained from the solution of Eq. (5.4.8).
If the new computed value does not agree with the one from Eq. (5.4.8), a new value
of o is used to compute the outer eddy viscosity and eddy-viscosity distributions
across the whole boundary-layer so that a new (—u/v/),, can be computed from the
solution of the continuity and momentum equations. This iterative procedure of
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determining o is repeated until (—u/v'), is computed from the continuity and
momentum equations agrees with that computed from the transport equation, Eq.
(5.4.8).

5.4.2 CeBecl-CHANG APPROACH

Cebeci and Chang used another approach in order to improve the predictions of the
CS model for flows with strong adverse pressure gradient and separation [46]. They
related the parameter o to a parameter F, according to the suggestion of Simpson
et al. [47] by

~0.0168

Here (1 — F) denotes the ratio of the production of the turbulence energy by normal
stresses to that by shear stress, evaluated at the location where shear stress is
maximum, that is

(ﬁ - vﬁ)au/ax

F=1- —
—u'v'u/dy

(5.4.11)

m

Before Eq. (5.4.10) can be used in Eq. (5.2.11b), an additional relationship between
(w2 —v?) and (—u/V) is needed. For this purpose, the ratio in Eq. (5.4.11)

5.
g= |12 (5.4.12)

—u'v

m

is assumed to be a function of R, = t,,/(—gu'v'),,, which, according to the data of
Nakayama [48], can be represented by

6
= 5.4.13
b =TT me—r) (54.132)
for R, < 1.0. For R, > 1.0, (8 is taken to be
= 5.4.13b
g 14+ R; ( )

Introducing the above relationships into the definition of F and using Eq. (5.4.7)
results in the following expression for «

a = 0.0168 (5.4.14)

[1 = B(0u/0x)/(3u/dy)],;°
where ( is given by Eq. (5.4.13).
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Separation-Induced Transition

Another improvement to the CS model was made by replacing the intermittency
parameter v in Eq. (5.2.11b) by another intermittency expression recommended by
Fiedler and Head [49]. According to the experiments conducted by Fiedler and Head,
it was found that the pressure gradient has a marked effect on the distribution of
intermittency. Their experiments indicated that in the boundary-layer proceeding to
separation, the intermittent zone decreased in width and moved further from the
surface as shape factor H increased. The reverse trend was observed with decreasing
H in a favorable pressure gradient.

In the improved CS model the intermittency expression of Fiedler and Head is
written in the form

y = % [1 - erfy\/_z(ﬂ (5.4.15)
where Y and o are general intermittency parameters with Y denoting value of
y for which vy = 0.5 and o, the standard deviation. The dimensionless inter-
mittency parameters Y/6", /6™ and 6/6" expressed as functions of H are shown in
Fig. 5.11.

The predictions of the original and modified Cebeci-Smith turbulence models
were investigated for several airfoils [46] by using the interactive boundary-layer

Fig. 5.11 Variation of Y/6", 6/6" and 6/6" with H according to the data of Fiedler and
Head [49].
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Fig. 5.12 IBL results for the (a) NACA 0012 airfoil and (b) Boeing airfoil, Mo = 0.3.

(IBL) method of Cebeci [38]. For each airfoil, the onset of the transition location
was computed with Michel’s correlation [28], and the calculated lift coefficients
were compared with data for a range of angles of attack, including stall and
post-stall.

Figures 5.12a and 5.12b show a sample of results obtained with the original and
modified CS models, the latter corresponding to the one in which « is computed
according to Eq. (5.4.14) and the intermittency factor due to Fiedler and Head. The
experimental data in Fig. 5.12a were obtained by Carr et al. [50] and in Fig. 5.12b by
Omar et al. [51].

As can be seen, the calculated results obtained with the modified CS model are
significantly better than those obtained with the original CS model. In both cases,
the calculated maximum lift coefficients with the original CS model are much
higher than those measured ones; in Fig. 5.12b, the ¢; _is not predicted at all. The
modified CS model, on the other hand, in both cases, predicts the c; .. and produces
lift coefficients for post stall which are in agreement with the trend of measured
values.

Figures 5.13a and 5.13b show a comparison between the calculated and
experimental results in which the calculated ones were obtained by using the
modified CS and Johnson-King (JK) models. In both cases, the predictions of
the modified CS model are better than the JK model. For example, for the
NACA 0012 airfoil, Fig. 5.13a, the modified CS model predicts ¢, more
accurately than the JK model. For the Boeing airfoil, the modified CS model
appears to predict post stall better than the JK model. For additional comparisons,
see [38].
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Fig. 5.13 IBL results for the (a) NACA 0012 airfoil and (b) Boeing airfoil, M., = 0.3.

5.5 Extensions of the CS Model to Navier-Stokes
Methods

Due to its simplicity and its good success in external boundary-layer flows, the CS
model with modifications has also been used extensively in the solution of the
Reynolds-averaged Navier—Stokes equations for turbulent flows. These modifica-
tions are described below.

Baldwin and Lomax [52] adopt the CS model, leave the inner eddy viscosity
formula given by Eq. (5.2.14) essentially unaltered, but in the outer eddy viscosity,
Eq. (5.2.11b), use alternative expressions for the length scale 6* of the form

(em)o = aC1YYmaxFmax (5.5.1a)
or
2 Ymax
(Sm)o = aCl'YCZMdiffF— (5.5.1b)
max

with ¢; = 1.6 and ¢, = 0.25. The quantities Fy,,x and ypax are determined from the
function

F = y(%) [1 _ e*y/A} (5.5.2)

with Fnax corresponding to the maximum value of F that occurs in a velocity profile
and ymax denoting the y-location of Fix. ugisr is the difference between maximum
and minimum velocity in the profile
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Udiff = Umax — Umin (5.5.3)

where un, is taken to be zero except in wakes.
In Navier—Stokes calculations, Baldwin and Lomax replace the absolute value of

the velocity gradient 0u/0y in Eqgs. (5.2.14) and (5.5.2) by the absolute value of the

vorticity |,

du OJv

5 o (5.5.42)

ool =

and the intermittency factory y in Eq. (5.2.11b) is written as

67 —1
y = [1 +5.5<C3y> } (5.5.4b)

max

with ¢3 = 0.3. The studies conducted by Stock and Haase [53] clearly demonstrate
that the modified algebraic eddy viscosity formulation of Baldwin and Lomax is not
a true representation of the CS model since their incorporation of the length scale in
the outer eddy viscosity formula is not appropriate for flows with strong pressure
gradients.

Stock and Haase proposed a length scale based on the properties of the mean
velocity profile calculated by a Navier—Stokes method. They recommend computing
the boundary-layer thickness 6 from

6 = 1.936Ymax (5.5.5)

where ymax is the distance from the wall for which y|du/dy| or F in Eq. (5.5.2) has its
maximum. With ¢ known, i in the outer eddy viscosity formula, Eq. (5.2.11b) is the
u aty = 6, and y is computed from

y = [1 +55 (%)6} B (5.5.6)

based on Klebanoff’s measurements on a flat plate flow and not from Eq. (5.5.4b).
The displacement thickness 6 for attached flows is computed from its definition,

6 u

o* :/ (1—u—) dy (5.5.7a)
0 €
6 u

oF = / <1 —u—> dy (5.5.7b)
Yu=0 €

and, for separated flows from
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either integrating the velocity profile from y = 0, or y =y, to 0, or using the Coles
velocity profile. The results obtained with this modification to the length scale in the
outer CS eddy viscosity formula improve the predictions of the CS model in Navier—
Stokes methods as discussed in Stock and Haase [53].

A proposal which led to Eq. (5.5.5) was also made by Johnson [54]. He rec-
ommended that the boundary-layer thickness ¢ is calculated from

5 =12y (5.5.8)

where

Yijp =y at = 0.5. (5.5.9)

FIIlllX

The predictions of the original and modified CS models were also investigated by
Cebeci and Chang by using the Navier-Stokes method of Swanson and Turkel [55] as
well as by the interactive boundary-layer method of Cebeci (see subsection 5.4.2).
The models considered include the original CS model, BL model, modifications to
the BL model and the JK model.

Figures 5.14a and 5.14b show the results obtained with the original CS and BL
models. In the former case, the length scale 6" in the outer eddy-viscosity formula
was computed based on the definition of the boundary-layer thickness ¢ given by
Stock and Haase [53] and Johnson [54].

Fig. 5.14 Navier-Stokes results for the (a) NACA 0012 airfoil and (b) Boeing airfoil,
M, = 0.3.
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Fig. 5.15 Navier-Stokes results for the (a) NACA 0012 airfoil and (b) Boeing airfoil,
Mo = 0.3.

Figures 5.15a and 5.15b show similar comparisons with turbulence models
corresponding to the original CS and modified CS models. In the latter case the
boundary-layer thickness was computed from

5 = 15y1/2

or from

6:ym

if 1.5y1/2 > ym, with y, corresponding to the location where streamwise velocity u is
maximum. Figures 5.16a and 5.16b show results obtained with turbulence models
based on modified CS and BL-JK models. In the latter case, the parameter « in the
BL method was taken as a variable computed by the JK method.

A comparison of results presented in Figures 5.14 and 5.15 shows that for the
airfoil flows considered here, the results obtained with the original CS model
(Fig. 5.14) with ¢ defined by Stock and Haase [53] and Johnson [54] are slightly
better than those given by the BL model and the results with the modified CS model
(Fig. 5.15) are much better than all the other modified versions of the original CS
model.

A comparison of the results obtained with the modified CS model and with the
BL-JK model (Fig. 5.16) show that both models essentially produce similar results.

Finally, Fig. 5.17 shows a comparison between the predictions of the IBL and NS
methods. In both methods, the turbulence model used is the modified CS model. As
can be seen, the predictions of both methods are identical at low and moderate angles
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Fig. 5.16 Navier-Stokes results for the (a) NACA 0012 airfoil and (b) Boeing airfoil,
M, = 0.3.

of attack. At higher angles, especially near stall and post stall, while there are some
differences, both methods predict the stall angle well. The requirements for the
computer resources for the IBL method, however, are considerably less than those
provided by the Navier—Stokes method.

5.6 Eddy Conductivity and Turbulent Prandtl
Number Models

Using Boussinesq’s eddy-conductivity concept, we can write the transport of heat
due to the product of time mean of fluctuating enthalpy 4’ and fluctuating velocity v’
in the form

—oU'H = gey(9h/dy). (5.6.1)

Sometimes it has been found to be convenient to introduce a ““turbulent” Prandtl
number Pr; defined by

Pry = em/én. (5.6.2)

It is obvious from Eq. (5.6.1) that in order to predict temperature distribution within
a boundary layer, it is necessary to describe the distribution of &, in the layer. For that
reason, various assumptions have been made and several models have been proposed
for e. One assumption that has been used extensively is due to Reynolds [56].
According to his assumption, heat and momentum are transferred by the same
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Fig. 5.17 Comparison of NS and IBL results obtained with the modified CS model for
the (@) NACA 0012 airfoil and (b) Boeing airfoil, M., = 0.3.

process, which means that the eddy coefficients for momentum and heat transport are
the same. That assumption leads to a turbulent Prandtl number of unity. The literature
discusses the relationship between those coefficients at great length (see, e.g., Kestin
and Richardson [57]) without definite conclusions. According to mercury experi-
ments in pipes, Pr; > 1; according to gas experiments in pipes, Pr; < 1. From the
experiments, it is not clear whether or not the eddy conductivity and, consequently,
the turbulent Prandtl number are completely independent of the molecular Prandtl
number.

One of the first proposals for a modification of the Reynolds analogy was made
by Jenkins [58], who took into consideration the heat conduction to or from an
element of an eddy during its movement transverse to the main flow. He assumed that
if the temperature of the eddy did not change in transit, the definition of mixing
length, [ = u, (au/ay)fl, and the definition of eddy conductivity, Eq. (5.6.1), would
give ey, = IV, since T’ = 1(0T/dy). However, if heat were lost during transit, the
fluctuation temperature 7’ would actually be less than that, because of molecular
thermal conductivity. Then the eddy conductivity would be

, Ty — T
en = lv W, (5.6.3)
where Ty and 7; are the final and the initial eddy mean temperatures, respectively. In
order to obtain an expression for (77 — 7;)/1(87/0y), Jenkins assumed that the eddies
were spheres of radius /, the mixing length, with the surface temperature of the
particles varying linearly with time during their movement. The interval of time
between an eddy’s creation and its destruction was taken to be I/v'. Using Carslaw
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and Jaeger’s formula for the average temperature of a sphere under those conditions,
he obtained an expression for Eq. (5.6.3).

Treating the effects of molecular viscosity on an eddy in movement in the same
way as the effects of molecular thermal conductivity, Jenkins obtained the following
expression for the ratio of eddy conductivity to eddy viscosity:

en 1
em Pr,
[ s (2 ) ) 1 eve( i)}
Pr % _ (12/7r6>Prgr+n{Z:=1 (1/n%)[1 — exp( — nzWZ/Prsjn)}}

(5.6.4)

The variation of en/en, with Pr for various values of € (=e,/v) according to Eq.
(5.6.4) is shown in Fig. 5.18. Calculations made at low Prandtl numbers with the data
of Fig. 5.18 for the relationship between e, and &, are in fair agreement with
experiment [59], although the more recent experimental data for liquid metals
suggest that the loss of heat by an eddy in transit is not as great as that predicted by
Jenkins. Furthermore, according to the experimental data of Page et al. [60] for air at
Pr = 0.7, the eddy conductivity is greater than the eddy viscosity. Jenkins’ result

Fig. 5.18 Variation of reciprocal of turbulent Prandtl number with molecular Prandtl
number for various values of &f,, according to Eq. (5.6.4).
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gives an opposite effect; some analysts have therefore preferred to use Jenkins’
diffusivity ratio multiplied by a constant factor such as 1.10 or 1.20, to bring the
results more into line with measurements at Pr = 0.7. At high Prandtl numbers, the
Jenkins model predicts values for ey/ey, that have no upper bound as the Prandtl
number increases, which also is not found by experiment.

Rohsenow and Cohen [61] also derived an expression for ep/e,. They expressed
the ratio of the two eddy coefficients as

€n 1 6 X1 0.0024 7212
2 416Pr | ——— ) — — T ). 6.
, 6 rLS — nz_:ln6exp< o (5.6.5)

m

Their analysis assumes that when an eddy passes through the fluid, a temperature
gradient is set up in it and that the surface heat-transfer coefficient is infinite. Again,
that expression leads to infinite values of ep/e,, as the Prandtl number increases
without limit.

Studies of the problem have also been made by Deissler [62], by Simpson et al.
[63], and by Cebeci [64]. Deissler’s first method is based on a modified mixing-
length theory, and his second method is based on correlation coefficients. Neither
leads to an expression for the eddy diffusivity ratios that can be compared directly
with those given by other authors, but the modified mixing-length theory does seem
successful in predicting heat transfer in the low-Prandtl-number range. In his second
method, Deissler derived from the momentum and the energy equations the corre-
lation between velocities and temperatures at two points in a homogeneous turbulent
fluid. His results predict that ep/ep, depends on the velocity gradient and that, as the
gradient increases, the value of the ratio approaches unity, regardless of the
molecular Prandtl number of the fluid.

The study of Simpson et al. consists of the determination of the turbulent
Prandtl number for air from the experimental data of Simpson and Whitten and
the comparison of the experimental results with available theories. In addition,
they investigated the effects of blowing and of suction on the turbulent Prandtl
number and found no effect of mass transfer. The studies were made for
incompressible turbulent flows with relatively low Reynolds number (R,), ranging
from 1.3 x 10° to 2 x 10°. The minimum Reynolds number based on momentum
thickness with no mass transfer is approximately 600. The results of the study
show that (1) their experimental turbulent Prandtl number results agree, within the
experimental uncertainties, with Ludwieg’s pipe results [65], which were obtained
for 0.1 < y/8 < 0.9, and that (2) in the inner region the Jenkins model is found to
describe, within experimental uncertainty, the variation of Pr; with &. In the outer
region, a new model for Pr; and &/ was developed. The results for both models
fall within the uncertainty envelope of their experimental results and indicate no
dependence of Pr; on blowing or suction.
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The approach taken by Cebeci [64] is based on the mixing-length concept. It
differs from others in that his eddy-conductivity expression (1) provides a continuous
temperature distribution across the boundary layer, (2) accounts for the mass transfer
and the pressure gradient, and (3) accounts for both low-and-high-Prandtl-number
fluids. According to this model, the turbulent Prandtl number is given by

K[l — exp(—y/A)]
kn[l —exp(—y/B)]

Pr, — (5.6.6a)

At the wall,

B BT
Prt*K K

= —— = ——, 5.6.6b
KnA KnA™T ( )

Note that as y becomes larger, the exponential terms in Eq. (5.6.6a) approach zero.
The turbulent Prandtl number then becomes

Pry = &/kp. (5.6.6¢)

We also note from Eq. (5.6.6) that the molecular Prandtl number plays a strong role
in Pr, close to the wall, since BY = B (Pr), and has no effect on Pr, away from the
wall.

The damping constant in Eq. (5.6.6) is for air, whose Prandtl number is
approximately 0.7. For fluids other than air it varies since B is a function of the
molecular Prandtl number. If we assume that k, kp, and A7 are 0.40, 0.44, and 26,
respectively, B" can be calculated from Eq. (5.6.6b), provided that the Pr; is known at
the wall. Following that procedure and using the experimental values of Pr, Na and
Habib [66] expressed the variation of BT with Pr, for a range of Pr from 0.02 to 15, by

p-"2 +V, BT = BY/(pr)'/%, (5.6.7)

Ur

Bt

where is represented by the following formula:

5
B™ =" Ci(logjoPr)" ", (5.6.8)
i=1
with C; = 34.96, C, = 28.79, C3 = 33.95, C4, = 6.33, and C5 = —1.186.
To account for the low Reynolds number effects (Ry < 5000) for air with Pr = 1,
kh and BT are represented by

0.22 25
Bt =35+

— 04— -
K“ 1+ 04223 1405523

(5.6.9)

where =Ry x 1073 > 0.3.
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Equation (5.6.6) with B and A given by (5.6.7) and (5.2.13) is restricted to
incompressible flows without pressure gradient. It can easily be extended to
compressible flows by replacing A by Eq. (5.3.1) with N given by Eq. (5.3.2c) and by

replacing B by
~1/2 1/2
B — 3+1<T—W) <£> . (5.6.10)
N\ew Qw

The expression for the turbulent Prandtl number given by Eq. (5.6.6) has been
evaluated for flows with and without mass transfer by comparing its predictions with
experiment and with other predictions.

For an incompressible flow with no mass transfer, Figures 5.19a and 5.19b show
the variation of the turbulent Prandtl number with y* and e respectively, according
to the Cebeci model for Ry = 1000 and 4000 and according to Jenkins’ model. Also
shown is the uncertainty envelope and the variation of the mean turbulent Prandtl
number determined by Simpson et al. [63] from their experimental data. We note that
the values of Pr; calculated by Eq. (5.6.6) show a slight Reynolds-number effect for
Ry < 4000, an effect that was also observed by Simpson et al. The predicted results
fall within the uncertainty envelope and agree well in both inner and outer regions,
with the predictions of Jenkins in the inner region (y© < 10%), and with the exper-
imental data of Simpson et al.

Figure 5.20a shows the variation of turbulent Prandtl number with y/6 for Ry
values of 1000 and 4000. It also shows the uncertainty envelope of Simpson et al. and
the experimental data of Johnson [67] and of Ludwieg [65]. The experimental data of
Johnson are for flat-plate flow at high Reynolds numbers. Johnson studied the
temperature distribution downstream of an unheated starting length where
the thermal boundary layer was contained at all times in an inner fraction of the
momentum boundary layer, which provided no information about the outer region.
He compared the turbulent shear stress and the heat flux obtained by hot-wire

Fig. 5.19 Variation of turbulent Prandtl number (a) with y* and (b) with &,.
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Fig. 5.20 (a) Comparison of calculated turbulent Prandtl number with experiment and
(b) effect of mass transfer on turbulent Prandtl number.

measurements with those generated from mean-velocity and -temperature distribu-
tions and found a 50% discrepancy in the shearing stresses and good agreement for
the heat fluxes. His values of skin-friction coefficient obtained by several indepen-
dent methods did not agree. The anomalous behavior was attributed to three-
dimensionality of the flow. The experimental data of Ludwieg are based on
measurements in a pipe, again at high Reynolds numbers. According to Kestin and
Richardson’s study [57], Ludwieg’s results are the most reliable for air flowing in
a pipe.

The comparisons in Fig. 5.20a show that the results obtained by Eq. (5.6.6),
especially one obtained for Ry = 4000, agree reasonably well with Ludwieg’s results
for 0.1 < y/6 < 0.4 and differ slightly from his results within the uncertainty envelope
of Simpson et al. It is interesting to note that the predicted results for the region near
the wall also agree well with Johnson’s data, although the discrepancy is significant
away from the wall.

Next we study the effect of mass transfer on turbulent Prandtl number. We use the
experimental data of Simpson and calculate Pr, at various values of y* and y/& for
given values of Ry and v{. Figure 5.20b shows the results calculated for v}, = 0 and
v, = 0.0242 for Ry = 2000 by using Eq. (5.6.6), together with the uncertainty
envelope and the variation of the mean turbulent Prandtl number of Simpson et al.
and the predictions of Jenkins’ model. Considering the fact that the calculations were
made for a low Reynolds number, it can be said that the results agree reasonably well
with the findings of Simpson et al. and show no appreciable effect of mass transfer on
the turbulent Prandtl number.

Next we compare the present model with the experimental data of Meier and
Rotta [68]. Those authors present temperature distributions in supersonic flows and
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turbulent Prandtl number distributions obtained from their experimental data. They
point out that the results of their turbulent-Prandtl-number distribution for such flows
are in excellent agreement with those of Simpson et al. [63], who carried out
measurements at low subsonic speeds on a porous plate. They further point out that if
they express Prandtl’s mixing-length expression in the form written by Van Driest,
that is,

I = Khy{lf exp (f y(rwg)l/z/uw)}, (5.6.11)

and use the restrictions

BH\’ 2
y =0, Pr= (K ) y—6, Pr = <ﬁ> : (5.6.12)

Kh At Kh

then the calculated temperature distributions are in excellent agreement with their
experimental data, provided that they choose the constants in Egs. (5.6.11) and
(5.6.12) as k = 0.40, k, = 0.43, A" = 26, and B™ = 33.8, four empirical constants
that compare reasonably well with those used in Eq. (5.6.6). Figures 5.21a and 5.21b
show the experimental Pr; variation for Meier and Rotta’s experiment, together with
calculated and experimental temperature distributions taken from Meier and Rotta
[68].

We now show the heat-transfer results obtained for pipe flow by using the Cebeci
model. The calculations were made by Na and Habib [66] for fluids with low,
medium, and high Prandtl numbers (Pr = 0.02—15). Figure 5.22 shows comparisons
of calculated and experimental values of Nusselt number Nu, defined as

Nu = hd/k, (5.6.13)

Fig. 5.21 (a) Pr, variation in the boundary layer and (b) effect of variable Pr, on the
calculated temperature distributions [68].
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Fig. 5.22 Comparison of calculated and experimental values of Nusselt number for
a turbulent pipe flow at different values of (a) Peclet number and (b) Reynolds number.

for various values of Peclet number Pe, defined as
Pe = R, Pr, (5.6.14)

for two different fluids. Figure 5.22a shows the results for mercury and Figure 5.22b
for air. In Eq. (5.6.13) h is the heat-transfer-film coefficient, d is the pipe diameter,
and k is the thermal conductivity of the fluid. In Eq. (5.6.14) R, is the Reynolds
number defined as

Ry = ud/v, (5.6.15)

where % is the mean velocity.
Figure 5.23a shows comparisons of calculated and experimental Stanton numbers
St, defined as

St = Nu/(Ry Pr). (5.6.16)

Fig. 5.23 Comparison of calculated and experimental values of (a) Stanton number and
(b) static-enthalpy profiles for a turbulent pipe flow at different values of Reynolds
number and Prandtl number.



194 Analysis of Turbulent Flows with Computer Programs

and Fig. 5.23b shows comparisons of calculated and experimental dimensionless
static-enthalpy profiles 4™

ekt
hy Q U

(5.6.17)

for Prandtl numbers of 0.72 and 0.02. Again the agreement with experiment is very
good.

I 5.7 CS Model for Three-Dimensional Flows

With the eddy viscosity concept, the boundary-layer equations for three-dimensional
turbulent flows can be expressed in the same form as those for laminar flows,

ow

% (5.7.1)

T — u I —

—ou'v = Qsma—y, —ow'V = gen
Here —ou/v’ denotes the shear stress acting in the x-direction on a plane parallel to
the xz-plane, and —ow/v/, usually written as —ou’w/, the shear stress acting in the
z-direction on the same plane. Almost all workers have inferred, from the fact that
the choice of direction of the axes in the xz-plane is arbitrary, that the assumptions
made for —ou'w’ should be closely analogous to those made for —ou/v’. Mathe-
matically, they assume that the turbulence model equation for —gu'w’ should be
obtainable from that for —ou/v/ by cyclic interchange of symbols. However, it is not
so obvious that the equations for —gu/v/ can be simply derived from models used for
a two-dimensional flow. The argument commonly used is that turbulence, being
instantaneously three-dimensional, should not be seriously affected by moderate
three-dimensionality of the mean flow. There is, of course, a loss of symmetry, for
instance, VW is zero in a two-dimensional flow but not in a three-dimensional flow,
and Rotta [69] has shown that the asymmetry can noticeably affect the modeling of
the shear-stress equations.

The law of the wall [Eq (4.2.1)] and the mixing-length formula

(1))
dy Ky

(5.7.2)

are the foundations of most methods for two-dimensional flows. Clearly, Eq. (5.2.11)
requires modification since the velocity now has an extra component. The local
equilibrium arguments suggest that it should still be valid in a three-dimensional flow
if the x-axis is taken to coincide with the direction of the shear stress at height y. The
assumption of local equilibrium between the magnitudes of t and du/dy that leads to
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Eq. (5.7.2) implies, when it is taken at face value, that there should be local equi-
librium, that is, coincidence between their directions. This leads to

du —uv
-7 (5.7.3a)
W (t/0)"xy
!
w __—vw (5.7.3b)

O (c/0)'*ry
where

T = {(@u’_v’)2+ (QW)Z} 2

The argument is not, of course, very convincing — the local equilibrium is an
approximation whose limits of validity need further investigation by experiment.
Experiments in three-dimensional flows, particularly measurements of v'w/, are
difficult, and there is evidence both for and against Eq. (5.7.3). A safe position to take
is that local equilibrium concepts are not likely to fail catastrophically as soon as the
mean flow becomes slightly three-dimensional, and indeed the calculation methods
that use Eq. (5.7.3) seem to agree acceptably with most of the experimental data not
too near separation, as we shall see in this section.

An undeniable difficulty in treating three-dimensional wall layers is that the
viscous sublayer is not a local-equilibrium region; there is a transfer of turbulent
energy toward the wall by the turbulent fluctuations themselves to compensate for
viscous dissipation. Therefore, conditions at one value of y depend on conditions at
the other values of y, and although the directions of velocity gradient and of shear
stress coincide at the surface (Reynolds stresses negligible) and, according to Eq.
(5.7.3), again coincide outside the sublayer, they may differ within the sublayer. As
a result, the direction of the velocity outside the sublayer may differ from that of the
shear stress or velocity gradient. In practical terms, the constant of integration in any
velocity profile derived from Eq. (5.7.3), or the damping length constant, A in Eq.
(5.2.12), will have two components. The effect will be significant only if the
direction of the shear stress changes significantly across the sublayer. Since at the
surface, dty/dy = dp/dx and dt,/dy = dp/dz, this will occur only if there is
a significant pressure gradient normal to the wall-stress vector, as for example in
a boundary layer flowing into a lateral bend (dw,/0x#0). Van den Berg [70] has
proposed a dimensionally correct empirical correlation taking the x-axis in the
direction of the wall shear stress, the z-component velocity at the outer edge of the
sublayer is 12u.(v/ou3)dp/dz.

The outer layer, like the sublayer, is not a local equilibrium region, and the
direction of the shear stress will lag behind the direction of the velocity gradient if
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the latter changes with x. Several experiments have shown that angles between the
shear stress and velocity gradient vectors are of the same order as that of the cross-
flow (i.e., the angle between the external velocity and the surface shear stress).
However, the accuracy of prediction of the boundary-layer thickness and the surface
shear-stress vector does not depend critically on the shear-stress direction in the
outer layer, and good agreement has been obtained between the available data and
an extension of the CS eddy-viscosity formulation for two-dimensional flows in
which the velocity defect used in Eq. (5.2.11b) is just taken as the magnitude of the
vector (u;, — u;) at given y. The same eddy viscosity is used in Eq. (5.7.2) so that the
directions of shear stress and velocity gradient are equated. According to [71],
a generalization of the CS eddy-viscosity formulation for three-dimensional

boundary layers is
2 291
(em); = FKSZ) +<?y”> } 0<y<ye (5.7.40)

0
/ (Uge — ut)dy’ Ve <y <o (5.7.4b)
0

(Em)o =«

with o = 0.0168 for small adverse pressure gradient flows. Its variation with strong
pressure gradient flows can again be expressed by a generalization of Eq. (5.4.14),
but this has not been attempted yet.

In Eq. (5.7.4a), the mixing length [ is given by Eq. (5.2.12) with A and N defined
by Egs. (5.3.1) and (5.3.2a) except that now

1 9 2 9 292
“= (o GGG, o
9/ max 0/ max ay ay max
In Eq. (5.7.4b), u,, and u, are the total edge and local velocites defined by
1/2
e = (2 +w?)" (5.7.6a)
w = (2 +w?)'". (5.7.6b)

In the following subsections we present an evaluation of this turbulence model
with experimental data for three-dimensional incompressible flows.

5.7.1 INFINITE SWEPT WING FLows

The accuracy of the CS turbulence model of this section and other models has been
investigated for several infinite swept wing flows, as discussed in [71]. Here we
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present a sample of results taken from those studies and discuss first the results
for the data of Bradshaw and Terrell [72] and then for the data of Cumpsty and
Head [73].

Data of Bradshaw and Terrell

This experiment was set up especially to test the outer-layer assumptions made in
extending the boundary-layer calculation method of Bradshaw et al. [74] from two
dimensions to three [75]. Measurements were made only on the flat rear of the wing
in a region of nominally zero pressure gradient and decaying cross flow. See the
sketch in Fig. 5.24a. Spanwise and chordwise components of mean velocity and
shear stress, and all three components of turbulence intensity, were measured at
a number of distances x’ = 0, 4, 10, 16 and 20 in. from the start of the flat portion of
the wing (Fig. 5.24). The surface shear stress, measured with a Preston tube, was
constant along a generator to the start of the flat part of the wing, except for a few
inches at each end and except for small undulations of small spanwise wavelength
caused by residual nonuniformities in the tunnel flow.

Fig. 5.24 Results for the relaxing flow of Bradshaw and Terrell: (a) wall cross-flow
angle and local skin friction, (b) velocity profiles, (c) cross-flow angle distributions.
The symbols denote the experimental data, the solid line the numerical solutions of
Cebeci [76] and the dashed line the numerical solutions of Bradshaw et al. [74].
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Figure 5.24 shows the calculated results (solid lines) with experimental results
(symbols) and those obtained by Bradshaw’s method [74] (dashed lines). The cross-
flow angle 8 which represents the departure of the velocity vector within the
boundary-layer from the freestream velocity vector was computed from

B=tan""' (%) (5.7.7a)

The above formula becomes indeterminate at y = 0; however, with the use of
L’Hopital’s rule, it can be written as

-1
L CICN I

The streamwise component of the local skin-friction coefficient ¢r, was calculated
from

Ty,
o = (5.7.8)
b L2
with t,,, and U; given by
Ty, =T, COS @ + Ty, Sin @ (5.7.9a)
U = 2 ¢ = tan”! <&> (5.7.9b)
cos ¢ Ue

Here 7,,, and 1), denote the wall shear values in the x- and z-directions, respectively,
obtained from the solution of the infinite swept wing equations.

Data of Cumpsty and Head

In this experiment [73] the boundary-layer development was measured on the rear of
a wing swept at 61.1°. The boundary-layer separated at about 80% chord. The
measured profiles were affected by traverse gear “‘blockage,” probably because of
upstream influence of disturbance caused to the separated flow by the wake of the
traverse gear.

Figure 5.25 shows a comparison of calculated and measured streamwise velocity
profiles uy/U, and streamwise momentum thickness ¢, defined by

6
Uy Uy
011 = R I R ) 5.7.10
11 /oUs( UX) y ( )

where u/ U, is calculated from

B % o2+ Ysin? ¢ (5.7.11)
U o w,

s Ue e
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Fig. 5.25 Comparison of calculated (solid lines) and experimental (symbols) results for
the data of Cumpsty and Head on the rear of a swept infinite wing.

The results in Fig. 5.25 show good agreement with experiment at two x-stations.
However, with increasing distance they begin to deviate from experimental values
and at x = 0.650 ft, the agreement becomes poor.

The above results indicate what was already observed and discussed in relation to
the shortcomings of the Cebeci-Smith algebraic eddy-viscosity formulation, that is,
it requires improvements for strong adverse pressure gradient flows. As discussed
in subsection 5.4.2, the improvements to this formulation were made for two-
dimensional flows by allowing « in the outer eddy-viscosity formula to vary. A
similar improvement is needed to the formulation for three-dimensional flows.

5.7.2 FuLL THRee-DIMENSIONAL FLows

To illustrate the evaluation of the CS model for full three-dimensional flows, we
consider two flows corresponding to an external flow formed by placing an
obstruction in a thick two-dimensional boundary-layer (data of East and Hoxey) and
an external flow on a prolate spheroid at an incidence angle of 10° (data of Meier and
Kreplin).

Data of East and Hoxey

Figure 5.26 shows a schematic drawing of East and Hoxey’s test setup in which
a wing is placed in a thick two-dimensional boundary layer [77]. The strong pressure
gradients exposed by the obstruction caused the boundary layer to become three-
dimensional and to separate. The measurements were made in the three-dimensional
boundary layer upstream of and including the three-dimensional separation.
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Fig. 5.26 Schematic drawing of East and Hoxey’s test setup.

Fig. 5.27 Comparison of calculated (solid lines) and measured (symbols) velocity
profiles (a) on the line of symmetry and (b, ¢, d) off the line of symmetry for the East
and Hoxey flow.

Figure 5.27 shows a comparison between calculated and measured velocity
profiles on the line of symmetry (Fig. 5.27a) and off the line of symmetry as
described in [76]. In general the agreement with experiment is satisfactory.
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Data of Meier and Kreplin

Meier and Kreplin’s data correspond to laminar, transitional and turbulent flow on
a prolate spheroid with a thickness ratio of 6 for a Reynolds number of 6.6 x 108
[78-80]. As discussed in [81], the calculations for this flow were made for freestream
velocities of 45 and 55 m/s corresponding to natural and imposed transition. To
account for the transitional region between a laminar and turbulent flow, the right-
hand sides of Egs. (5.7.4) are multiplied by the intermittency factor vy, defined by
Egs. (5.3.18) and (5.3.19). Since detailed and corresponding correlation formulas for
three-dimensional transitional flows are lacking, the same expression was used for
three-dimensional flows by using the local similarity assumption with u, in Egs.
(5.3.18) and (5.3.19) replaced by the total velocity.

The experimental data of Meier et al. consists of surface shear stress magnitude
and direction vectors and velocity profiles over a range of angles of attack.
Figure 5.28a shows a comparison of calculated surface shear stress vectors in laminar
flow at « = 10°. The magnitude of the shear stress vector is proportional to the shear
intensity. The agreement between the calculation and measurements on the wind-
ward side is generally good, although there are some differences that are partly due to
the use of inviscid potential flow in the calculations, whereas the measured pressure
distribution shows viscous-inviscid interaction effects. It is clear that the laminar
flow is separated on the leeward side of the body at some distance aft of the nose. The
origin or nature of the high shear intensities leeward of the separation line cannot be
determined from calculations because calculations based on external flow that is
purely inviscid is not expected to account for strong interactions.

Fig. 5.28 (a) Measured (—) and calculated (—) distributions of wall shear stress
vectors (CfETW/%QUC%) for laminar flow and (b) for laminar, transitional and turbulent
flow on a prolate spheroid at a = 10° [81].
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Fig. 5.29 Measured (dashed line) and calculated (solid line) resultant wall shear stress
values on the prolate spheroid at o = 10° [81].

Fig. 5.30 Comparison of calculated (solid lines) and measured (symbols) streamwise
us/Ug and crossflow ug/U; velocity profiles [81].

Figure 5.28b shows wall shear vectors for laminar, transitional and turbulent
flow with natural transition. In general, the calculated and measured results are in
agreement with discrepancies (which are small) confined to the region close to the
specified transition. More quantitative comparison with the imposed transition
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experiment is afforded by Fig. 5.29 which displays circumferential distributions
of wall shear stress at four axial locations. The calculated results display the
correct trends and are within 15% of the measured values with discrepancies
tending to diminish with downstream distance. A sample of the velocity profiles
is shown in Fig. 5.30 and corresponds to x/2a of 0.48 and 0.73, and again the
agreement is within or very close to the error bounds of the measurements,
except in the regions where the inviscid velocity distribution differed from the
measured one. Additional comparisons of calculated and experimental data are
given in [81].

I 5.8 Summary

In the previous sections we have discussed coefficients for transport of momentum
and heat suitable for calculating two- and three-dimensional turbulent boundary-
layer flows. We have shown how effects such as mass transfer, heat transfer, pressure
gradient, etc., can be included in the empirical relations in order to calculate
turbulent flows for a wide range of conditions. Although these relations lack rigor
and do not improve any fundamental understanding of turbulence, they provide
results that are very useful in engineering calculations.

On the basis of comparisons presented in this chapter and those in Chapter 8§,
we recommend the following eddy-viscosity formulation for calculating two-
dimensional and axisymmetric and three-dimensional turbulent boundary layers:
The turbulent Prandtl number distribution is given by Egs. (5.6.6), (5.6.7)
and (5.6.8).

Two-Dimensional Flows

Inner Region

ou
(em); = L7 FRRCE 0<y <y (5.8.12)
Outer Region
(em)y = 0‘/0 (ue —u)dy vyy Yo <y < 0. (5.8.13)

For flows on smooth surfaces L is given by Eq. (5.2.12), A by Eq. (5.3.1), v« by Eq.
(5.3.18), « by Eq. (5.4.10) and y by Eq. (5.4.15). For flows over surfaces with
roughness, L is given by Eq. (5.3.24).
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Axisymmetric Flows

For axisymmetric flows with or without transverse curvature effect, the eddy
viscosity formulation given by Eqgs. (5.8.12) and (5.8.13) still apply provided that L is
given by Eq. (5.3.13).

Three-Dimensional Flows

The eddy viscosity formulation for three-dimensional flows is given by Eqs. (5.7.4)
with o = 0.0168 for small adverse-pressure gradient flows. In Eq. (5.7.4a), the
mixing length [ is given by Eq. (5.2.12) with A and N defined by Eqs. (5.3.1) and
(5.3.2a) except that now u; and (1/Q)max are defined by Egs. (5.7.6).

I Problems

5.1 By using Eq. (4.4.18), show that (&,); given by Eq. (5.2.11a) is proportional to y4
for (y/0) < 1.

5.2 Show that for equilibrium boundary layers at high Reynolds numbers, if o in Eq.
(5.2.11b) is 0.0168, then «; in Eq. (4.3.15a) must be 0.0635 for k = 0.41.

5.3 In Chapter 8 we discuss the numerical solution of the boundary-layer equations
for two-dimensional incompressible flows. We use the CS model to represent
the Reynolds shear stress, —ou/v/. In Chapter 10 we describe a computer
program which utilizes this numerical method, and the accompanying
CD-ROM presents the computer program. For simplicity, the turbulence model
(subroutione EDDY) is limited to flows over smooth surfaces with pressure
gradient.

(a) Modify subroutine EDDY to include mass transfer. Note that now for incom-
pressible flows, the definition of N, [Eq. 5.3.2a)], becomes

ot 1/2
N = {F{l —exp(ll.&)x)] +exp<11.8v;>}
w

(b) Compute turbulent flow on a flat plate with suction for a Reynolds number of
uwclv = 3 x 10° with v,/ue = -0.15 x 107" Assume transition at the
leading edge. Plot the variation of 6"/c, Ry, ¢f and | with x/c and compare
them with those on a nonporous surface.

(c) Repeat (b) for flow with injection for v, /u = 0.15 X 10, Take h; =0.015,
k = 1.12 and with Ax/c = 107> for 0 < x/c < 1, NXT = 101.

5.4 Repeat Problem 5.3, this time to acount for the roughness effects on a flat plate.

Again assume transition at the leading edge and plot the variation of Ry, ¢f; 6/c,

and fy, for dimensionless sand-grain roughness heights of k/c = 0.25 x 107,
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0.50 x 10,1 x 107, 1.50 x 10~ and compare your results with those given in

the accompanying CD-ROM.

5.5 Repeat Problem 5.3, this time to acount for the transverse curvature effect on
a circular cylinder. Remember that this flow is an axisymmetric flow; in addi-
tion to making changes in the EDDY viscosity subroutine, it is necessary to
redefine b.

(a) Compute ¢y with the modified eddy viscosity model, [Egs. (5.3.12) and
(5.3.13)], for ro/c = 0.15 x 1072 and 0.5 x 107 for R. = 10 x 10°. Assume
(x/c)y at 0.075. Plot the variation of /7, ¢y and Rg with x/c and compare the
results with those obtained with the 2d eddy viscosity model [no changes to
the subroutine EDDY for TVC effect].

(b) Plot the variation of d/rg with x/c with calculations made by using the orig-
inal and modified eddy viscosity formulas.
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I 6.1 Introduction

While the zero-equation models discussed in Chapter 5 are useful and accurate for most
boundary-layer flows, these models lack generality. For turbulent shear flows other than
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viscosities. For example, for a plane jet, round jet and plane wake / = 0.096, [ = 0.070,
1 =0.160, respectively, with 6 denoting the shear layer thickness. Transport equation
models have less limitations than the zero-equation models for modeling Reynolds
stresses. Before we discuss several of these methods that are popular and in wide use, let
us consider the Reynolds-stress transport equation (3.5.3) and the kinetic energy

equation (2.8.5) which these models use. For convenience, we again call R;; (= —M,MJ)

the Reynolds stress tensor, rather than the actual one, R,;,- (= Qu ) and also consider

an incompressible flow. Before we rewrite Eq. (3.5.3), let us divide the last two terms in
Eg. (3.5.3) by . If we denote these two terms Vj;, that is,

19 1 ou; o,
Vi = Lo (o + ) — ; ( Y T | 6.1.1)
then from the definition of the stress tensor we can write the first term as
19
e (7 + )
a | ,(ou Ou , (914} u,
o “f(a—)%*a—n T\ G oy (6.1.2)

0 (0 (5 ad Ouy ,0u
B vaxk <8xk (u’ 1)) ”axk uf@x, + ”"ax,

Now we write the second term in Eq. (6.1.1) as

! T{/a_ul/' T//a_ug
Y lkaxk -/kaxk
!
_ du +6uk ou; ., %+8uk ou! 6.1.3)
axk 0x; 6xk Oxp  Ox; ka

o0 0, dw 0 O ou
Oxp Oxx  Ox; Oxx  Ox; axk

Combining Eqgs. (6.1.2) and (6.1.3), we get

SRy, 9up
ax,% Oxy, Oxy,

Vi = —v (6.1.4)
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since for an incompressible flow uj’.(azu;( /Oxdx;) and u}(9%ul /dxydx;) are zero.
With Eq. (6.1.4) and with the continuity equation (2.5.3), Eq. (3.5.3) can be
written as

DR; 9 <aR,,> o 08 O Ou 0L

—_ ——J _R,—
Dt 0xy 0xy ik 0xy ]kaxk g Oxy Oxy
a T P’
+o— | wuu + —u 6Jk+ uélk (6.1.5)
Oxy, 0
(%, ou
o \0x;  Jx;
where
DR; OR; _ ORj
Dr o M Oxg
A contraction of Eq. (6.1.5),i =jand withk = — RT gives the following equation for

the turbulence kinetic energy discussed in Section 2.8:

Dk 9 8k i RraT di;
— = — "o — — R; 6.1.6
Dt axk axk g Hidik "k 2 + lka Xk T ( )
where
Dk ok _ 9k

Dr ot Mo

~( Ou; Ou;
The left-hand side of Eq. (6.1.6) represents the rate of change of turbulence kinetic
energy. The first term on the right-hand side is called molecular diffusion and repre-
sents the diffusion of turbulence energy caused by the molecular transport process of
the fluid. The second term is called pressure diffusion and the triple velocity corre-
lation term which represents the rate at which turbulence energy is transported through
the fluid by turbulent fluctuations, is called turbulent transport. The fourth term is
known as production and represents the rate at which turbulence kinetic energy is

transferred from the mean flow to the turbulence. Finally the last term may be called
“isotropic dissipation”, since the actual dissipation ¢ is given by Eq. (3.5.5),

6.1.7)

au

Sy (35.5)
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Another equation that is employed in most transport-equation turbulence models is
the rate of dissipation of turbulent energy which is obtained from a transport equation
for ¢ derived by Harlow and Nakayama [1],

De d de du; [ Oulduy  Ouj du,
—=— |vr—) “2v— | —F—+—"7—
Dt Oxy, 0xy 0xy, dx; 0x; 0x; Oxy
— r 2 2
YV /
gy 0ui 0w 0w | O (6.1.8)
axk axl axl 6xkaxl
I S
axk k Y ax,- 6X1 6x1

The following closure assumptions are made for the terms on the right-hand side of
this equation.
The second term on the right-hand side, the generation term, is modeled by

A
= cel‘Tkwe,aik € (6.1.9)

/ / / /
Ou; Ouy,  Ouy du;

Ox; dx; | Ox; 0xy

where ¢, and ¢, are constants. In fact, the term containing ¢.; vanishes when Eq.
(6.1.1) is multiplied by 0%, /dx, thus it need not be considered further.
The third and fourth terms on the right-hand side of Eq. (6.1.8) are combined into
one term, modeled by
T ¢

= Ce,7 6.1.10
g axk axl le axkaxl Cex ( )

In two-equation models, the fifth term, which accounts for the diffusion of ¢ from
velocity fluctuations, is modeled by

—— _ Em de

—up e = (6.1.11)

e Oy
which is different than the modeling used in stress-transport models, see Eq. (6.4.7).
The last term, which represents the diffusional transport of ¢ by pressure fluc-
tuations, is neglected.
With these closure assumptions, the final form of the rate of dissipation of
turbulent energy may be written as

De d de e 0u; &2 d &y Oe
— = — — ~Ri——co—+— |—— 6.1.12
Dt 9x; (V 6xk> + e Kk Oxy, ey + Oxy, (ag dxy, ( )
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The constants c,, ¢ and ., which are obtained by reference to experimental data
will be discussed later.

Except for the stress-transport models discussed in Section 6.4, most of the
transport equation models, with the exception of the Spalart and Allmaras
model [2], use the turbulence kinetic energy equation by itself (and continuity
and mean momentum equations) or with another equation, like the rate of
dissipation equation (6.1.12). The latter leads to two-equation models dis-
cussed in Section 6.2 and the former to one-equation models discussed in
Section 6.3. In Section 6.4 we discuss stress-transport models in which the
exact transport equations for some or all of the Reynolds stresses are modeled
term by term.

B 6.2 Two-Equation Models

Over the years a number of two-equation models have been proposed. A description
of most of these models is given in detail by Wilcox [3]. Here we consider three of
the more popular, accurate and widely used models. They include the k-¢ model of
Jones and Launder [4], the k-w model of Wilcox [3] and the SST model of Menter
which blends the k-e model in the outer region and k-w model in the near wall region
[5]. All three models can be used for a range of flow problems with good accuracy as
we shall discuss in Chapter 9.

6.2.1 k-€¢ MODEL

The k-¢ model is the most popular and widely used two-equation eddy viscosity
model. In this model various terms in the kinetic energy and rate of dissipation
equations are modeled as follows.

Equation (6.1.6) contains four terms that require closure assumptions. The
modeling of the second, third and fourth terms makes use of the eddy viscosity
concept in which the Reynolds stress R;; is given by Eq. (5.2.4), which can be
written as

du;  0u;
Ri = €n bt e} 6.2.1
v € <axj' + 6x,~> ( )

with g, is written as

Em = Cr— (6.2.2)
€
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Here c¢; is a constant at high Reynolds number. The second and third terms in Eq.
(6.1.6), namely the pressure diffusion and turbulent transport terms are related to the
gradients of &,
/ !0
P Em Ok
qu+uk2 T op Oxg

(6.2.3)

where oy is a constant or a specified function. Substituting Eqs. (6.2.1) and (6.2.3)
into Eq. (6.1.6) we obtain the modeled form of the turbulence kinetic energy

equation

Dk d Em ok ou; aﬁj ou;

—_— = — — | — —+=) —- 6.2.4

Dt 0xy, [(V + (Tk) axk:| + Em <0)Cj + 0x; (9x]' € ( )
Similarly, with the relation given by Eq. (6.2.1), the dissipation equation (6.1.12)
becomes

De d en\ Oe £ di;  Oit; di; &2
— = -] — - —+ =] ——cCe— 6.2.5
Dt 9x; {(V + O’E) ax,l + Cery em (6xj + dx;)  0x; e ( )

The first term on the right-hand side of Eq. (6.2.5) represents molecular and turbulent
diffusion of dissipation, and the sum of the second and third terms represent the
production and dissipation. The parameter o, is a parameter to be specified.

For boundary-layer flows at high Reynolds number and with Eq. (6.2.2) now
written as

k2
Em = Cy— (6.2.6)
£
Egs. (6.2.4) and (6.2.5) can be written as
ok Ok 9 [enok du\*
— — = ——= — | - 6.2.7
! ox v dy  dy ((Tk 8y> +em <ay> ¢ ( )
de de d (e, de e ou\ > &2
— — = ——= - — | —cCe— 6.2.8
“ox v dy dy <og Gy) * Cerg om <ay> =y ( )
The parameters c,, c¢,, Ce,, 0 and o, are given by
Cuy = 0.09, ¢, =144, ¢, =192, 0 = 1.0, 0, = 1.3 (6.2.9)

These equations apply only to free shear flows. For wall boundary-layer flows, they
require modifications to account for the presence of the wall. Without wall functions,
it is necessary to replace the true boundary conditions at y =0 by new ‘‘boundary
conditions” defined at some distance yy outside the viscous sublayer to avoid
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integrating the equations through the region of large y gradients near the surface.
Usually this yg is taken to be the distance given by

yg being a constant taken as about 50 for smooth surfaces. For the velocity
field, the boundary conditions at y = yq use the law of the wall, Eq. (4.2.1), and
require that

1
e <;< In y():‘wc), (6.2.10a)
upyo du;
_ _Moyodi 6.2.10b
Vo i dv ( )

Here c is a constant around 5 to 5.2. Equation (6.2.10b) results from integrating the
continuity equation with u given by Eq. (4.2.1). We also use relations for the changes
in shear stress between y = 0 and y = yq in order to calculate u, from

2 =2y, (6.2.11a)
Q
where 7 is calculated from

ore]
T0 = (1/ +Eem—
ay Yo

with o semiempirically given by

du? du
=03-0_y—=* 6.2.11b
“ dx e dx ( )
The friction velocity u, is obtained from
d, du, [V 2
=1+ Py, 2 oyt (6.2.12)
dx dx Jo \uq

In the viscous sublayer and in the buffer layer (y* < 30), u/u, can be obtained from
Thompson’s velocity profile given by Eq. (4.4.41). For y© > 50, we can use the
logarithmic velocity formula, Eq. (9.3.1a). See subsection 9.3.1.
There are several ways to specify the “wall” boundary conditions for k and e.
A common one for k makes use of the relation between shear stress t and k [see
Eq. (6.3.2)],
70

y =Y, ko = — (6.2.13a)
a
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where a; =0.30. With 7y defined by —u/'v/ = gmg_; and &, by Eq. (6.2.6), Eq.
(6.2.13a) becomes

ko (Ou
=c,— = 2.1
aj Cyu ” <6y> . (6.2.13b)

The boundary condition for € can be obtained by equating the eddy viscosity
given by the CS model, (g,,)cs, to the eddy viscosity definition used in the k-e model,
Eq. (6.2.6), which with low Reynolds number correction, can be written as

k2
(em)p—e = C}Lf#? (6.2.14)

Here f}, is a specified function discussed later in this section. Thus,

C,U-fl‘«k(%

6.2.15
(8m)cs ( )

Yy = Yo, €0 =

The edge boundary conditions for the k-e model equations, aside from the edge
boundary condition for the momentum equation,

y—90, u—> e (x) (6.2.16)

are

y—0, k =k, e—E€, (6.2.17)

To avoid numerical problems, &, and ¢, should not be zero. In addition, &, and ¢, can
not be prescribed arbitrarily because their development is governed by the transport
equations (6.2.7) and (6.2.8) written at the boundary-layer edge,

el = € (6.2.182)
de &2
ued—; = —cgzk—i (6.2.18b)

The above equations can be integrated with respect to x with initial conditions
corresponding to k., and &, at xo. The solution provides the evolutions of k(x) and
&(x) as boundary conditions for the k- and e-equations.

Low-Reynolds-Number Effects

To account for the presence of the wall, it is necessary to include low-Reynolds-
number effects into the k-¢ model. Without such modifications, this model fails to
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predict the sharp peak in turbulence kinetic energy close to the surface for pipe and
channel flow as well as fails to predict a realistic value of the additive constant ¢ in
the law of the wall.

There are several approaches that can be used to model Eqgs. (6.2.7) and (6.2.8)
near the wall region. For an excellent review of these models, see Wilcox [3] and
Patel et al. [6].

Patel et al. [6] reviewed eight models and evaluated them against test cases,
which involved a flat-plate boundary layer, an equilibrium adverse pressure gradient
boundary layer, strong favorable pressure gradient (relaminarizing) boundary layers,
and sink boundary layers. Their study indicated that not all of the available low
Reynolds number models reproduced the most basic feature of a flat-plate boundary
layer. Only the more promising versions of Launder and Sharma, LS, [7], Chien, CH,
[8], Lam and Bremhorst, LB, [9] will therefore be discussed here in the context of
reviewing models for low Reynolds number effects. These models, LS, CH and LB
all gave comparable results and performed considerably better than the other low
Reynolds number turbulence models considered in Patel et al.’s study. However, it
was pointed out in their study that even these models needed further refinement if
they were to be used with confidence to calculate near-wall and low Reynolds
number flows.

Before we present a brief review of these models as described in [6], it is useful to
write the k-¢ model equations in the following general form,

ok ok 9 em) Ok u? ~
ok, Ok _20 Em') 9K A A 2.1
“ax Vo ay[(v+0k>6Y}+€m(aY> (H ) (©219

98 98 0 en) 0F g [ou? &
e e _ 9 Em ) 08 o ficen—) — S 4E (6220
“ox " Vay ay[<y+ae) ay] oo lipe <ay> CofrptB (0220

where 4 and E as well as c,,, cs,, f1, f> are model dependent and

t=¢—4 (6.2.21)

The parameters 4 and E for the LS, CH and LB1 models, including those for high
Reynolds, HR, numbers are summarized in Table 6.1 together with their wall
boundary conditions, with &, defined by

k2
Em = C,ufu; (6.2.22)

Similarly the parameters f1, f2, fu, Ok, e, Ce | and Ce, are summarized in Table 6.2.
Since the review of Patel et al. [6], another low Reynolds number correction to
the k-e model was proposed by Hwang and Lin [10] who added an F term to the right
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TABLE 6.1 Parameters 4 and E and the wall boundary conditions for LS, CH, LB1
and HR models

Model A E Boundary Conditions
€ k
HR 0 0 wall functions
LS Vi) 2\’ 0 0
2v 2vem —
ay oy
CH k £ 1 0 0
'y 2(55) o0 (-3)
LB1 0 0 % “o 0
oy

TABLE 6.2 Parameters f;, f,, f,, o4, 0k C.1 and c,, for LS, CH, LB1 and HR models.

Rr = R, = Vky/v, y* =yu/v.
Model f; f, f, Ok Oc G Ce,
HR 1.0 1.0 1.0 1.0 13 144 1.92
2
LS 1.0 1-0.3exp (—R2) exp{ e } 1.0 13 144 1.92
(14+Rr/50)°
CH 1.0 R2 1 —exp (-0.0115y™") 1.0 13 135 1.8
1-0.22exp | —1 P Y
36
2
LB1 1+<0_f05>3 1—exp(—R2T) [1—exp(—0.0165Ry)] 1.0 1.3 144 1.92

x (1+2%9)

hand side of Eq. (6.2.19) and defined the parameters 4, E, F and other parameters in
Table 6.2 by

2
Wk a [ Edk
4 =2w|—— E=——(v-—r
V<6y> ’ ay<yk0y)
190 k 94 3
- -2, %2 —1— —0.0ly; — 0. (6.2.23)
F 23y (yé—&-zlay)’ Ju 1 exp< 0.01y, OOOSyA)
fi =10, f =10, or = 1.4— 1.1 exp|— (y,/10)]

ge = 1.3 —exp[— (v2/10)], ¢, = 1.44, ¢, = 1.92

Yy

Y ke
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The wall boundary conditions for this model are same as those for LS and CH
models. The edge boundary conditions given by Eq. (6.2.18) remain the same.
The application of this model to fully developed channel flows, turbulent plane
Couette-Poisseuille flow and turbulent flow over a backward-facing step show very
good agreement with data. Calculated results with this model show a much better
agreement with measurements than those calculated with the models of CH and LS.
In the methods that use the k- model the coefficient ¢, in Eq. (6.2.22) is still 0.09,
but in a recent investigation Marvin and Huang [11] propose that to account for
adverse pressure gradient effect, ¢, should be
-1
lf) } (6.2.24)
€

A preliminary study shows promise but it still needs to be examined further.

Another approach to include the low-Reynolds-number effects in the k-¢ model is
to employ a simple model near the wall (a mixing-length model [12] or a one
equation model [13] which is valid only near the wall region) and a transport
equation model in the outer region of the boundary layer; the two solutions are
matched at a certain point in the boundary layer as discussed by Arnal et al. [12].
This approach, sometimes referred to as the two-layer method or the zonal method
will be discussed in Section 9.2.

du

Cy = 0.09{ max (1,0.29 3y

Other Extensions of the k-¢ Model

Another extension of the k- model was developed by Yakhot et al. [14]. With
techniques from renormalization group theory they proposed the so-called RNG k-¢
model. In this model, k and ¢ are still given by Egs. (6.2.7) and (6.2.8). The only
different occurs in the definitions of the parameters given by Eq. (6.2.9). In the RNG
k-e model, they are given by

e (1= 2/20)

ce, = 1.42, Ce, = 1.68 +
“ © 1+0.01223
k
A= —\/2s,~jsj~,-, Ao = 4-.387 Cu = 0.085 (6-2-25)
&

1 614,' au,-
o 7 % ’ K 2 (6)?1' * 6161')

6.2.2 Kk-&» MODEL

Like the k-¢ model discussed in the previous subsection, k-w model is also very
popular and widely used. Over the years, this model has gone over many changes and
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improvements as described in [3]. The most recent model is due to Wilcox [3] and is
given by the following defining equations.
With ¢,, defined by

— (6.2.26)
w

the turbulence kinetic energy and specific dissipation rate equations are

Dk 9 em) 0k ou;

- _ 7 ) = +R;,——8k 6.2.27

D1 ax]( |:<V + O’k> an:| + Rik a)Ck ﬂ w ( )
Dw d en\ Ow W 0u; 2
- _ 7 -y = —R: — 2.2
Dr P [(V + Uw> a)Ck:| —+ « 3 ik ) Bw 6 8)

where Rj is given by Eq. (6.2.1) and

13 * *

a« =%, B="Bufs B =Bofp, k=2, 0,=2 (6.2.292)

9 1+ 70y Qi Qi Ski
By = S Em et X = |ty (6.2.29b)

125 1+ 80x,, (Bhw)’
la Xk S 0
* 9 2 l 0k Gw
= = ¢ 1+680x = — 6.2.29

60 1007 f6 k X > 0° Xk (1)3 axj axj ( C)

1 +400x7’

The tensors Q;; and Sy; appearing in Eq. (6.2.29b) are the mean rotation and
mean-strain-rate tensors, respectively, defined by

1 (0w; i 1 (dwy  Ou;
Q. = (= _2J = = 1 2.
v 2 <6xj axi)7 Skl 2 <6x,~ + 6xk (6 30)

The parameter 7, is zero for two-dimensional flows. The dependence of 8 on %, has

a significant effect for round and radial jets [3]. This model takes the length scale in
the eddy viscosity as

l = — (6.2.31a)

and calculates dissipation ¢ from

e =B wk (6.2.31b)
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Wilcox’s model equations have the advantage over the k-e model that they can be
integrated through the viscous sublayer, without using damping functions. At the
wall the turbulent kinetic energy k is equal to zero. The specific dissipation rate can
be specified in two different ways. One possibility is to force w to fullfill the solution
of Eq. (6.2.28) as the wall is approached [5]:

W —

ﬁ—y”z as y—0 (6.2.32)

The other [5] is to specify a value for w at the wall which is larger than

wy > 100Q,,

where Q,, is the vorticity at the wall.

Menter [5] applied the condition of Eq. (6.2.32) for the first five grid points away
from the wall (these points were always below y* =5). He repeated some of his
computations with w,, = 1000Q,, and obtained essentially the same results. He points
out that the second condition is much easier to implement and does not involve the
normal distance from the wall. This is especially attractive for computations on
unstructured grids [5].

The choice of freestream values for boundary-layer flows are

W > A”T“’, (em)w < 10 2(em),nes koo = (Em) oo (6.2.33)

where L is the approximate length of the computational domain and u is the
characteristic velocity. The factor of proportionality A= 10 has been recom-
mended [5].

Free shear layers are more sensitive to small freestream values of w. and
larger values of w are needed in the freestream. According to [5], a value of at
least A=40 for mixing layers, increasing up to A=80 for round jets is
recommended.

According to [5], in complex Navier-Stokes computations it is difficult to exer-
cise enough control over the local freestream turbulence to avoid small freestream w
ambiguities in the predicted results.

For boundary-layer flows, Eq. (6.2.27) reduces to Eq. (6.2.19) with

4 =0, ¢ =0.090wk (6.2.34)

The specific dissipation rate equation, Eq. (6.2.28), becomes

ow dw 0 &m\ 0w ou\ > 2
Maﬁ- Ua— = 5 |:(V+a> 5:| + a(@) —60(1) (6235)
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6.2.3 SST MobEL

The SST model of Menter [5] combines several desirable elements of existing two-
equation models. The two major features of this model are a zonal weighting of
model coefficients and a limitation on the growth of the eddy viscosity in rapidly
strained flows. The zonal modeling uses Wilcox’s k-w model near solid walls and
Launder and Sharma’s k-e model near boundary layer edges and in free shear layers.
This switching is achieved with a blending function of the model coefficients. The
shear stress transport (SST) modeling also modifies the eddy viscosity by forcing the
turbulent shear stress to be bounded by a constant times the turbulent kinetic energy
inside boundary layers. This modification, which is similar to the basic idea behind
the Johnson-King model, improves the prediction of flows with strong adverse
pressure gradients and separation.

In order to blend the k-w model and the k-e model, the latter is transformed into
a k-w formulation. The differences between this formulation and the original k-w
model are that an additional cross-diffusion term appears in the w-equation and that
the modeling constants are different. Some of the parameters appearing in k-« model
are multiplied by a function F| and some of the parameters in the transformed k-¢
model by a function (1 — F) and the corresponding equations of each model are
added together. The function F is designed to be a value of one in the near wall
region (activating the k-w model) and zero far from the wall. The blending takes
place in the wake region of the boundary layer.

The SST model also modifies the turbulent eddy viscosity function to improve
the prediction of separated flows. Two-equation models generally under-predict
the retardation and separation of the boundary layer due to adverse pressure
gradients. This is a serious deficiency, leading to an underestimation of the effects
of viscous-inviscid interaction which generally results in too optimistic perfor-
mance estimates for aerodynamic bodies. The reason for this deficiency is that
two-equation models do not account for the important effects of transport of the
turbulent stresses. The Johnson-King model (subsection 5.4.1) has demonstrated
that significantly improved results can be obtained with algebraic models by
modeling the transport of the shear stress as being proportional to that of the
turbulent kinetic energy. A similar effect is achieved in the SST model by
a modification in the formulation of the eddy viscosity using a blending function
F, in boundary layer flows [5].

In this model, the eddy viscosity expression, Eq. (6.2.26), is modified,

alk
En = O (@0, 9 F) (6.2.36)
where a; =0.31. In turbulent boundary layers, the maximum value of the eddy
viscosity is limited by forcing the turbulent shear stress to be bounded by the
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turbulent kinetic energy times aj, see Eq. (6.3.2). This effect is achieved with an
auxiliary function F, and the absolute value of the vorticity Q. The function F; is
defined as a function of wall distance y as

F> = tanh (arg%) (6.2.37a)
where
Vik 500p
= 2—:  —— 2.
arg, max ( 0.0%y° 2w (6.2.37b)

The two transport equations of the model for compressible flows are defined below
with a blending function F for the model coefficients of the original w and & model
equations.

- — | +Ry—~ — k 6.2.38
Dr = an [(M+Q€m0'k) 6xk] + Rix o B ow ( )
Dow d Jdw 0;
- [(u + 0EnOw) e | L Rt — Bow?
Dt Ax Oxi| em  Oxx
ok s (6.2.39)
w
2(1 - F —_—
+ ( 1) Qawzw ka axk
where
du; iy, 261/[}' 2
R, — LI . A — —0ko; 6.2.40
ik Q€m <6Xk + axi 3 ax, ik 3 QKOjj ( )

The last term in Eq. (6.2.39) represents the cross-diffusion (CD) term that appears in
the transformed w-equation from the original e-equation. The function F is designed
to blend the model coefficients of the original k-w model in boundary layer zones
with the transformed k-e model in free shear layer and freestream zones. This
function takes the value of one on no-slip surfaces and near one over a larger portion
of the boundary layer, and goes to zero at the boundary layer edge. This auxiliary
blending function F| is defined as

Fi = tanh (arg}) (6.2.41)

Vk 5000\  4o0.k
— i : . 2 6.2.42
arg; = min [max (0. 09wy’ y2w ; CDk(L,yz ( )

where CDy,, is the positive portion of the cross-diffusion term of Eq. (6.2.39):

X
CDy,, = max <2Qamz © 10—20> (6.2.43)
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The constants of the SST model are
=009, « =041 (6.2.44)

The model coefficients 8, v, o and o, denoted with the symbol ¢ are defined by
blending the coefficients of the original k- model, denoted as ¢, with those of the
transformed k-¢ model, denoted as ¢,.

¢ =Fio1+ (1 —Fi)p, (6.2.45)
where
¢ = {ok7ow5577}

with the coefficients of the original models defined as
inner model coefficients

or, = 085, 0, =05, B = 0075

2
Y1 = ﬁ_i_ Ty £ = 0.553 (6:2.46)
b e

outer model coefficients

o, = 10, @, = 0856, B, = 0.0828

2

_ B 0wk (6.2.47)

T2 8 \/E

The boundary conditions of the SST model equations are the same as those
described in the previous subsection for the k-w model.

For the numerical implementation of the SST model equations to Navier-Stokes
equations, the reader is referred to [5].

For incompressible boundary-layer flows, Eq. (6.2.38) is same as the kinetic
energy equation given by Eqs. (6.2.19) and (6.2.27). Equation (6.2.39) is same as
Eq. (6.2.35) except that its righthand side contains the cross diffusion term,

1 0k dw
2(1 = Fy)a,,— 22
+2( l)Uwza)c')y dy

= 0.440

(6.2.48)

B 6.3 One-Equation Models

In this section we discuss one-equation models. Of the several methods that fall in
this group, we only consider two methods due to Bradshaw et al. [15] and Spalart and
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Allmaras [2]. The former method has only been used for boundary-layer flows and is
not used much anymore. It has, however, some important features that have been
employed in other methods. The Spalart and Allmaras method employs a single
transport equation for eddy viscosity, is very popular for wall boundary-layer and
free shear flows and is used in both boundary-layer and Navier-Stokes methods.

6.3.1 BrRADSHAW’S MODEL

Bradshaw’s model [15] is also based on the turbulent kinetic energy equation, which

for two-dimensional flows without the molecular diffusion term » % can be written as

ok ok 0 — — du
—Gv— = ——ph —ul — — 6.3.1
uax+vay aypv u'v 3y £ ( )
Whereas the two-equation models discussed in Section 6.2 use the turbulent kinetic
energy equation to form an eddy viscosity, Bradshaw’s model uses that equation to
form a relation to the Reynolds shear stress,

a = — (6.3.2)

where a; = 0.30. The pressure diffusion term is written as

1/2

pv = G(—uV) (—uV) (6.3.3)

max

The use of (—u/v/) Iln/azx is suggested by physical arguments about the large eddies that

effect most of the diffusion of turbulent energy.
The dissipation term & is modeled by

3/2
e — (wv) (6.3.4)

The parameter G and length scale / are prescribed as functions of the position across
the boundary layer (see Fig. 6.1). With the relations given by Egs. (6.3.2)—(6.3.4), the
turbulent energy equations becomes
) 1/2 ( _)3/2
D[ uv d S — —Ou  (—u'v (6.3.5)
Dr (‘ a—1> = o [G(— W) (= V) |+ (= ”’U')a—y T

The “wall” boundary conditions for this equation are given by Eq. (6.2.13a),
(6.2.10) and (6.2.12). The edge boundary conditions are

y—=0, u=u.(x), 1(= —uv')—0 (6.3.6)
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Fig. 6.1 Empirical functions used in Bradshaw’s method.

It should be mentioned that the closure assumption, (6.2.3), is of considerable
importance; with this assumption, Eq. (6.2.4) is parabolic, while with Eq. (6.3.3),
Eq. (6.3.5) is hyperbolic with three real characteristic lines. Thus, there is another
important difference between, for example, k-¢ method, which uses a system of
parabolic equations, and Bradshaw’s method which uses a system of hyperbolic
equations.

Note that Eq. (6.3.5) could equally well be thought of as a directly modeled
version of the exact /v’ transport equation, which has terms whose effect is similar
to that of the terms in Eq. (6.3.1). The advantage of this method is that ay, [/ can all
be measured, except for the term in G, which seems to be small. Although currently
available measurements of turbulence quantities are not as accurate as the
predictions of u/v/ must be, they are much better than nothing. They define the error
band within which aj, / and G can be arbitrarily adjusted and, what is even more
important, they give advance warning of breakdown of the correlations in difficult
cases.

It should also be mentioned that the Johnson and King model discussed in Section
5.4 can be regarded as a simplified version of Bradshaw’s method, using an eddy
viscosity to give the shear stress profile shape but an ordinary differential equations
for (—W)max to specify the shear-stress level. Both models use algebraic correlation
for length scale and are therefore restricted to shear layers with a well behaved
thickness. However, the Johnson and King model as well as the Cebeci-Chang model
have been used successfully for separated flows as described in Section 5.4.

6.3.2 SPALART-ALLMARAS MODEL

Unlike the Cebeci-Smith model which uses algebraic expressions for eddy viscosity,
this model uses a transport equation for eddy viscosity. Unlike most one-equation
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models, this model is local (i.e., the equation at one point does not depend on the
solution at other points), and therefore compatible with grids of any structure and
Navier-Stokes solvers in two or three-dimensions. It is numerically forgiving, in
terms of near-wall resolution and stiffness, and yields fairly rapid convergence to
steady state. The wall and freestream boundary conditions are trivial. The model
yields relatively smooth laminar-turbulent transition at the specified transition
location. Its defining equations are as follows.

Em = ﬁtful (6.3.7)
D7, - ch, 7\ 2
SE = o [U=f] S = (ew fo = 5he) (5
(6.3.8)
19 - 617; Ch, (317, 617[
+(7(9)51( [(erVt)axJ + o Oxy Oxi
Here
2
cp, = 0.1355, ¢y = 0.622, e =71, o=3 (6.3.92)
1
Cw = %Jr@ Cwy = 03, cy =2, Kk = 041 (6.3.9b)
1/6
3 1+
X X w
= 7 =1-— = 2 6.3.9¢
S X3+C31 S, L+ o, Jw 8 g6+633 ( )
_n _ 6_ _ 7
X = g =r+c,(*-r), T = Sop (6.3.9d)
8 7
S = S+K2—;2f,,2, S = \/29;9; (6.3.9¢)
fo = cpe X, o, =11, ¢, =2 (6.3.9)

where d is the distance to the closest wall and S is the magnitude of the vorticity,

o= 1 (w0
‘QU -2 (0}(,- ax; |*

The wall boundary condition is 7; = 0. In the freestream and as initial condition
0 is best, and values below % are acceptable [2].
For boundary-layer flows, Eq. (6.3.8) can be written as

W - 1f9 N AN
“ax tgy — onll=f) SV’+G{0y [(HW) 0y} +Cb2<0y)

o) (3)

(6.3.10)
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where

~ du f/l‘
S =15 toah (6.3.11)

As discussed in Section 9.4, this model not only predicts wall boundary-layer flows
well, but it also predicts free shear flows well.

I 6.4 Stress-Transport Models

As pointed out by Bradshaw ““it is so obvious that stress-transport models are more
realistic in principle than eddy viscosity models that the improvements they give are
very disappointing and most engineers have decided that the increased numerical
difficulties (complexity of programming, expense of calculation, occasional insta-
bility) do not warrant changing up from eddy-viscosity models at present. Even
stress-transport models often give very poor predictions of complex flows — noto-
riously, the effects of streamline curvature are not naturally reproduced, and
empirical fixes for this have been very reliable” [16].

Of the several versions of this approach to turbulence models, we consider the
Launder-Reece-Rodi (LRR) model [17] which is the best known model based on the
e-equation. Most recent stress-transport models are based on the LRR model and
differ primarily in the modeling of the pressure-strain term. For an excellent review
of versions closure assumptions for the terms appearing in the Reynolds stress-
transport equation (6.1.5), the reader is referred of [3].

In the LRR model, the pressure-strain term is modeled by

!/ ou Al 2
D G Ouy\ €
A2 =11 — 2 | R+ 2k
0 (axi + 6xj> v < it 3 U)

2 N 2

—a (Pij - §P6ij> - 6<Dij - gDéij) — ks (6.4.1)

€ 2 K3/2

— [0.125% (Rij + gkéij) —0.015(P;; — Dij)] o

where n denotes distance normal to the surface and
Ou; dou; an, ou

P = Rin——"L+ Rim——, Dij = Rim—— + Rjm——

T G 0T gy Ty, (6.4.2)

P =Py, D =Dy
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and the closure coefficients are given by

. 8+cr - 8cr —2 60cy; — 4
o = = -«

T n 55 (6:4.3)

In their original paper, Launder et al. recommend c¢; = 1.5, ¢, =0.4. Gibson and
Launder [18], however, recommend ¢; = 1.8, ¢, = 0.60.
The turbulent transport term rewritten as

QM:MJIM;( + p'ulo + p’uj’-éik

is modeled by

k OR; OR; OR;;
—CSQ— Rim Tk + ij ik + Rim Y (6.4.4)
€ 0x,y, 0x,y, 0xp,
where
cg = 0.11

Because dissipation occurs at the smallest scales, most modelers, including
Launder et al. [17] use the Kolmogorov [19] hypothesis of local isotropy, which
implies

= Zeo; 6.4.5
Oxp0x, 3 U (6.4.5)

With these closure assumptions, for compressible flows at high Reynolds
numbers, the Reynolds stress equation (6.1.5) can be written as

D 2
e Rij = —oPjj + 7 0edj;

Dt 3
k OR; OR; OR;:
e, L | (R Kk g, ik g, 9K (6.4.6)
Xk | € 0xp O 0%
_QHI'j

The dissipation ¢ is again from the transport equation (6.1.12), except that the
diffusion of e from velocity fluctuations is modeled by

—_ k
u e = ce;ka— (6.4.7)

rather than using an isotropic eddy viscosity model as was done in two-equation
models. With this change the dissipation rate equation, (6.1.12), becomes

(6.4.8)

QDe e Oi; &2 ad {k 65}

2 AR e 0E e o R
D o Ox; el k e "’"axm
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where

ce = 0.18

With the boundary-layer approximations, the Reynolds-stress transport equations
for twodimensional incompressible flows can be written as

D—  —du 9 |k[-—d" )
= — = s— |- RN PV A SelA
Dtuv v 6y+c‘ 3 |e u'v 3y + 2v 3

(6.4.9)
CIEWJF {&?—H}F—;k} %Jr(@lz)w
D— —_u 2 O |k — 90— —ou”
Zut = =2 — |= | 20V — 2ot
Dtu uvay 38+c‘ay[€(uvayuv +v ay)]
(6.4.10)
s 2 .2
_Clz <u’ —3k> +[20€—3(0{+ﬁ)] /U/f+(@11)w
D 2 k[, e(— 2
_ — = v P )
Dt 3€+Cay [8(3v 6y>] Clk<v 3
(6.4.11)
.2/ .
+{25—3<a+6)} W — 4+ (D)W
DW72+£§78W e(m_ 2
Dt 3 “aylel” dy AU
(6.4.12)
2 ~ | —du
+|:—§(Oé+ﬂ):| u'v —+ (@33)‘0
Here
B2 e(— 2 —\ou
()] = — 10125 (v — =k ) — 0.015( 2u'V | — 4.1
(@11),, . [0 5k<u 3k> 005(141})0)} (6.4.13a)
K3/2 e(— 2 ——\ u
(Pn),, = o {0.125]{ (v 3k) - 0.015<2uv >6y} (6.4.13b)

k3/2 & 0 2



Transport-Equation Turbulence Models 233

K32 e—— — —. Ou
(P12),, = o 0.125%14’1)’ —0.015 (v* —u”?) ay} (6.4.13d)
The dissipation rate equation for ¢ is
De &—0u £ d (k—0¢
E = 7C61%M/U/®7C82?+Cg@ (;U/z a_y> (6414)

The wall boundary conditions for the system, Eqs. (6.4.8)—(6.4.13) are satisfied at
y¢ with the following conditions [17]

o 2 TR 2 TR 2
u' = 51u;, u = 10u;, w" = 23u;

— —/d
k = 35CuV), &= —wv <”> (6.4.15)
dy
_ d 1
—uv = rw—i——pym U = ug {— In yé—f—c}
dx K

At the edge of the boundary layer, the following conditions prevail:

_ duv e—— dke
U = Up, U pra clkuv, uedx = —&
(6.4.16)
de, &2
Uegy = TG
au” 2 €
U = = —3E—Cip <u’2 = 3k>
dv” 2 e(— 2
T eyt =2 6.4.17
ugdx 38 Clk <v 3k> ( )
St 2 e 2
“dx 37k 3

I Problems
6.1 Using the relation given by Eq. (6.3.2) and noting that close to the wall
—0
vy oy Jda (P6.1.1)
dy

calculate ¢, Eq. (4.3.8).
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6.2 Equations (6.2.7) and (6.2.8) can be used to estimate the kinetic energy behind
a turbulence grid in a wind tunnel. Taking the mean velocity constant, v =0,
w =0, and assuming the turbulence to be homogeneous and isotropic, we can
neglect the diffusion terms and reduce Egs. (6.2.7) and (6.2.8) to

ok
U— = —¢€
Ox
de _ &2
“ax - TCa k

(a) Show that the solutions of the above equations have the form
k= Clx—x0)™"

e = muC(x —xo) ™!

(b) According to experiments, m = 1.25. Calculate the value of c,,.

6.3 For boundary-layer flows, the k-w model equations are given by Egs. (6.2.19),
(6.2.34) and (6.2.35). From these equations form an equation for the dissipation
rate . Show that this equation is not equivalent to the e-equation used in the k-¢
model.

6.4 In Problem 6.3, study the behavior of k£ and  in the vicinity of the wall, i.e.,
around y = 0. Assume that k and w vary as k= by" and w = ay" and consider
a simplified form of Egs. (6.2.19), (6.2.34) and (6.2.35) in which the convection,
production and turbulent diffusion terms are neglected. Show that

v g*

a=6- n=2, m(m—l):6f

with b left undetermined. Compute the value of m and compare it with the theoretical
value of m =2.
6.5
(a) Study the properties of Wilcox’s model equations in the logarithmic region
of the boundary layer. Assume that
v =2, _w
dy Ky
and with the assumption that ““Production = Dissipation” in the Kkinetic energy
equation (P6.1.1), show that
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(b) Compute the evolution of w as function of y. From the w-equation show that
the value of k can be written as

B 12
P % — 041
c,/ al/2
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I 7.1 Introduction

Over the years many attempts have been made to calculate turbulent flows and
various approaches have been taken. At first, before high-speed computers became
available, almost all attempts avoided the mathematical difficulties of solving highly
nonlinear Navier-Stokes and boundary-layer equations in their partial-differential
form and, instead, concentrated on the solution of the ‘“‘integral” forms of the
boundary-layer equations, which yield ordinary differential equations. Such methods
are commonly called integral methods.

The interest in the solution of boundary-layer equations in their differential form
began early in 1960 when computers began to offer the possibility of solving
complicated systems of partial differential equations numerically. As a result, since
about 1960, a number of methods called differential methods have been develop-
ment. At present there are several very efficient and accurate differential methods
such as the one discussed in Chapters 8 and 9 for laminar and turbulent flows. With
increase in computer power, around late 1970, interest next concentrated in the
solution of the Navier-Stokes equations. As a result, at present there are several
powerful methods for solving the Navier-Stokes equations for both laminar and
turbulent flows.

In this chapter we discuss simple methods and formulas for calculating two-
dimensional turbulent flows. These methods, which we have called ‘“short-cut”
methods do not have the accuracy of the differential boundary-layer methods dis-
cussed in Chapters 8 and 9. Furthermore, they are restricted to simple two-dimensional
flows with restricted boundary conditions. Their chief advantage and usefulness lies in
their simplicity; unlike differential boundary-layer and Navier-Stokes methods they
either do not require computers or only small computers. They can easily be used in
many practical engineering problems.

Description of short-cut methods for flows with zero-pressure gradient begins in
Section 7.2 and is continued in Section 7.3 with integral methods for flows with
pressure gradient. Section 7.4 discusses the prediction of flow separation in two-
dimensional incompressible flows and Section 7.5 discusses the calculation of
several free shear flows based on similarity concepts.

I 7.2 Flows with Zero-Pressure Gradient

Short-cut methods discussed here for flows with zero-pressure gradient includes
incompressible flows on a smooth flat plate (subsection 7.2.1), on a rough flat plate
(subsection 7.2.2), compressible flow on a smooth flat plate (subsection 7.2.3) and on
a rough flat plate (subsection 7.2.4).
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7.2.1 INCOMPRESSIBLE FLOW ON A SMOOTH FLAT PLATE

Let us consider an incompressible flow over a smooth flat plate. If the Reynolds
number is sufficiently large, we can identify three different flow regimes on such
a surface. Starting from the leading edge, there is first a region (0 < R, <Ry,) in
which the flow is laminar. After a certain distance, there is a region (Ry, <R, <Ry,)
in which transition from laminar to turbulent flow takes place. In the third region
(Ryx > Ry,) the flow is fully turbulent. The transition Reynolds number R, depends
partly upon the turbulence in the free stream; R, may be as low as 5 x 10% or as high
as 5 x 10°.

For laminar flow over a flat plate, the boundary-layer parameters can be obtained
exactly from the solution of the similarity equations and can be expressed in terms of
very useful formulas. For a turbulent flow, the momentum and energy equations do
not reduce to similarity equations. Furthermore, the presence of the Reynolds stress
terms in the equations prevents an exact solution. For that reason, it is necessary to
introduce some empiricism into the equations and check their solutions with
experiment.

Skin Friction Formulas

Over the years, a large number of experiments have been conducted with smooth flat
plates. Velocity profiles and local skin-friction coefficients have been measured at
various Reynolds numbers. The experimental data have been the basis for several
useful formulas for boundary-layer parameters, as well as for several general
prediction methods such as those discussed in Chapters 8 and 9 for calculating
turbulent boundary-layers with and without pressure gradient. Here we shall restrict
our discussion to several approximate formulas that can be used for calculating cp, 6*,
0, 6, etc. For simplicity, we shall assume that the transition region is a point and that
the transition from laminar to turbulent flow takes place instantaneously, that is
R., =R,,.

For zero-pressure-gradient flow, the momentum integral equation (3.6.6) can be
written as

dRy/dR, = c;/2 (7.2.1)

where Ry = ue0/v and R, = uex/v. Denoting (2/cp'’*

parts, we can express Eq. (7.2.1) in the form

by z and using integration by

Z
R, = Ry —2 / Ryzdz+Aj, (7.2.2)

Zur

where A is an integration constant and z;; is the value of the skin-friction parameter z
at transition.
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The integral in Eq. (7.2.2) can be integrated, provided that Ry is expressed
as a function of z. That can be done by first recalling the definition of § and

1
0:5/ 1(1—ﬁ>dn
0 Ue Ue
U e —u U e —u 2
=o [ (5 Y= [ ()
0 Ue 0 Ue

where 7 = y/0. But for equilibrium boundary layers at high Reynolds numbers, c;
and ¢y, defined as

1 _ 1 _ 2
o= / (“e “)dn, = / (“e “) dn, (7.2.4)
0 U 0 Ug

are constant (see Fig. 4.4). Substituting from Eq. (7.2.4) into Eq. (7.2.3) and non-
dimensionalizing, we obtain

writing it as

(7.2.3)

0 R
Ry=tel — _R0T (7.2.5)
v c1— )z
Next we consider Coles’ velocity-profile expression evaluated at the edge of the
boundary layer, Eq. (4.4.37), and write it as

1. R 211
z=-In2 4+ (7.2.6)
Kz K
With the values of ¢ and IT taken as 5.0 and 0.55, respectively, we can now integrate
Eq. (7.2.2) with the relations given by Eqgs. (7.2.5) and (7.2.6). This integration

allows the resulting expression to be written as
0.58
(Rx —Az)cf = 0.324 exp 7(1 —8.125,/¢cr + 22.08cf) . (7.2.7)
o

Here A; is an integration constant that depends on the values of c¢rand R at transition.
Figure 7.1 presents the results for three transition Reynolds numbers, R, =0,
4.1 x 10°and 3 x 10°, the first being the case when transition takes place at the leading
edge. The value of R, =4 x 10° corresponds to the approximate minimum value of R,
for which the flow can be turbulent. The highest value of R, is a typical natural
transition Reynolds number on a smooth flat plate in low-turbulence test rigs with no
heat transfer. If the plate is heated, the location of natural transition in a gas flow moves
upstream, decreasing the value of the transitional Reynolds number, whereas if the
plate is cooled, the location of transition moves downstream. The reason is that since u
rises with gas temperature, the velocity gradient near the wall is reduced by heating,
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Fig. 7.1 Local skin-friction coefficient on a smooth flat plate with three transition Rey-
nolds numbers according to Eq. (7.2.7). The variation of laminar cfwith R, is shown by
cr=0.664/ \/Ry.

distorting the profile to a more unstable shape, and for cooling, the converse holds. In
liquid flows u falls with increasing fluid temperature, and the effect is reversed.

Putting A» =0 in Eq. (7.2.7) (i.e., assuming that the turbulent boundary layer
starts at x =0 with negligible thickness), taking logarithms, and making further
approximations lead to formulas like

1
— = blog ¢/R,,
& a—+ 0g CrRy

where a and b are constants chosen to get the best agreement with experiment. Such
less-rigorous formulas have been derived by many previous workers. Von Karman
[1] took a=1.7 and b =4.15; i.e.

1
—— = 1.7+ 4.15log ¢/R,. 7.2.8
N + og ¢fRy (7.2.8a)

A formula for the average skin friction ¢y (averaged over the distance x) that
makes use of the above equation was obtained by Schoenherr [2]:

cr

1
—— — 4.13log &R,. (7.2.8b)

Power-Law Velocity Profiles

By relating the profile parameter IT to the displacement thickness 6" and to the
momentum thickness 6 as well as to the local skin-friction coefficient cf, as is done in
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the analysis leading to Eq. (7.2.8a), we can obtain relations between 6, cf, 6%, 6, and
H. Much simpler but less accurate relations can be obtained by assuming that the
velocity profile can be represented by the “power law”

u _ (%) ln (7.2.9)

Ue

Here n is about 7 in zero-pressure-gradient flow, increasing slowly with Reynolds
number. Using Eq. (7.2.9) and the definitions of 0%, 8, and H, we can show that

5 1
3= (7.2.10a)
0 _ # (7.2.10b)
o (1+n)(2+n)’ o
g 2tn (72.10¢)
n

Other formulas obtained from power-law assumptions with n =7, given by
Schlichting [1] are the following equations valid only for Reynolds numbers R
between 5 x 107 and 107:

¢ = 0.059R, "%, (7.2.11)
cp = 0.074R "%, (7.2.12)
0 —0.20

~ = 0.37R%, (7.2.13)
b _ 0.036R. 020 7.2.14
~ = 0.036R. . (7.2.14)

Equations (7.2.8b) and (7.2.12) assume that the boundary layer is turbulent from
the leading edge onward, that is, the effective origin is at x =0. If the flow is
turbulent but the Reynolds number is moderate, we should consider the portion of
the laminar flow that precedes the turbulent flow. There are several empirical
formulas for ¢; that account for this effect. One is the formula quoted by
Schlichting [1]. It is given by

0.455 A

and another is

A
¢ = 0.047R % — 5% 10° < R, < 10”. (7.2.16)

X
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Here A is a constant that depends on the transition Reynolds number R, . It is
given by
A = Ry (e, — ¢1,), (7.2.17)

where ¢ and ¢, correspond to the values of average skin-friction coefficient for
turbulent and laminar flow at R,.. We note that although Eq. (7.2.16) is restricted to
the indicated R, range, Eq. (7.2.15) is valid for a wide range of R, and has given good
results up Ry = 10°.

Heat-Transfer Formulas on Smooth Surfaces with Specified
Temperature

For a zero-pressure-gradient flow, the energy integral equation (3.6.26b) can be
integrated to obtain the Stanton number St as a function of Reynolds number. This
can be done by inserting the velocity profile expression given by Eq. (4.4.37) and the
similar expression for the temperature profile given by Eq. (4.4.43) into the definition
of f7. Since we already have an expression for c;, however, a simpler procedure
would be to evaluate Eq. (4.4.43) at y = 6 and make use of the relation given by Eq.
(7.2.6). For example, at y = 6, Eq. (4.4.43) becomes

=T _1,R =y h+& (7.2.18)

T: Kp 2 Kp

Using the definition of 7’ and the local Stanton number St, the left-hand side of Eq.
(7.2.18) becomes

TW - Te 1 Cf
T. stV 2

(7.2.19)

If we equate the two expressions for In(Rs/z) obtained from Egs. (7.2.6) and (7.2.5)
and substitute Eq. (7.2.19) in the left-hand side of Eq. (7.2.18), we get, after
rearranging

St Kn/K
/21— {[ck — cnrn +2(IT — Iy)] /x}\/ep /2

Because of the scatter in temperature-profile data, it is simplest to choose the value
of the quantity in braces as one that gives the best agreement with St data. For air,
this is

(7.2.20)

st 111
/2 1—1.20\/c/2

(7.2.21)

for k = 0.40 and «j, = 0.44. This equation for the Reynolds analogy factor St/(cs/2)
is quoted in the literature with a wide range of values for the empirical constants. For
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cr=3x 1073, a typical value for a laboratory boundary layer, the constants quoted
here give St/ } cr=1.16, whereas at very high Reynolds number, where cfis small,
St/ % c¢rasymptotes to 1.11 [3].

Substituting Eq. (7.2.11) into Eq. (7.2.21) yields

0.0327R 920

St = ——— %
1 —0.206R; 010

(7.2.22)

According to an extensive study conducted by Kader and Yaglom [4], the empirical
formula

1 \Cf
t=—— "+ 7.2.23
Pr4.3InRycr +3.8 ( )

fits the existing data on air (Pr = 0.7) well. For fluids with Pr > 0.7, they recommend

Cf/2

St = . (7.2.24)
2.121In Rye + 12.5Pr23 +2.12In Pr— 7.2

Equations (7.2.23) and (7.2.24) utilize Von Karman’s equation (7.2.8a) for ¢y with
a slightly different constant ahead of the log cf R, term:

1
— = 1.74+4.071 R .
\/67 + 0g Crikx
For isothermal flat plates, Reynolds et al. [5] recommend the following empirical
formula for Stanton number:

T 0.4

St P4 (%) = 0.0296R, % (7.2.25)
e

for 5 x 10° <R, <5 x 10% and 0.5 < Pr< 1.0.

An approximate expression for Stanton number on an isothermal flat plate
with unheated starting length can be obtained for turbulent flows by making
suitable assumptions for velocity, temperature, and shear-stress profiles and by
using eddy viscosity and turbulent Prandtl number concepts [6]. For example,
from the definition of Stanton number with power-law profiles for velocity and
temperature,

u yl/n TW—T_ y 1/n
Ue (5) T, —T, (5t> ) (7.2.26a)

and with a shear-stress profile in the form

7 (y) (n+2)/n
0

-
Tw

(7.2.26b)
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and with /9 = &,(du/dy), Pr, = 1, we can write

—1/n
_ (%
St = 2( 6) . (7.2.27)

Substituting this equation into the energy integral equation (3.3.26b) and using the
momentum integral equation for zero-pressure gradient-flow, the resulting expres-
sion can be written in the form

6 6,/0 2/n
do 1 0:/0 0
/ @ _ / ntl_ (5/9) s d <l) (7.2.28)
6)(() 0 0 n 11— (6{/5)( +n)/n 0
where 0y, denotes the hydrodynamic boundary-layer thickness at x=uxp (see

Fig. 7.2).
Integrating Eq. 7.2.28, we obtain

5 o (24n)/n7 —(n+1)/(n+2)
wo -G

5.\ (T2 (1) n/(24n)
= [1 — (?) } . (7.2.29)

or

> &

In the range 5 x 10° <R, < 107, 6 varies as x*P [see Eq. (7.2.13)]. Thus Eq.
(7.2.29) may be written as

0; B X0\ 4(n+2)/5(n+1)7n/(2+n)
3= [1 _ (;) ] . (7.2.30)
Substituting Eq. (7.2.30) into Eq. (7.2.27) and taking n =7, we get
o Yo 9/107-1/9
st = 3 [1 - (x) } . (7.2.31)

For a plate heated from the leading edge (xo = 0), Eq. (7.2.31) becomes

C
St = StT:Ef,

Fig. 7.2 Flat plate with an unheated starting length.
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where Sty denotes the Stanton number of the isothermal flat plate. With this notation,
Eq. (7.2.31) can be written as

St 9/107—1/9

A [1 - (@) ] X > X0 (7.2.32)
Sty X

From the definition of heat-transfer coefficient 4 and Stanton number St, for an

isothermal flat plate with unheated starting length,

. 9/107-1/9
h = ngcpStT[l - (%) } . (7.2.33)
Similarly, with Sty given by Eq. (7.2.25)
04 (T 020 X0\ 9/107—1/9
St Pr (T) = 0.0296R-" [1 _ (;) } . (7.2.34)
e

For nonisothermal surfaces with arbitrary surface temperature, the heat flux at
some distance x from the leading edge is, by superposition arguments [7],

g, = / RUCEAG (7.235)
where, with Sty (x) being evaluated at x,
R £ 9/107—1/9
h(E,x) = ngcpStT(x) [1 — (—) ] . (7.2.36)
X

The integration of Eq. (7.2.35) is performed in the ““Stieltjes” sense rather than in the
ordinary ‘“Riemann” or “area” sense [8]. This must be done because specified
surface temperature may have a finite discontinuity, so that d7,, is undefined at some
point. The Stieltjes integral may, however, be expressed as the sum of an ordinary or
Riemann integral and a term that accounts for the effect of the finite discontinuities
[7]. The integral of Eq. (7.2.25) may be written as

E=x
Gw(x) = / h(E,x)dTW(5>d5

3 o) [ () ~ Tl

(7.2.37)

Here N denotes the number of discontinuities and T, (x,) — Tw(xy,) denotes the
temperature jump across the nth discontinuity.

As an example, let us consider a plate whose temperature is equal to T;,, from the
leading edge to x = xg and equal to T, for x > x¢. To find the heat flux for x > x¢, we
note that since dT,,/d§ is zero except at x = x, the first term on the right-hand side is
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zero. Therefore, we concentrate our attention on the second term. Since N =2, we
can write

n=1, h(0,x) = ouec,Str[1 — 0]/,
. _

T,,(0") = T,,(07) = Ty, — T,

)

n =2, h(x,x) = ouec,Str(x) {1 _ (%)9/10}71/9

TW(X(-;_) - TW(X5) = Tw, = Tw, -

Thus the heat transfer for x > xq is given by

G, (x) = guecpStT(x){(Twl ~T,) + (Tw, — T, [1 - (@)9/ 10}71/ 9}. (7.2.38)

X

Note that Sty (x) is computed with 7;, = Ty,,.

Heat-Transfer Formulas on Smooth Surfaces with Specified Heat Flux

The analysis of thermal boundary layers on smooth surfaces with specified heat flux
is similar to those with specified temperature. Based on the experiments of Reynolds
et al., the following empirical formula is recommended in [9]:

StPr’* = 0.030R, %2, (7.2.39)

which is nearly identical to the one for specified temperature, Eq. (7.2.25). Note that
the difference in Stanton-number formulas between the constant wall heat-flux case
and the constant wall temperature case is considerably more in laminar flows, where
the difference is 36 percent.

When the plate has an arbitrary heat-flux distribution on the surface and also
includes an unheated section, the difference between the surface temperature and
edge temperature can be calculated from the following formula given by Reynolds
et al. [7]:

Ty(x) =T, = / B 8(€,x)q,,(§) dé&, (7.2.40)

£=0

where, with I" denoting the gamma function (see Appendix 7A),

9 pr—0.6R—038 9/107 —8/9
R e (N M
Ir$)r®)(0.0287k)

The nature of the integrated in Eq. (7.2.40) is such that integration is always per-
formed in the usual Riemann sense, including integration across discontinuities. To
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illustrate this point further, let us consider a plate that is unheated for a distance xy
from the leading edge and is heated at a uniform rate ¢,, for x > x¢. To find the wall
temperature for x > xo, we write Eq. (7.2.40) as

3.424, x £ 9/107 —-8/9
Ty(x) =T, = m/ [1 — <;> de. (7.2.41)

Xo

The integral can be evaluated in terms of beta functions (see Appendix 7A), and the
resulting expression can be written as

_33.614,Pr%R%% B,(1/9,10/9)

T, -, 7.2.42
v =T ocpue B1(1/9,10/9) 724
or, using the definition of Stanton number, as
0.030Pr04R 02
St = el (7.2.43)

8:(5:29)] /[61 (5. 29)]

where r=1 — (xo/x)g/m.

7.2.2 INcOMPRESSIBLE FLOw ON A ROUGH FLAT PLATE

The discussion in the previous subsection is valid for smooth surfaces. In practice,
many surfaces are “rough” in the hydraulic sense. It is often desirable to compute c,
¢r, Ry, H, etc., on such surfaces. Here we show, as an example, how boundary-layer
parameters can be obtained for sand-roughened plates by using an approach similar
to that discussed in subsection 7.2.1.

It was shown in Section 4.5 that the law of the wall for flows with roughness is
given by Eq. (4.5.1). By means of Eq. (4.5.2), it can be written as

ut = (1/k)lny* — (1/k)Ink* + B,. (7.2.44)

The functional relationship, which can only be determined from experiments,
also assumes that the slope of the velocity distribution on rough walls is the same as
the slope on smooth surfaces. The best-known roughness configuration — one
frequently used as standard roughness — is that of closely packed uniform sand
grains. According to Nikuradse’s experiments in sand-roughened pipes [10], the
variation of B, with k™ is that shown in Fig. 7.3. We see from the figure that B, varies
differently in the three regions discussed in Section 4.5. For example, in the
completely rough regime, B, is a constant equal to 8.48.
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Fig. 7.3 Variation of B, with k".

Equation (7.2.44) applies only in the inner region of the boundary layer. For
application to the entire boundary layer, it must be corrected for the wakelike
behavior of the outer region. That can be done by using Coles’ wake expression.
With the correction, Eq. (7.2.44) becomes

ut = (1/k)In (y/k) + By + (I /x)w. (7.2.45)

Evaluating that expression at the edge of the boundary layer and rearranging, we can
write

Rs = Ryexplk(z — ¢(1)], (7.2.46)
where

Ry = uk/v, ¢(1) = By + (211 /).

Since the velocity-defect law is valid for both smooth and rough surfaces, we can still
use the expression for Ry as given by Eq. (7.2.5). From Egs. (7.2.46) and (7.2.5), we
can write

Ry = (Re/2)ler — (e2/2)]exp [k(z — (1), (7.2.47)

As before, the constants ¢ and ¢, are 3.78 and 25, respectively.

A relation between cf and R, can now be obtained by using the momentum
integral equation in the form given by Eq. (7.2.1). Before Eq. (7.2.1) is integrated,
however, it is necessary to establish lower limits for R, and Ry. It is obvious from
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Eq. (7.2.47) that Ry vanishes when zg = c¢/c;. With that initial condition we can write
Eq. (7.2.1) as [see Eq. (7.2.2)],

Z

R, —R, = Z’Ry—2 / Ryz dz. (7.2.48)
20

Since Ry is known from Eq. (7.2.47), we can integrate Eq. (7.2.48) for given values of

R and obtain a relation between R, and c¢t. The value of the average skin-friction

coefficient can then be calculated directly from cf = 2R4/R,.

Figures 7.4 and 7.5 show the variation of cf and ¢y with R, as calculated by the
procedure just described. Also shown in these figures are the lines for constant-
roughness Reynolds number Rj; and for constant relative roughness x/k. As in
previous cases, the origin of the turbulent boundary layer is assumed to be close to
the leading edge of the plate, which means that the contribution of Ry, can be
neglected. In order to keep the calculation consistent with the empirical constants
stipulated, it was necessary to modify the variation of B, shown in Fig. 7.3.
Essentially, the adjustment consisted of making B, compatible with the chosen k and
B values. Here, these values are 0.41 and 0.5, respectively, whereas Nikuradse’s
corresponding values are 0.40 and 5.5.

7.2.3 CoMmpressiBLE FLow ON A SMOOTH FLAT PLATE

Skin-Friction Formulas

A number of empirical formulas for varying degrees of accuracy have been developed
for calculating compressible turbulent boundary layers on flat plates. Those

Fig. 7.4 Local skin-friction coefficient on a rough flat plate.
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Fig. 7.5 Average skin-friction on a rough flat plate.

developed by Van Driest [11] and by Spalding and Chi [12] have higher accuracy than
the rest and cover a wide range of Mach number and ratio of wall temperature to total
temperature. These two methods have similar accuracy, although the approaches
followed to obtain the formulas are somewhat different. Both methods define
compressibility factors by the following relation between the compressible and
incompressible values:

¢ = FCCf, (7.2.49&)
Ry, = Fg,Ry, (7.2.49b)
R
93
R, = / %de = FRR,, (7.2.49¢)
0 c

Here the subscript i denotes the incompressible values, and the factors F, Fg,, and
Fr, (= Fg,/F.) defined by Eq. (7.2.49) are functions of Mach number, ratio of wall
temperature, and recovery factor. Spalding and Chi’s method is based on the
postulate that a unique relation exists between ¢ F. and Fg_gy. The quantity F is
obtained by means of mixing-length theory, and Fy is obtained semiempirically.
According to Spalding and Chi,

T /Ts — 1 T\ 0772 (T, 4
Fo= ——"————5, Fr, = (7 - : (7.2.50)
(sin~la + sin~18) e e

where, with r denoting the recovery factor (Tw — T)/(To. — T¢),
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Tow/Te + Tw/Te —2

@« = 5 12’
{(Taw/Te T /T2 — 4(TW/T9)}
(7.2.51a)
6 _ TaW/Te - Tw/Te
- 1/2°
{(Taw/Te Ty /T2 — 4(TW/TE)}
Taw y—1 .5
et (7.2.51b)

According to van Driest’s method, which is based entirely on the mixing-length
theory, F, is again given by the expression defined in Egs. (7.2.50) and (7.2.51).
However, the parameter Fg, is now given by

Fr = Fe. (7.2.52)

M

The development of Van Driest’s formula for skin friction is analogous to the
solution steps discussed for incompressible flows (see subsection 7.2.1) except that
the derivation is more tedious. The solution requires the expansion of the integral
into a series by means of integration by parts and a simple expression is again
obtained when higher-order terms are neglected. With this procedure and with the
power-law temperature-viscosity relation u o« T, which implies Fg, = (T,/T,,)” the
following relation for ¢f and R, is obtained for compressible turbulent boundary
layers with and without heat transfer, with x measured from the effective origin of the
turbulent flow:

0.242(sin" o + sin~! 1 T,
( in" o+ 6) = 0.41 + log Recy — <5 + w> log ?W, (7.2.53)
Ay/cr(Tw/Te) e
where A
2 _v—1 M;
2 T,/T.

This formula is based on Prandtl’s mixing-length formula / = ky. If the procedure
leading to this equation is repeated with the mixing-length expression given by von
Karman’s similarity law

du/dy
0%u/dy?

= K s

a formula similar to that given by Eq. (7.2.53) is obtained except that % + w in Eq.
(7.2.53) is replaced by w. This formula is known as Van Driest II, in order to
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distinguish it from Eq. (7.2.53), which is known as Van Driest I, and may be
written as

0.242(sin" o + sin ™! 8)
Ay/cp(Tw/T.)

= 0.41 +log Rycy — w log

T,
v, (7.2.54)
e

T,

The predictions of Eq. (7.2.54) are in better agreement with experiment than those
of Eq. (7.2.53) and Van Driest II should therefore be used in preference to Van
Driest 1.

Equations (7.2.53) and (7.2.54) constitute a compressible form of the von Kar-
man equation, (7.2.8a). For an incompressible adiabatic flow, 7,,/T, — 1 and B =0,
so that with Eq. (7.2.51a), we can write Eq. (7.2.54) as

0.242sin"'A
AV
In addition, A is of the order of M,, and since it is small, sin"' A =A. The resulting
equation is then identical to Eq. (7.2.8a).

According to Van Driest II, the average skin-friction coefficient ¢r is obtained
from the expression

0.242(sin"'a + sin ™! 8)
A\ (Tu/T.)

= 0.41 + log Rycy .

T,
= logR.¢; — w log ?w (7.2.55)
e

Figures 7.6 and 7.7 show the variation of local and average skin-friction coefficients
calculated from Eqs. (7.2.54) and (7.2.55), respectively, on an adiabatic flat plate for
various Mach numbers. The recovery factor was assumed to be 0.88.

Fig. 7.6 Local skin-friction coefficient on a smooth adiabatic flat plate, according to
Van Driest Il.
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Fig. 7.7 Average skin-friction coefficient on a smooth adiabatic flat plate, according to
Van Driest II.

Fig. 7.8 Effect of compressibility on (a) local skin-friction coefficient and (b)
average skin-friction coefficient on a smooth flat plate, according to Van Driest II.
R,=10".

Figure 7.8 shows the effect of compressibility on the local and average skin-
friction coefficients. Here, the skin-friction formulas were solved at a Reynolds
number (R, = 107) as functions of Mach number for fixed values of T,,/T,. In the
results shown in Fig. 7.6, the local skin-friction values for incompressible flows with
heat transfer were obtained from the limiting form of Eq. (7.2.54).

We note that as M, — 0 and when 7,,/T,=1,A — 0, « — —1, and 8 — 1. It follows
that the term
sin"la + sin”! 68
A
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is indeterminate. Using L’Hospital’s rule and recalling that B =T,/T,, — 1, we can
write Eq. (7.2.54) for an incompressible turbulent flow with heat transfer, after some
algebraic manipulation, as

2 0.242

VTw/Te +1 /¢

The average skin-friction formula, Eq. (7.2.55), can also be written for an incom-
pressible flow by a similar procedure, yielding

T,
= 0.41 + log Ryc; — wlog ?W (7.2.56)
e

2 0.242

VTw/Te +1 /¢

T
= log R.¢r — wlogTw. (7.2.57)
e

Reynolds Analogy Factor

According to the studies conducted by Spalding and Chi [12] and Cary [13] it
appears that for Mach numbers less than approximately 5 and near-adiabatic wall
conditions, a Reynolds analogy factor of

t
St = 1.16 (7.2.58)

Cf / 2
adequately represents the available experimental data. However, for turbulent flow
with significant wall cooling and for Mach numbers greater than 5 at any ratio of wall
temperature to total temperature, the Reynolds analogy factor is ill-defined. Data in
[14] indicate that for local Mach numbers greater than 6 and T,/T, less than
approximately 0.3, the Reynolds analogy factor scatters around a value of 1.0.
A sample of the results is presented in Fig. 7.9 for a Mach number of 11.3 and
indicates that the Reynolds measured analogy factor is scattered from around 0.8 to
1.4 with no discernible trend for T,,/T.

Fig. 7.9 Reynolds analogy factors at M.=11.3, R./m =54 x 10° [14].
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7.2.4 CompressiBLE FLow ON A RoUGH FiLAT PLATE

The skin-friction formulas for a smooth flat plate, Eqgs. (7.2.55) and (7.2.56), can also
be used to obtain formulas for sand-grain-roughened flat plates by assuming a rela-
tion between the compressible and incompressible values such as that given by Eq.
(7.2.49a). According to the experiments of Goddard [15] on adiabatic fully rough flat
plates,

(7.2.59)

and the experimental values of ¢y verified the relation (7.2.59) for his chosen
turbulent recovery factor, r = 0.86. It should be emphasized that this equation is for
fully rough flow in which the flow on top of the roughness elements remains
subsonic. It is consistent with the observation originally noted by Nikuradse for
incompressible flow, namely, that the skin-friction drag for fully rough flow is the
sum of the form drags of the individual roughnesses.

Fenter [16] also presented a theory for the effect of compressibility on the
turbulent skin friction of rough plates with heat transfer. This gave results that agree
with those of relation (7.2.59) only at Mach numbers close to unity and only for zero
heat transfer. For T,, = T,, the value of c; given by this theory is 14 percent less than
that given by Goddard’s relation at M, = 2.0 and 45 percent less at M, = 4.0. Fenter
presented experimental data for M, = 1.0 and 2.0 that agreed well with this theory for
the case of zero heat transfer. The difference in the experimental values of ¢y of the
two reports is probably within the accuracy to which the roughness heights were
measured. The theory of Fenter is based on assumptions whose validity is ques-
tionable at high Mach numbers, and these assumptions may account for the differ-
ence in ¢y predicted by Fenter and by Goddard for the case of 7, = T..

Figures 7.10 and 7.11 show the average skin friction distribution for a sand-
roughened adiabatic plate, and Figs. 7.12 and 7.13 show the results for a sand-
roughened plate with a wall temperature equal to the freestream temperature, all at
M, =1 and 2. In all these figures, transition was assumed to take place at the leading
edge.

Figure 7.14 shows the variation of the ratio of the compressible to incompressible
values of skin-friction coefficient with Mach number for the various types of flow on
an adiabatic plate. The variation is much larger for turbulent flow than for laminar
flow and increases as the Reynolds number increases, being largest for a fully rough
wall where viscous effects are negligible. The reason is that the effect of viscosity is
felt mainly near the wall (in the viscous sublayer), and so the relevant Reynolds
number for correlating skin friction is that based on the wall value of viscosity. The
ratio of wall viscosity to freestream viscosity increases as M, increases; so a given
value of u.L/v, corresponds to a smaller value of u.L/v,, and thus a larger c;. The
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Fig. 7.10 Average skin-friction coefficient for a sand-roughened adiabatic flat plate at
M.=1.

Fig. 7.11 Average skin-friction coefficient for a sand-roughened adiabatic flat plate at
Me=2.

effect on cydecreases as u.L/v, increases because the change of cyassociated with Ry,
is smaller. The effect is absent on fully rough walls.

B 7.3 Flows with Pressure Gradient: Integral Methods

Integral methods are based on the solution of the integral equations of motion
discussed in Section 3.6. They avoid the complexity of solving the differential form
of the boundary layer equations, and they provide — with very short computation
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Fig. 7.12 Average skin-friction coefficient for a sand-roughened adiabatic flat plate
with T/ Te=1, Mc=1.

Fig. 7.13 Average skin-friction coefficient for a sand-roughened adiabatic flat plate
with T,,/Te=1, Mc=2.

times — a solution of the boundary layer equations. There are several integral
methods for calculating momentum transfer in turbulent boundary layers and
a more limited number for heat transfer. This disparity arises because of the
difficulty of incorporating possible rapid changes in wall temperature or heat flux
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Fig. 7.14 Mach number variation of the ratio of the compressible to incompressible
values of local skin-friction coefficient for the various types of air flow on an adiabatic
flat plate, for given Reynolds number u.l/v,.

into the temperature profiles used in the solution of the energy integral equation. In
the following, we discuss integral methods, first for momentum transfer and then
for heat transfer.

Head’s Method

The momentum integral equation

df 6 du, cr
— (g2 = L .6.
dx+uedx( + ) 2 (3.6.6)

contains the three unknowns 6, H, and ¢f, and assumed relationships between these
integral parameters are required. There are several approaches to the achievement of
this objective. One approach that we shall consider here adopts the notion that
a turbulent boundary layer grows by a process of “‘entrainment” of nonturbulent
fluid at the outer edge and into the turbulent region. It was first used by Head [17],
who assumed that the mean-velocity component normal to the edge of the boundary
layer (which is known as the entrainment velocity vg) depends only on the mean-
velocity profile, specifically on H. He assumed that the dimensionless entrainment
velocity vg/u, is given by

0
ve_Ld [ - idiue(é—é*) — F(H) | (7.3.1)

ue Uedx Jy Ue dx
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where we have used the definition of 6* for two-dimensional incompressible flows. If
we define
e

Hi =~ (7.3.2)

then the right-hand equality in Eq. (7.3.1) can be written as

d
a(uga H)) = uF . (7.3.3)

Head also assumed that H; is related to the shape factor H by
H; = G(H). (7.3.4)

The functions F and G were determined from experiment, and a best fit to several sets
of experimental data showed that they can be approximated by

F = 0.0306(H, — 3.0) %01 (7.3.5)

—1.287
- {0.8234(H— 1.1) +3.3 H<16, (7.3.6)

~ | 1.5501(H — 0.6778) 3%* 133 H > 16 .

With F and G defined by Egs. (7.3.5) and (7.3.6), Eq. (7.3.3) provides a relationship
between ¢ and H. Another equation relating cyto 6 and/or H is needed, and Head used
the semiempirical skin-friction law given by Ludwieg and Tillmann [18],

¢ = 0.246 x 10706780 g 0268 (7.3.7)

where Ry = u,0/v. The system [Eqgs. (3.6.6) and (7.3.1)—(7.3.7)], which includes
two ordinary differential equations, can be solved numerically for a specified
external velocity distribution to obtain the boundary-layer development on a two-
dimensional body with a smooth surface [19]. To start the calculations, say x = x,
we note that initial values of two of the three quantities §, H and ¢f must be
specified, with the third following from Eq. (7.3.7). When turbulent-flow calcu-
lations follow laminar calculations for a boundary layer on the same surface,
Head’s method is often started by assuming continuity of momentum thickness 6
and taking the initial value of H to be 1.4, an approximate value corresponding to
flat-plate flow.

This model, like most integral methods, uses a given value of the shape factor
H as the criterion for separation. [Equation (7.3.7) predicts ¢y to be zero only if
H tends to infinity]. It is not possible to give an exact value of H corresponding to
separation, and values between the lower and upper limits of H makes little
difference in locating the separation point since the shape factor increases rapidly
close to separation.
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Green’s Lag-Entrainment Method

A more refined integral method for computing momentum transfer in turbulent flows
is Green’s “lag-entrainment” method [20], which is an extension of Head’s method
in that the momentum integral equation and the entrainment equation are supple-
mented by an equation for the streamwise rate of change of entrainment coefficient
F. This additional equation allows for more realistic calculations in rapidly changing
flows and is a significant improvement over Head’s method. In effect this is an
“integral” version of the ‘“differential” method of Bradshaw et al. discussed in
Section 6.3. It requires the solution of Egs. (3.6.6) and (7.3.1) as before and also
considers the ‘“rate of change of entrainment coefficient” equation given by

dF  F(F+0.02) +0.2667c;,

O(H +H) - = F+001

1/2
x {2.8 (0326, +0.024 Feq -+ 1.2F2,)

1/2 S d 5d
—(0.32% + 0.024F + 1.2F2) } + ( ﬂ) Ue
oq Ue dx

e ———} . (13.8)

where the numerical coefficients are from curve fits to experimental data and the
empirical functions of Bradshaw et al. Here cy, is the flat-plate skin-friction coeffi-
cient calculated from the empirical formula

0.01013

= 0.00075 . 7.3.9
% = log Ry —1.02 (7.39)

The subscript eq in Eq. (7.3.8) refers to equilibrium flows, which are defined as flows
in which the shape of the velocity and shear-stress profiles in the boundary layer do
not vary with x. The xfunctional forms of the equilibrium values of Feq, [(6/u.) (du./
dx)]eq, and [(0/u,) (du./dx)]eq are given by

Ccr 0 due
Feg =H|-—(H+1) |—— 7.3.10
eq 1 |:2 ( + ) (ue dx )eq:| ) ( )
i% — g o _(H- 1)’ (7.3.11)
e dx ) o  H |2 6.432H ’ "
and an obvious consequence of the definitions of H and H|,
0 di 0d
(—ﬁ) — (H+H) (—k> . (7.3.12)
U dx eq U, dx eq

The skin-friction formula and the relationship between the shape factors H and H;
complete the number of equations needed to solve the system of ordinary
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differential equations (3.6.6), (7.3.1) and (7.3.8). The skin-friction equation is

given by
: H
(Cf+0.5) (—0.4) — 09 , (7.3.13a)
fy Ho
where
1 cpy /2
| —— — 655(% 3.1
i 655(2) : (7.3.13b)

so that Egs. (7.3.9) and (7.3.13) give cras a function of H and Ry with values close to
Eq. (7.3.7).
The shape-factor relation is

1.72
H, = 3.15+ﬁ—0.01(y— 1) (7.3.13¢)

and gives values close to Eq. (7.3.6).

Comparisons with experiment show good accuracy in incompressible boundary
layer flows and also in wakes. The method has also been extended to represent
compressible flows [19].

Truckenbrodt’s Method

Two dimensional turbulent boundary layers can also be computed by simple methods
such as Thwaites’ method for laminar flows [19]. Although these methods are limited
and are not as accurate as the differential and integral methods, they are nevertheless
useful to estimating boundary-layer parameters without the use of computers.
According to Truckenbrodt’s method, the momentum thickness is computed from

o — (_> (“_) = 2R / (”_) d(i‘) Yo . (713.14)
¢/ \ie RS e, \ute ¢
Here c is a constant determined by the initial values of u, and 6 at the transition point
X The momentum thickness Reynolds number Ry is defined by u.0/v.

In order to calculate the development of the shape factor H, Truckenbrodt intro-
duced a new shape factor L that can be calculated from the following expression:

L= %Ar+ 1n<”e—(g))

Ue,

1 ré
+ g [0.0304 In Ry —0.23 — ln<
gll’

ue(g)

Ue,

)} dé . (1.3.15)

where £ = e*
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The shape factor L is related to H by

775(H — 0.379)16!
L:lnlo S(H —0379) 1 (7.3.16)

H(H—1)%%

Thus once the initial values of # and H are known, one can calculate the initial
value of L by Eq. (7.3.16) and consequently can calculate the development of 6, L,
and H around the body.

The local skin friction can be calculated by means of the formula given by
Ludwieg and Tillmann, Eq. (7.3.7).

Ambrok’s Method

The use of integral procedures to predict heat transfer in turbulent boundary
layers generally requires the solution of the integral forms of the energy and
momentum equations, although solutions of the integral form of one equation
and the differential form of the other have, on occasions, been used. Empirical
information is, of course, required to allow the solution of the energy equation,
and this usually involves a relationship between the wall heat flux and known
integral quantities together with an equation to link the thickness of the
temperature and velocity boundary layers. It is difficult to provide empirical
relationships that can be used for more than the simplest flows; as a consequence,
integral procedures are not widely used, and differential methods are generally to
be preferred.

Where an approximate heat-transfer result is required in relation to a simple flow,
expressions derived from integral procedures can be useful. The method of Ambrok
[21], for example, assumes the Reynolds analogy and, with the integral energy
equation, arrives at the approximate equation

. Pr04R-02(T _ 7025
St — £ _ PR (T~ T) (7.3.17)

— * 02 7
acptte (T — T) [f{)v W (T, — Te)l‘zsdx*}

u,, and R; denote dimensionless quantities defined by

b x U R — UrerL
T u, = ) L= —— .
L Uref v

It is useful to note that Eq. (7.3.17) does represent, albeit approximately, the effect of
variable surface temperature.
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B 7.4 Prediction of Flow Separation in Incompressible Flows

In many problems it is necessary to know the boundary layer whether laminar or
turbulent, will separate from the surface of a specific body and, if so, where the
separation will occur. That is quite important, since in many design problems, such
as those of the design of hydrofoils or airfoils, it is necessary to avoid flow separation
in order to obtain low drag and high lift.

For two-dimensional steady flows, the separation point is defined as the point
where the wall shear stree t,, is equal to zero, that is,

(Ou/dy),, = 0 . (7.4.1)

With high-speed computers, the boundary-layer equations for laminar flow can be
solved exactly, and consequently the laminar separation point can be determined
almost exactly. In addition, there are several “simple” methods that do not require
the solution of the boundary layer equations in their differential form and that can be
used to predict the separation point quite satisfactorily. Thwaites’ method discussed
in [19] and Stratford’s method as cited in [22] are typical examples of two such
methods. According to Thwaites’ method, laminar separation is predicted when
A(E 5—;%) = —0.090. Stratford’s method does not even require the solution of the
laminar boundary-layer equations. For a given pressure distribution, for example,
C)(x), the expression

Cli2x (dc,, /dx) (7.4.2)

is calculated around the body. Separation is predicted when it reaches a value of
0.102. Here C, is defined as
Cp = 1— (ue/up)* (7.4.3)

where u, is the velocity at the beginning of the adverse pressure gradient.

The location of a separation point can also be calculated by using either
a differential method or an integral method. In differential methods, the parameter
used to predict the separation point is the zero-wall-shear stress. In integral methods,
the shape factor H is usually used in locating the separation point. In integral
methods separation is assumed to occur when H reaches a value between 1.8 and 2.4
for turbulent flows. In some cases, however, the value of H increases rapidly near
separation and then begins to decrease. In each case’ the point corresponding to the
maximum value of H is taken as the separation point.

"Flows for which an experimental pressure distribution is used in the calculations.
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Stratford’s laminar method has also been extended to turbulent flows [23].
According to this method, for a given pressure distribution, the left-hand-side of the
expression

dc,\ ' - 25 4
C <xd—x”) (1076R,) """ = Th=F), G<z . (7.4.4)

is integrated as a function of x. Separation is predicted when it reaches its right-
hand-side.

That analysis assumes an adverse pressure gradient starting from the leading
edge, as well as fully turbulent flow everywhere. When there is a region of laminar
flow or a region of turbulent flow with a favorable pressure gradient, Stratford
defines a false origin ¥/, replaces x by (x —x’) in Eq. (7.4.4) and takes the value of R,
as u,,(x — x')/v with subscript m denoting the minimum pressure point. The appro-
priate value of x’ is determined from

. v [y Xur U, 5 3/5 Xm U, 4
Xy — X = 58— |— — ) dx — — | dx. (7.4.5)
UnV Jo Un xe \Um

With the expression given by Eq. (7.4.5), the separation point in turbulent flows can
be calculated from Eq. (7.4.4). In order to do this, however, it is necessary to assume
a value for k, which according to the mixing-length theory, is about 0.40. That means
that the right-hand side of Eq. (7.4.4) should be of the order of 0.5, but a comparison
with experiment, according to Stratford, suggests a smaller value of F(x), about 0.35 or
0.40. For a typical turbulent boundary-layer flow with an adverse pressure gradient, it
is found that F(x) increases as separation is approached and decreases after separation.
For that reason, after applying his method to several flows with turbulent separation,
Stratford observed that if the maximum value of F(x) is (a) greater than 0.40, sepa-
ration is predicted when F(x) = 0.40; (b) between 0.35 and 0.40, separation occurs at
the maximum value; (c) less than 0.35, separation does not occur. On the other hand, in
the study conducted by Cebeci et al. [24], Stratford’s method gave better agreement
with experiment, provided that the range of F(x) was slightly changed from that given
above, namely, if the maximum value of F(x) is (a) greater than 0.50, separation is
predicted when F(x)=0.50; (b) between 0.30 and 0.40, separation occurs at the
maximum value; (c) less than 0.30, separation does not occur.

The accuracy of calculating the flow separation point in turbulent flows has been
investigated by Cebeci et al. [23]. In that study several experimental pressure
distributions that include observed or measured boundary-layer separation were
considered. The CS method (the differential method of Cebeci-Smith, Chapter 8),
Head’s, Stratford’s and Goldschmiedt’s [25] methods were evaluated. Before we
present a sample of results from that study, it is important to note that near sepa-
ration the behavior of these methods with an experimental pressure distribution is
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quite different from that with an inviscid pressure distribution. The pressure
distribution near the point of separation may be a characteristic of the phenomenon
of separation, and inclusion of it in the specification of the flow is equivalent to
being told the position of separation. For this reason, use of these separation-
prediction methods with an experimental pressure distribution will only show their
behavior close to separation and indicate whether the theoretical assumptions used
in the methods are self-consistent. When one considers an experimental pressure
distribution with separation and uses the CS method, it is quite possible that the
wall shear stress at the experimental separation point may not reach zero. It may
decrease as the separation point is approached and may then start to increase
thereafter. Similarly, the shape factor H in Head’s method may not show
a continuous increase to the position of separation. Depending on the pressure
distribution, which is distorted by the separated flow, the shape factor may even
start to decrease after an increase. All that can be learned from a study is how these
methods behave close to separation, and whether they predict an early separation or
no separation at all.

Figure 7.15 shows the results for Schubauer’s elliptic cylinder [26] which has a
3.98-in. minor axis. The experimental pressure distribution was given at a free-
stream velocity of u, =60 ft/sec, corresponding to a Reynolds number of
Rp=1.18 x 10°. The transition region extended from x/D = 1.25 to x/D = 2.27, and
experimental separation was indicated by x/D =2.91.

In the calculations, the transition point was assumed to be at x/D = 1.25. It is
interesting to note that while three methods predicted separation, the fourth method,
Goldschmied’s method [24], predicted no separation.

Figure 7.15b shows a comparison of calculated and experimental local skin-
friction values. The calculations used the CS method. It is important to note that
when the experimental pressure distribution was used, the local skin-friction

Fig. 7.15 Comparison of (a) predicted separation points with experiment and (b)
calculated and experimental local skin-friction coefficients for Schubauer’s elliptic
cylinder [26].
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coefficient began to increase near separation because the pressure distribution was
distorted by the flow separation. However, when the calculations were repeated by
using an extrapolated velocity distribution that could be obtained by an inviscid
method, the skin friction went to zero at x/D = 2.82.

Figures 7.16 and 7.17 show the results for three airfoils where flow separation
was observed. Figure 7.16 shows the results for the pressure distribution observed
over an airfoil-like body at a Reynolds number per foot of 0.82 X 10°. The experi-
mental data, which are due to Schubauer and Klebanoff [27] gave the separation
point at 25.7 £ 0.2 ft from the leading edge. The predictions of all methods are quite
good.

As shown in Fig. 7.17a, agreement between the CS method and experiment is
also very good for Newman’s airfoil [28]. On the other hand, the other methods
predict an early separation.

Fig. 7.16 Comparison of predicted separation points with experiment for the airfoil-
like body of Schubauer and Klebanoff [27].

Fig. 7.17 Comparison of predicted separation points with experiment for (a) Newman’s
airfoil [28] and (b) the NASA 4412 airfoil section at various angles of attack.
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For the pressure distribution of Fig. 7.17b, the experimental separation points
were not given. The results show that, except at very high angles of attack, the CS
method and Head’s method predict separation at approximately the same locations,
generally close to the characteristics “flattening” in the pressure distribution caused
by separation. Stratford’s method predicts a slightly earlier separation. Gold-
schmied’s method shows results that are somewhat inconclusive, predicting early
separation in some cases and late separation in others.

I 7.5 Free Shear Flows

As in the case of flow over walls, the boundary-layer equations admit similarity
solutions for some laminar and turbulent free shear flows which are not adjacent to
a solid surface [19]. Typical examples of such flows include (a) mixing layer between
parallel streams, (b) boundary layer and wake of airfoil and (c) merging mixing
layers in jet. We should note, however, that the similarity solutions become valid
only at large distances from the origin because the initial conditions at, for example,
a jet nozzle will not match the similarity solution. We should also note that while in
practical cases free shear flows are nearly always turbulent, the turbulent-flow
solutions are closely related to laminar ones as discussed in [19].

In this section we discuss the similarity solutions of free shear flows and to
illustrate the approach for obtaining solutions, we consider a two-dimensional
turbulent jet (subsection 7.5.1) and a turbulent mixing layer between two uniform
streams at different temperatures (subsection 7.5.2). The effect of compressibility on
free shear flows is discussed in subsection 7.5.3 and is followed by power laws for the
width and the centerline velocity of several similar free shear layers.

7.5.1 Two-DIMENSIONAL TURBULENT JET

Figure 7.18 shows a two-dimensional heated jet emerging from a slot nozzle and
mixing with the surrounding fluid, which is at rest and at another (uniform)
temperature. Let the x direction coincide with the jet axis with the origin at the slot.
Since the streamlines are nearly parallel within the jet, although the streamlines in

Fig. 7.18 The two-dimensional thermal jet.
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the entraining flow are more nearly normal to the axis, the pressure variation in the jet
is small and can be neglected. The boundary layer equations can be written as

Ju OJv
— +— = 7.5.1
ax+ay 0, (7.5.1)
Ju ou 107
— — = - 752
uaervay . (7.5.2)
u8£+0l - _L% (7.5.3)

Here in general

T = pu——ou't, (7.5.4)
.. T =
4=qy, = —k—+oc, TV (7.5.5)

These equations are subject to the symmetry and boundary conditions

9 oT

y=0 v=0 H_yo L _y, (7.5.6a)
dy dy

y = OO, u = O, T = Te, (756b)

Because the pressure is constant in the jet and the motion is steady, the total
momentum in the x direction is constant; that is

J = Q/ u? dy = 2@/ u? dy = const. (7.5.7)
_ 0

The heat flux (rate of transport of enthalpy of the mean flow) in the x direction is
independent of x and equal to its value at the orifice; that is

K = 2QCp/ u(T —T,) dy = const, (7.5.8)
0

K being equal to the product of the initial mass flow rate and the mean enthalpy per
unit mass.

To find the similarity solution for the above system, we define dimensionless
velocity and temperature ratios by

f(m) = uix(x)y ), (7.5.9)
g(n) = W (7.5.10)
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Here u.(x) and T.(x) denote the velocity and temperature, respectively, along the
centerline y = 0, and 7 denotes the similarity variable defined by

Y

HE (7.5.11)

7] =
where 0 is the shear-layer thickness, to be defined quantitatively below. We assume
that the stream function ¥(x, y) is related to a dimensionless stream function f(n),
independent of x, by

Y(x, y) = uc(x)o(x)/f(n). (7.5.12)

Note that since y/(x, y) has the units (length)zltime, and since f{(n) is dimensionless,
the product u.(x) 6(x) has the same units as y. Our interest here is to find the
functional form of 6(x).

Using Egs. (7.5.9)—(7.5.11), we can write Egs. (7.5.7) and (7.5.8) as

J = 2QM/ (f)* dn, (7.5.13)
0
K = 2¢c,N / f gdn, (7.5.14)
0
where
M=u, N=udT.—T.). (7.5.15)

We note that since the total momentum J and the heat flux K are constant, then M and
N must be constant, since the integrals in Eqs. (7.5.13) and (7.5.14) are pure
numbers. By using Eqgs. (7.5.9)—(7.5.12) and (7.5.15), together with the chain rule,
we can write Egs. (7.5.2) and (7.5.3) as

2 /

uc dol, ;2 1" T
S = — 7.5.16
2 dx[(f) s } 2 (75.16)

dl,, . 1,
bu—=(fe) = —@(q) : (7.5.17)
n=0f=f"=0 g =0, (7.5.182)
n=".,f =0 g=0 (7.5.18b)

Equations (7.5.16) and (7.5.17) apply to both laminar and turbulent two-
dimensional jets. For turbulent jets the contributions of the laminar shear stress
and heat transfer to t and ¢, defined by Egs. (7.5.4) and (7.5.5), respectively, are
small, just as they are outside the sublayer in a wall flow, and can be neglected.
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Assuming that the turbulent shear stress and the heat flux scale on similarity
variables, so that

T )= 2G(n), (7.5.19)

o

4 _ —T" = u.(T. — T.)H(n), (7.5.20)
Cp

where 1 = y/d, we can write Egs. (7.5.16) and (7.5.17) as

1.do N2 /1 /o
de[(f) +f f } +G =0, (7.5.21)
1) d Iy _
-7 & (T. - T.) (fs) —H' = 0. (7.5.22)

For similarity, the coefficients do/dx and

6 d
— (T
n—nw(c

_ Te)

must be constant so that
O~Xx, T.—T,~x", (7.5.23a)

where s is a constant. From the definition of M given in Eq. (7.5.15)
ue~x12, (7.5.23b)

We have obtained the power laws for growth rate, centerline velocity, and
temperature decay rate without introducing a turbulence model, but to integrate Egs.
(7.5.21) and (7.5.22) subject to the boundary conditions given by Eq. (7.5.6), rela-
tions between f’ and G’ and between g and H' are needed. If we use the eddy-
viscosity and turbulent-Prandtl-number concepts and let

T du U
)= gy = == u?G(n) (7.5.24)
and
g _ T _em o8 _ _
e en 3y = Prt(Tc Te)a = uc(T. — T.)H(n) (7.5.25)

and if we assume that it is accurate enough to take &,, and Pr;, to be independent of 7,
we can write Eqs. (7.5.21) and (7.5.22) as

U:0 @
2&,, dx

|:(f/)2+ﬁ//:| +f/// =0, (7.5.26)
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Pr, u.> d
en Te — T, dx

(T. - T.) (fg) —¢" = 0. (7.5.27)
If we define ¢ as the y distance where u/uc = % , then experimental data [1] suggest

em = 0.037u.0. (7.5.28)

If we write the first relation in Eq. (7.5.23a) as

0 = Ax (7.5.29a)
and use Eq. (7.5.28), the coefficient in Eq. (7.5.26) becomes
u-6 do A
v t = — — 7.5.29b
Zemdx 00 T 200037) M ( )

as required for similar solution of Eq. (7.5.26) and Eq. (7.5.26) can be written as

f///_’_c1 [(f/)z-l-ff”} -0 (7.5.30)

After integrating it three times and using at first the boundary conditions that at
N="ne, f =f" =0 and then the condition that at n =0, ' =1, f=0, we find the

solution to be
2
f=4/= tanh /Do, (7.5.31)
C1 2

Requiring that f’ (= u/u,) :% at y =0, that is, n = 1, we find the value of c; to be
1.5523. Then it follows from Eq. (7.5.29b) that A = 0.115. As a result, the similarity
solution for the dimensionless velocity profile of a two-dimensional turbulent jet can
be written as

=" — sech?0.8817, (1.5.32)

Uc
the dimensionless stream function f can be written as
f = 1.135 tanh 0.8817, (7.5.33)
and Eq. (7.5.29a) for the width of the jet becomes
6 = 0.115x. (7.5.34)

We now insert Eq. (7.5.32) into Eq. (7.5.13), and upon integration we get

7
u. = 2.40 % (7.5.35)
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The mass flow rate m is

m = 0.625+/9Jx. (7.5.36)
To obtain the similarity solution of the energy equation (7.5.27), we denote

Pr, u.6> d
en T, — T, dx

<TC — Te) = const = —CPry, (7.5.37)

and we write Eq. (7.5.27) as

g+ CPr(fg) = 0. (7.5.38)
Letting C = c; (= 1.5523), we integrate Eq. (7.5.38) to get

§+aPnfg=c. (7.5.39)

Noting that the constant of integration ¢, = 0 according to the centerline boundary
condition imposed on g, and using the relation for f obtained from Eq. (7.5.33), we
integrate Eq. (7.5.39) once more to get

T-7T, c3

= = = c3[sech 0.8817]%", (7.5.40)
T.—T.  [cosh 0.881%)*" sl ]

8

where ¢3 = 1 because g(0) = 1.

Clearly, if Pr, = 1, the velocity profile of Eq. (7.5.32) and the temperature profile
of Eq. (7.5.40) are identical. The profile shapes are also identical with those given
for a laminar jet [19] because the eddy viscosity is assumed to be independent of y.
Since the eddy viscosity ¢, depends on x, the growth rate is different; the jet width
varies linearly with x in turbulent flow and as x*3 in laminar flow.
7.5.2 TURBULENT MIXING LAYER BETWEEN TwO UNIFORM STREAMS
AT DIFFERENT TEMPERATURES

Similarity solutions of the momentum and energy equations for a turbulent mixing
layer between two uniform streams that move with velocities u; and u, and whose
(uniform) temperatures are 77 and 7, (see Fig. 7.19) can be obtained by the method

Fig. 7.19 The thermal mixing layer.
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used for a two-dimensional jet but with different similarity variables. The governing
equations are Eqgs. (7.5.1)—(7.5.5). The boundary conditions in Eq. (7.5.6) are
replaced by

y=00o, u=u, T =T; y=—0, u=u, T ="T. (7.5.41)

Sometimes the velocity of one uniform stream may be zero. If we use the definition
of stream function ¥ and relate it to a dimensionless stream function f by

Y(x,y) = wid(x) f(n) (7.5.42)

then we can write
do
u=uf,v= ula(f/n —f) (7.5.43)

with n = y/6(x). Here y =0, defined as the line on which v=0, is not in general
parallel to the splitter plate dividing the two streams for x < 0. The lateral location of
the profile is determined by the boundary conditions applied by the external flow. If
there is a solid boundary, parallel to the splitter plate, at the upper edge of the high-
velocity stream, then v = 0 for large positive y (where f’ = 1, which requires f = 7 for
large 7). If we now define a dimensionless temperature by

T-T,
= — 7.5.44
s) = 72 (7.5.44)
then using the definition of 7 and the definition of dimensionless stream function
given by Eq. (7.5.42), we can write the momentum and energy equations and their
boundary conditions as

do 1
[ = -, (7.5.45)
dx 0
dé 1
(Tl — Tg)éul d—f g =—4, (7.5.46)
x ocp
u
n="n.,f =1 ¢g=11n9=-n, f':u—ffk g=0, (1547
;1
=0 f=0 or f = 5(1 +2). (7.5.47b)

Equations (7.5.45) and (7.5.46) apply to both laminar and turbulent flows. For
turbulent flows, the contribution of laminar momentum and heat transfer to 7 and ¢
are small and can be neglected. As before, if we use the eddy-viscosity, eddy-
conductivity, and turbulent-Prandtl-number concepts and let

Wi MM
0

Vi (7.5.48a)
dy
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and
aT endT  enTo

T =g, — =2 =""° 7.5.48b
v dy Pr;dy Pr, o & ( )
where Ty =T, — T,, we can write Egs. (7.5.45) and (7.5.46) as
0do
o OE0 e (7.5.49)
e dx
and 0do
¢ +pr, 1000w . (7.5.50)
em dx
For similarity of the velocity field, we must have
0do
hodo _ const. (7.5.51)
Em dx

With Pr; also assumed to be a constant, this requirement for similarity then applies to
both velocity and temperature fields. If we take the constant in Eq. (7.5.51) to be %
then Egs. (7.5.49) and (7.5.50) become

1
f’”+§ff” =0, (7.5.52)

1
g+ §Pr, fg =o0. (7.5.53)

As in the case of the jet, these equations, which are subject to the boundary condi-
tions given by Eq. (7.5.47), are identical to those for laminar flows [19] if we replace
Pr, by Pr. In fact, if we assume Pr; to be, say, 0.9, then the laminar-flow profile for
Pr=0.9 will be the same as the turbulent-flow profile; as usual, if Pr,= 1.0, the
velocity and temperature profiles will be identical.

The difference between the solutions of (7.5.51) for turbulent flows and the one
for laminar flows is due to the definition of §. For turbulent flows the solution of Eq.
(7.5.51) requires an expression for &,,. Several expressions can be used for this
purpose. Here we use the one given by Prandtl. Assuming that ,, ~ 0, we expect that
e, will be determined by the velocity and length scales of the mixing layer:

em = K10(Umax — Umin) = K16(u; — up), (7.5.54)

where k; is an empirical factor, nominally dependent on y but usually taken as
constant.

If we assume that —u/ v/ = u%H (n), then from similarity arguments it follows
that ¢ is proportional to x; in laminar flow it is proportional to X2, Denoting 6 by cx,
we can write Eq. (7.5.54), with k;c = C, as

em = Cxup(l —2). (7.5.55)
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For uniformity with the existing literature on turbulent mixing layers, we now
introduce a parameter ¢ used by Gortler and defined by him as

1 14+ 2
This can be written as
(I+4)
= — 7.5.57
402(1 — 2) (7.5.57)

Substituting Eq. (7.5.57) into (7.5.55) and the resulting expression into Eq. (7.5.51)
and taking the constant in Eq. (7.5.51) to be %, we get

x 1+2

0= 7.5.58
SV g ( )

With ¢ given by this equation, we can now plot the solutions of Egs. (7.5.52)
and (7.5.53) in terms of f' (= w/u;) and g’ [= (T — To)(T} — T»)] as a function
of

y 8

Yoy —— 75.59
V112 (7.5.59)

n =
for a given value of A. The Gortler parameter ¢, a numerical constant, must be
determined empirically. For a turbulent ‘““half jet” (mixing layer in still air) for
which A =0, experimental values are mostly between 11 and 13.5. For mixing
layers with arbitrary velocity ratios A, Abramovich [29] and Sabin [30] proposed
that

g = 0y G fi) (7.5.60)

for flows with and without pressure gradient. In Eq. (7.5.60) ay is, of course, the
value of ¢ for the half jet, A=0. This relation was later confirmed by Pui and
Gartshore [31] to be a good fit to data.

Figure 7.20 shows a comparison between the numerical solutions of Eq. (7.5.52)
and the experimental data of Liepmann and Laufer [32] for a half jet, with ¢ = 12.0
and taking y =0 where u/u; =0.5.

Data for thermal mixing layers are rare but suggest a turbulent Prandtl number
of the order of 0.5. This does not necessarily imply that the temperature profile is
wider than the velocity profile but merely that the two shapes are different.
However, good agreement with experiment near the edges would probably require
Pr, to depend on y.
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Fig. 7.20 A comparison between the numerical solutions of Eq. (7.5.52) for a turbulent
mixing layer (shown by solid line) and the experimental data of Liepmann and Laufer
[32], for a half jet with ¢ ~ 12.

Low-Speed Flows

The interpretation of experimental data obtained in free turbulent shear layers
with large density differences is made difficult by the influence of initial
conditions and the absence of flows that can be regarded as “fully developed”.
Indeed, in the case of the mixing layer between two streams of different densities
and unequal (subsonic) speeds, even the direction of the change in spreading rate
with density ratio is uncertain. The measurements covering the widest range of
density ratio appear to be those of Brown and Roshko [33], who varied the ratio
of low-speed stream density g, to high-speed stream density g between 7 and %
In the former case the spreading rate was about 0.75 of that of a constant-density
mixing layer, and in the latter case it was about 1.35 times as large as in the
constant-density case. Other experiments over smaller ranges of density ratio are
inconsistent, but it is clear that in most practical cases, such as the mixing of air
and gaseous hydrocarbon fuel, the density ratio will be sufficiently near unity for
the change in spreading rate to be negligible. Furthermore, the effect of density
ratio on the percentage change of spreading rate with velocity ratio u,/u; is also
small.

In the case of a jet of one fluid emerging into another fluid of different
density, the density ratio has inevitably fallen to a value fairly near unity at the
location where the jet has become fully developed (say, x/d = 20), and the change
of jet spreading rate with density ratio is effectively negligible. The case of low-
speed wakes with significant density differences is not of great practical
importance except for buoyant flows in the ocean, and there appear to be no data
available.
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High-Speed Flows

The effect of Mach number on the spreading rate of a mixing layer is
extremely large. Most data refer to the case in which the total temperatures of
both streams are the same, so that the temperature ratio and density ratio are
uniquely related to the Mach numbers of the two streams. In the most common
case, the mixing layer between a uniform stream and still air (up =0), the
density ratio is given by

Q_2 o Tl 1

-l : (7.5.61)
o0 T 14 (y-1)M}/2

where M, is the Mach number of the uniform stream. The usual measure of
spreading rate is the Gortler parameter o, related to the standard deviation of the
“error function” that fits the velocity profiles at all Mach numbers to adequate
accuracy. Figure 7.21 shows the data plotted by Birch and Morrisette [34] with
a few later additions. Measurements at a Mach number of 19 are reported by
Harvey and Hunter [37] and show a spreading parameter ¢ in the region of 50,
which suggests that the trend of ¢ with Mach number flattens out considerably
above the range of the data shown in Fig. 7.21. However, even the data in
Fig. 7.21 show considerable scatter, mainly due to the effect of initial conditions
(possibly including shock waves in the case where the pressure of the supersonic
jet at exit was not adjusted to be accurately atmospheric). In cases where the exit

Fig. 7.21 Variation of ¢ with Mach number in single-stream turbulent mixing layers.
Symbols [0 and x denote data of Ikawa and Kubota [35] and Wagner [36], respectively;
for other symbols, see [34].
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pressure is significantly different from atmospheric pressure, the pattern of shock
waves and/or expansions considerably affects the spreading rate of the mixing
layer.

Equation (7.5.61) implies that the density ratio across a mixing layer at a Mach
number of 5 is roughly equal to the factor of 7 investigated in a low-speed flow by
Brown and Roshko, who found an increase in spreading rate of about 35 percent
compared with the decrease of almost a factor of 3 indicated by Fig. 7.21. Clearly,
the high Mach number implies an effect of compressibility on the turbulence, as well
as on the mean density gradient. Indeed it is easy to show that the Mach-number
Sfluctuation in a mixing layer is considerably higher than in a boundary layer at the
same mean Mach number. A typical velocity fluctuation can be expressed in terms of
the shear stress, so that a representative maximum root-mean-square (rms) velocity
fluctuation can be written as

tm (7.5.62)

where T, is the maximum shear stress within the layer. The square of the speed of
sound, az, is yplo, and we can see that the Mach number based on the above-
mentioned representative velocity fluctuation and the local speed of sound can be
written in terms of the external stream Mach number and a shear-stress coefficient
based on external stream parameters, that is,

My [ (7.5.63)
Q117

The quantity under the square root sign is of order 0.01 in a mixing layer at low
speeds, whereas it is equal to ¢y/2, which is of order 0.001, in a boundary layer in
zero pressure gradient (where the maximum shear stress is equal to the wall value).
Thus, the Mach-number fluctuation in a mixing layer at a given freestream Mach
number is approximately 3 times as large as in a boundary layer at the same
freestream Mach number. (This result refers to low Mach number; as the Mach
number increases, the skin-friction coefficient in a boundary layer decreases and, as
we have seen, the spreading rate and turbulence intensity in a mixing layer also
decrease, so that the factor of 3 is at least roughly maintained). We can, therefore,
argue that compressibility effects on the turbulence in a mixing layer at a Mach
number of 1 are as strong as in a boundary layer at a Mach number of 3. The fact
that the spreading rate of a mixing layer does not start to decrease until the Mach
number is greater than unity, and that turbulence models with no explicit
compressibility effects perform well in boundary layers at Mach numbers up to at
least 3, supports this explanation. The implication that significant compressibility
effects on turbulence may occur in boundary layers at Mach numbers in excess of 3
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is overshadowed by the effects of the very large heat-transfer rates found in practice
at hypersonic speeds and the fact that the viscous sublayer becomes extremely thick
in hypersonic boundary layers.

No convincing explanation of the compressibility effects exists. Clearly, pres-
sure fluctuations are in some way responsibly because large density differences at
low speeds have very little effect. Pressure fluctuations within a turbulent flow are
of the order of the density multiplied by the mean-square velocity fluctuation,
which, we argued above, is in turn of the same order as the shear stress. In fact the
ratio of the maximum shear stress to the absolute pressure is, except for a factor of
v, equal to the square of the Mach number fluctuation derived above. Since the root
mean square of the Mach number fluctuation in a mixing layer is about 0.1 of the
stream Mach number, this suggests that the ratio of the rms pressure fluctuation to
the absolute pressure is of order % at a Mach number of 5. It is not necessary that
these large pressure fluctuations are caused by shock waves, although the latter may
well occur, nor is it necessary to suppose that the main reason for the decrease in
spreading rate with increase in Mach number is the increasing loss of turbulent
kinetic energy by acoustic radiation (“eddy Mach waves”’), although the latter may
have some effect. It is known that pressure fluctuations play a large part in the
generation and destruction of shear stress in turbulent flow, and this effect of
pressure fluctuations is certain to alter if the pressure fluctuations become
a significant fraction of the absolute pressure. However, this approach to the role of
pressure fluctuations does not explain why the spreading rate should decrease with
increasing Mach number.

In jets and wakes, the Mach number based on the maximum velocity difference
between the shear layer and the external flow falls rapidly with increasing distance
downstream, and the density ratio returns rapidly toward unity. As in the case of low-
speed jets and wakes with significant density differences, it is difficult to establish
general effects of compressibility on spreading rate, independent of the initial
conditions. There is considerable interest in the wakes of axisymmetric bodies
moving at high speeds, with reference to the detection of reentering missiles. In this
case, the most important variables are the temperature and the electron density in the
partly ionized gas. Wake data for moderate freestream Mach numbers are given by
Demetriades [38,39].

7.5.3 Power LAws FOR THE WIDTH AND THE CENTERLINE VELOCITY OF SIMILAR
FREE SHEAR LAYERS

The variation of the width, ¢, and the centerline velocity, u. or uy, of several turbulent
shear layers are summarized in Table 7.1.
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TABLE 7.1 Power laws for width and centerline velocity of turbulent similar free
shear layers.

I Appendix 7A Gamma, Beta and Incomplete Beta Functions

Gamma function definition

I'(«) =/ 1 leldr
0

Recursion formula:

I'(a+1) = al'(a)

o I'(a) a I'(w) a I'(e)

1.00 1.0000 1.35 0.8912 1.70 0.9086
1.05 0.9735 1.40 0.8873 1.75 0.9191
1.10 0.9514 1.45 0.8857 1.80 0.9314
1.15 0.9330 1.50 0.8862 1.85 0.9456

(Continued)
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(Continued)
o I'(a) o I'(c) « I'(e)
1.20 0.9182 1.55 0.8889 1.90 0.9618
1.25 0.9064 1.60 0.8935 1.95 0.9799
1.30 0.8975 1.65 0.9001 2.00 1.0000
Beta function definition:
! r
-1 - ()T (B)
Bi(a,8) = / (1= ldr = Tas8) Bi (6, a)
0

Incomplete Beta function definition:

Recursion formula:

(a+B)

By(a,8) = /Oxt“'ﬂ — 1)’ lar

B.(a,8) = Bi(a,B) — Bi_x(a, )

The following table [40] gives the functional ratios I,(«, 8) = B, (e, 3)/B;(e, 8) for
typical combinations of « and £:
Incomplete beta function ratios 7, (o, ()

X a=1/3 a=1/3 a=13 «a=2/3 «=1/9 a=19 a=1/9 «=28/9
6=2/3 B=4/3 $=8/3 $=4/3 =8/9 £=10/9 B=20/9 B=10/9
0 0 0 0 0 0 0 0 0
0.02 0.2249 0.3068 0.4007 0.0912 0.6346 0.6588 0.7281 0.0342
0.04 0.2838 0.3859 0.5007 0.1443 0.6856 0.7113 0.7845 0.0628
0.06 0.3254 0.4410 0.5684 0.1886 0.7173 0.7439 0.8186 0.0917
0.08 0.3588 0.4845 0.6204 0.2278 0.7407 0.7679 0.8431 0.1174
0.10 0.3872 0.5210 0.6627 0.2636  0.7595 0.7870 0.8622 0.1416
0.20 0.4924 0.6506 0.8008 0.4124 0.8213 0.8490 0.9199 0.2607
0.30 0.5694 0.7377 0.8793 0.5321 0.8603 0.8870 0.9506 0.3715

(Continued)
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(Continued)

X a=1/3 oa=1/3 «=1/3 «=2/3 a«=19 «=19 o=1/9 «a=8/9
6=2/3 =4/3 =8/3 B=4/3 3=8/9 £=10/9 (=20/9 (=10/9

0.40 0.6337 0.8038 0.9284 0.6339 0.8895 0.9146 0.9696 0.4765

0.50 0.6911 0.8566 0.9599 0.7225 0.9133  0.9362 0.9820 0.5767

0.60 0.7448 0.8998 0.9796 0.7999 0.9335 0.9538 0.9901 0.6725

0.70 0.7970 0.9352 0.9912 0.8671 0.9515 0.9686 0.9952 0.7640

0.80 0.8501 0.9640 0.9972 0.9244 0.9679 0.9812 0.9982 0.8507

0.90 0.9084 0.9863 0.9996 0.9706 0.9835 0.9917 0.9996 0.9313

1.00 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000

Bi(a, B) 3.6275 2.6499 2.0153 1.2092 9.1853  8.8439 7.9839 1.0206

I Problems

7.1 A thin flat plate is immersed in a stream of air at atmospheric pressure and at
25 °C moving at a velocity of 50 ms™!. Calculate the momentum thickness,
boundary-layer thickness, local skin-friction coefficient, and average skin-fric-
tion coefficient at x=3 m. Assume that »=1.5x10> m’*! and
R, =3 x 10°.

7.2 Airat 70 °F and 1 atm flows at 100 ft s~ past a flat plate of length 15 ft. Assume
R, =3 x 10°% take v = 1.6 x 107" ft’s™".

(a) Find the effective origin x( of the turbulent boundary layer.
Hint: To estimate xo neglect the transitional region, assume that the
momentum thickness is continuous at transition, and replace x in Eq.
(7.2.14) by x¢ — xo.

(b) With Reynolds number based on the effective origin, calculate the local and
average skin-friction coefficients at x = 15 ft.

(¢) Atx =3 ft, calculate the distances from the surface at which y+ is equal to 5,
50, 100, 500 and 1000.

7.3 (a) If in Problem 7.2 the surface temperature of the plate is maintained at 80 °F,
calculate the rate of cooling of the plate per unit width. Use the arithmetic-
mean film temperature 7y to evaluate the fluid properties.

(b) What error is involved if the boundary layer is assumed to be turbulent from
the leading edge?

(c) Repeat (a) and (b) for a velocity of 50 ft s~! with all the other data remaining
the same. Discuss the results.
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74

7.5

7.6

7.7

7.8

7.9

Use Eq. (7.2.37) to obtain an expression for the heat transfer rate on a flat plate
forx > x; and with T}, = T, for 0 <x <x, T, = T}y, forx; <x < xpand T, = T,,,
for x > x».

Air at u,/v =3 x 10® m™" flows past a 3m-long flat plate. Consider the plate: (a)
heated at uniform wall temperature 7,,, and (b) the heated portion preceded by
an unheated portion xg of 1 m. Calculate the Stanton number distribution along
the plate for both cases. What role does the term (TW/TE)O'4 in Eq. (7.2.34) play in
the results. Assume the flow to be turbulent from the leading edge with 7,,/T, =
1.1 and Pr=0.7.

Use Eq. (7.2.37) to derive an expression for wall heat flux on a flat plate for
which the difference between wall temperature and freestream temperature
varies linearly with x, that is,

T,—T, = A+ Bx.

Hint: Note that there is a temperature jump at the leading edge of the plate where
T,-T,=A.

Use Eq. (7.2.37) to obtain an expression for the heat transfer rate on a flat plate
for x >x; and with 7,,=T,,, for 0 <x<xy, T,,=T,, for x; <x<x, and
T, =T,, for x> x,.

Air at u,/v=10" m s flows past a 3 m long plate covered with spanwise
square-bar roughness elements. Determine the local skin-friction coefficient
at x =1 m and the average skin-friction coefficient of the plate. As a simpli-
fication, assume that roughness causes the transition to be at the leading
edge so that the contribution of laminar flow can be neglected, and take
k=0.0005 m.

Hint: First determine the equivalent sand-grain height of the square-bar
roughness distribution tested by Moore (see Problem 4.11) and shown in
Fig. 4.22.

Consider the flat-plate problem in Problem 7.1, but assume that (a) the plate
surface is covered with camouflage paint (see Table P7.1) applied in mass
production conditions and (b) the plate surface is a dip-galvanized metal
surface. Calculate the momentum thickness, boundary-layer thickness, local
skin-friction coefficient, and average skin-friction coefficient at x =3 m. As
a simplification assume that roughness causes the transition to be at the leading
edge so that we can neglect the contribution of laminar flow.

7.10 Water at 20°C flows at a velocity of 3 ms™! past a flat plate. Assume

Ry =3x 10° and use Eq. (7.2.15) to determine the average skin-friction
drag of the first 10 m of the plate. Check the contribution of the turbulent
portion by Head’s method, assuming that H=1.5 at the end of the
transition.
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TABLE P7.1 Equivalent sand roughness for several types of surfaces.

Type of surface ks, cm
Aerodynamically smooth surface 0
Polished metal or wood 0.05-0.2 x 107
Natural sheet metal 0.4 x107
Smooth matte paint, carefully applied 0.6 x 107
Standard camouflage paint, average application 1x107°
Camouflage paint, mass-production spray 3x107°
Dip-galvanized metal surface 15 x 107
Natural surface of cast iron 25x 107

7.11 Consider flow over a NACA 0012 airfoil whose coordinates, (x/c, y/c) are given
in tabular form in the accompanying CD-ROM, and its external velocity distri-
bution on the upper airfoil surface for a« =0°, 2°, 4°.

(a) Using Head’s method, compute the portion of the flow that is turbulent and
free of separation. Plot the variation of 6/c, c; with x/c for a chord Reynolds
number of R, =3 X 10°.

(b) Repeat (a) using Truckenbrodt’s method and compare the results with those
obtained by Head’s method.

Note: Since the transition location for this flow is not known, it is necessary to
compute it. Also since integral methods require initial conditions, it is necessary
to calculate the boundary-layer development on the airfoil starting at the stag-
nation point.

A practical integral method for calculating the laminar boundary layer devel-
opment in an incompressible two-dimensional or axisymmetric flow is Thwaites’
method described in [19]. According to this method, the momentum thickness for an
axisymmetric flow, (63/L), is calculated from

0 2 0.45 x; £\ 3 * 2k * 0 2 M* ¥
<L3> R, = WA () (r0) e + <L3> RL<ui?) (P7.11.1)

VO e

Here L is a reference length, x3 is the dimensionless surface distance, r{ is dimen-
sionless body radius, u, is dimensionless velocity and R; is a Reynolds number, all
defined by

* X2 ry R
X = — 14 = — u = — L =
STL YT L T g v

L
Uret™ (P7.11.2)
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Tha parameter k is flow index being equal to O for two-dimensional flows and 1 for
axisymmetric flows.
For an axisymmetric stagnation point flow,

65\ 2 .
(—3) Ry = 206 (P7.11.3)
L (due / dx3)0
and for a two-dimensional flow
6\ 0.075
L), (due /dx )0

Once 65 is calculated from Eq. (P7.11.3), then the variables 6", H and c¢r can be
calculated from the following relations with 4, ¢y and Ry defined by

0% du, ¢ 1 el
ao Ldke G0 Ul P7.11.5
v dx s ) R@ ) [4 " ( )
For 0 <1<0.1
/= 022+ 1.571— 1.8)2
P7.11.6
H = 2.61 —3.751 + 5.24 ( 2)
For -0.1<A<0
01
/=022 + 1.4OZA+%
. : (P7.11.6b)
H=—"—""_12088
014+

A useful method for predicting transition in two-dimensional incompressible
flows is the expression based on Michel’s method and Smith’s ¢’-correlation [19].1tis
given by

22,400
Ry, = 1.174(1 +I;—>R0'46. (P7.11.7)

X
Xir

According to this method, the boundary-layer development on the body is
calculated for a laminar flow starting at the leading-edge of the flow so that both Rg
and Rx can be determined. Usually, the calculated Reynolds numbers are beneath the
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curve given by Eq. (P7.11.7). The location where the (Rg, R,) values intersect this
curve corresponds to the onset of transition location. In some cases, however, before
this happens, flow separation takes place; in those cases, the separation point is
assumed to correspond to the onset of transition location.

In the accompanying CD-ROM, we include the FORTRAN programs for
Thwaites’ and Michel’s method. Their input and output instructions are described in
Section 10.2.

7.12 Consider Problem 7.11 and assume that the airfoil surface temperature, 7,,, is at
80 °F and outside temperature, 7,, is at 50 °F. Taking Pr=0.72, we wish to
calculate the Stanton number distribution on the airfoil for laminar and turbu-
lent flows.

Note: The Stanton number for turbulent flow can be calculated by using
Ambrok’s method discussed in Sect. 7.3. The Stanton number for laminar flows
can be calculated from the integral method of Smith and Spalding discussed in
[21]. According to this method, Stanton number defined by

] k N
St — D - - W (P7.12.1)
0Cplte (TW — Te) ocpitede R Pr
is calculated from
%\ C2
cl(ue) : 1
St = . (P7.12.2)
X NGk 1/2 VR
/ (ue> dx
0
Here ¢; =Pr'A™"2, ¢, =B/2 -~ 1, c3=B — 1 (see Table P7.2).
TABLE P7.2 Constants in Eq. (P7.12.2) for various prandtl numbers
Pr Cq Ca C3
0.7 0.418 0.435 1.87
0.8 0.384 0.450 1.90
1.0 0.332 0.475 1.95
5.0 0.117 0.595 2.19

10.0 0.073 0.685 2.37
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Smith-Spalding method can also be used for axisymmetric flows. As discussed in
[21], using the Mangler transformation, Eq. (P7.12.2) can be written as

K/ x\0o
g~ cln) (u) R (P7.12.3)
x; *\ €/ x\ 2K 2
) )

Here the constants ¢y, ¢, and c3 are the same as those given in Table P7.2.

The location of transition again can be calculated from Eq. (P7.11.7) if we
assume that heat transfer has negligable effect on transition. Another practical
method for predicting transition with heat transfer is the H-R, method described in
[21]. Here H and R, are the shape factor (= 6"/6) and the Reynolds number based on
surface distance (= u.x/v), respectively. This method is simple to use for two-
dimensional and axisymmetric flows with pressure gradient, suction and wall heating
or cooling. It is given by

log[Rx(¢”)] = —40.4557 + 64.8066H — 26.7538H* + 3.3819H",

(P7.12.4)
21 < H<?2B8.

This method is restricted to heating rates where the difference between surface
temperature and freestream temperature, T, — T does not exceed about 23°C.

(a) Firstcalculate the laminar boundary-layer development using Thwaites” method.

(b) Calculate the location of transition using Eqgs. (P7.11.7) and (P7.12.3) and
compare the results.

(c¢) Compute Stanton number distribution up to transition by using Smith-Spalding
method.

(d) Compute Stanton number distribution for turbulent flow using Ambrok’s method.

In the accompanying CD-ROM, we include the FORTRAN programs for Smith-
Spalding, Ambrok methods and H-R, method for predicting transition. Their input
and output instructions are described in Section 10.2.

7.13 The boundary-layer equations and their boundary conditions for a heated
laminar jet can be written as

Jou, ou _va (ra_”) (P7.13.2)
X r
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0T | 0T _ v14 (0T 1133)
“ox TVr T Prrar\Uor) o
9 aT
r=0 v=0 H_o - (P7.13.4a)
ar or
r—ow, u—0, T-T,. (P7.13.4b)

In addition to the above equations, the total momentum denoted by J, and the heat
flux denoted by K (both in the x-direction) remain constant and are independent of
the distance x from the orifice. Hence

J = 2mo / u’rdr = const. (P7.13.5)
0
K = 271'@6,,/ ur(T — T,.) dr = const. (P7.13.6)
0

In Eq. (P7.13.6), K is equal to the product of the initial mass flow rate and mean
enthalpy at the orifice.

(a) Using the matrix-elimination procedure discussed in Problem 4.1 show that the
similarity variable n and dimensionless strem function for continuity and
momentum equations are

n==<, fln) =2, (P7.13.7)

Note that the second expression in Eq. (P7.13.7) is dimensionally incorrect. It can
easily be corrected by rewriting it as

Vv = uxf(n) . (P7.13.8)

(b) From the definitions of n and stream function
_ oy
T
and from Eq. (P7.13.8), show that

W

ru —
ox

rn =

w__L1 I (P7.13.9)
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Note that the right-hand side of Eq. (P7.13.9) is independent of x by virtue of
UcXx = const. (P7.13.10)

As a result we can redefine 7 as

n = ("—')1/2)—: : (P7.13.11)

(¢) Use the transformation defined by Eqs. (P7.13.8) and (P7.13.11), observe the
chain-rule and show that Eqgs. (P7.13.1) to (P7.13.4) can be written as

[ (n/)l]/ f<f/)/ (f,? 0, (P7.13.12)

(iG’ +fG) — 0, (P7.13.13)
Pr
=0, f=G =0, f'=0 (P7.13.14a)
= f =G=0 (P7.13.14b)
where
T—T,
G =
() = 7=,
(d) Note that
]
lim f(—n)—>0 and lim f"(n)—0 (P7.13.15)

and show that the solutions of Eq. (P7.13.12) subject to f{0) =0 are given by

1/2n?
f(n) = Hﬂ# (P7.13.16)
and
fo 1 (P7.13.17)
n 1+ 1/892

(e) With f(n) given by Eq. (P7.13.15), show that the solution of Eq. (P7.13.13)
subject to the boundary conditions given by Eq. (P7.13.14) is

1
G=—"—5. (P7.13.18)

[0+ /8"
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7.14 For the transition location determined in Problem 7.12, compute the location of
flow separation on the NACA 0012 airfoil for o« =2° and 4° using Stratford’s
method and compare its predictions with Head’s method.

7.15 Show that the velocity defect in the wake of a tall building, approximating
a two-dimensional cylinder with a diameter of 100 ft (30 m), exceeds 10%
of the wind velocity for a distance of 1 mile downstream of the building.

7.16 Trailing vortices from an airliner can endanger following aircraft. Do the jet
exhausts significantly affect the decay of the trailing vortices by enhancing
turbulent mixing? A simplified version of this question is to ask whether the
jet velocity at the vortex position (say 20 nozzle diameters outboard of the
jet axis) ever exceeds, say, S%of the exhaust velocity. Answer the question,
assuming that the velocity profile in a circular jet in still air can be approxi-
mated by u/u, :%(1 + cos wr/2R), where R is the radius at which w/u. = 0.5
and the approximation applies for r < 2R only. State the main assumptions
made in simplifying the question and any further assumptions you make.

7.17 Two tubes in a cross-flow heat exchanger can be idealized as parallel circular
cylinders of 1 cm diameter, 10 cm apart. Find the distance downstream at
which the two wakes meet, taking the sectional drag coefficients of each
cylinder as 1.0.
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I 8.1 Introduction

Differential methods are based on the solution of the boundary-layer equations in
their partial-differential equation form. They vary depending on the numerical
method used to solve the equations and the turbulence model employed to model the
Reynolds stresses. Unlike integral methods, they are general, accurate depending on
the numerical method and turbulence model and can handle various initial and
boundary conditions. The differential methods, which have largely superseded
integral methods with the advent of modern computers, however, require more
computer time than the integral methods.

An accurate and efficient differential method is the method developed by
Cebeci and Smith [1]. It uses the Cebeci-Smith algebraic eddy viscosity formu-
lation discussed in Chapter 5 to model the Reynolds shear stress term in the
momentum equation. In this method, CS method, the boundary-layer equations
are solved for both laminar and turbulent flows by specifying the onset of the
transition location. The laminar flow calculations are performed up to this loca-
tion, and the turbulent flow calculations, including the transition region are
performed.

In Section 8.2 we describe the formulation and the numerical method used in the
CS method. In Section 8.3 and the following sections up to 8.7, we discuss the
prediction of incompressible and compressible, two-dimensional and axisymmetric
flows with the CS method. Section 8.7 describes the so-called standard and inverse
approaches for calculating boundary-layer flows with and without separation and
Section 8.8 extends the standard approach of Section 8.2 to flows with separation.
The results obtained with this approach are described in Sections 8.9 and 8.10 for
two- and three-dimensional flows.
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8.2 Numerical Solution of the Boundary-Layer Equations
with Algebraic Turbulence Models

There are several numerical methods for solving the boundary-layer equations in
differential form. The Crank-Nicolson and Keller’s box methods are the most
convenient ones as discussed in some detail in [1,2]. Of the two, Keller’s method has
significant advantages over the other, and in this section it will be used to solve the
boundary-layer equations with algebraic turbulence models and in Sections 9.2 and
9.3 with transport-equation turbulence models for two-dimensional flows.

For two-dimensional incompressible flows, the continuity and momentum
equations given by Egs. (3.3.24) and (3.3.25) for compressible axisymmetric flows
reduce to the equations given by Eqgs. (5.2.8) and (5.2.9), that is,

ou dv
R E . 2.
I + 3y 0 (8.2.8)
du du 1dp u 9 —
S T 8.2.
”ax+”ay de+v0y2 6y(uv) (8.2.9)

With Bernoulli’s equation, the above momentum equation can be written as

ou du due Pu 9 —
- = = u—c - 8.2.1
uax—i-vay uedx+vay2 ay(uv) (8.2.1)

The boundary conditions for Eqgs. (8.2.8) and (8.2.1) are
y=0 u=0 v=nu,(x) (8.2.2a)
y=0 u=u (8.2.2b)

The above equations can be solved in the form they are expressed or in the form after
they are expressed as a third order equation by using the definition of stream function
Y(x, ¥). Noting that
9y 9y
=T = 1 8.2.3

=gy v i (8.2.3)
Egs. (5.2.8) and (8.2.1), with a prime denoting differentiation with respect to y, and
with an eddy viscosity ¢,, defined by Eq. (5.2.9),

v = emg—z (5.2.9)
can be written as
du, oy’ oy
[(v+ gm)‘///]/ Ue o = Wa - Waix (8.2.4)
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In either form, for given initial conditions, say at x = xo and eddy viscosity distri-
bution, these equations can be solved subject to their boundary conditions in the
interval O to 0 at each specified x-location greater than xy. The boundary-layer
thickness d(x), however, increases with increasing downstream distance x for both
laminar and turbulent flows; to maintain computational accuracy, it is necessary to
take small steps in the streamwise direction.

Transformed coordinates employing similarity variables such as the one dis-
cussed in [1] provide another alternative to express the equations in a better form
before solving. Such a choice can reduce the growth of transformed boundary-layer
thickness and thus allow larger steps to be taken in the stream-wise direction.
Furthermore, in some cases, they can also be used to generate the initial conditions
needed in the solution of the boundary-layer equations.

We shall advocate the use of transformed coordinates employing similarity
variables and for two-dimensional flows we will use the Falkner-Skan transformation
discussed in [1]. With the similarity variable defined by

n= /2%y (8.2.5)
VX

and the dimensionless stream function f (x, 1)

Y(x,y) = Vuevxf(x,m), (8.2.5b)

the continuity and momentum equations, Eq. (8.2.4) and their boundary conditions,
Egs. (8.2.2), can be written as

m o mE+1 . N2 /a_f/_ //a_f
(bf)+Tff +m[1—(f')7] —x(fax fax> (8.2.6)
1 X
N /0 vedr, f =0 (8.2.72)
n="mn, f =1 (8.2.7b)

Here, a prime denotes differentiation with respect to n; the parameter b and
pressure gradient parameter m are defined by

du
b=1l+eh, e =2 m=22¢ 8.2.8
T em Em y " u, dx ( )
To solve Egs. (8.2.6) and (8.2.7) with Keller’s box method, which is a two-
point finite-difference scheme, we first express them as a first-order system by

introducing new functions to represent the derivatives of f with respect to 7
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Fig. 8.1 Net rectangle for difference approximations.

(subsection 8.2.1). The first-order equations are approximated on an arbitrary
rectangular net, Fig. 8.1, with “‘centered-difference’ derivatives and averages at
the midpoints of the net rectangle difference equations. The resulting system of
equations which is implicit and nonlinear is linearized by Newton’s method
(subsection 8.2.2) and solved by the block-elimination method discussed in
subsection 8.2.3.

8.2.1 NUMERICAL FORMULATION

In order to express Eqs. (8.2.6) and (8.2.7) as a system of first-order equations, we
define new variables u(x, ) and v(x, ) by

f=u (8.2.92)
W = (8.2.9b)
and write them as
r m+1 n ou  of
(bv) + 5 fo+m(l—u?) = x(ua—va (8.2.9¢)
n=0 u=0 f=fx); n=mn, u=1 (8.2.10)

We denote the net points of the net rectangle shown in Fig. 8.1 by

x =0, x,=x,1+ky,, n=12,....N

Mo = 07 77/ = 7]/’—1 +hja J = 1525"'7‘1 (8211)

and write the difference equations that are to approximate Eqgs. (8.2.9) by considering
one mesh rectangle as in Fig. 8.1. We start by writing the finite-difference approx-
imations of the ordinary differential equations (8.2.9a,b) for the midpoint (x", Nj-1/2)
of the segment PP, using centered-difference derivatives,
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Y S e

==, (8.2.12a)
J

u't — ur",l V't + vn,]

L S ey (8.2.12b)
J

Similarly, the partial differential equation (8.2.9¢) is approximated by centering
about the midpoint (x”fm, nj-1/2) of the rectangle P1P,P3P4. This can be done in
two steps. In the first step we center it about "2, 1) without specifying 7. If we
denote its left-hand side by L, then the finite-difference approximation to
Eq. (8.2.9¢) is

%(L"JFL””) = ‘/2[ " ‘”(“ — )—v"‘/2<f7n _kfnlﬂ (8.2.13)

172
i , Q) = +oz”, ay = mt+ o (8.2.14a)

Rn—l — _Ln—l £t {(fv)”*l_(uz)nil} —m" (8.2.14b)

n—1
= [(bv)’+ "L w1 - uz)] (8.2.14¢)

Eq. (8.2.12) can be written as
[(bv)']n+a1(fv)"—oz2 (uz)n—i—an (U”flf” — ) = R (8.2.15)

The identity sign introduces a useful shorthand: [ "' means that the quantity in

square brackets is evaluated at x = K

We next center Eq. (8.2.15) about the point (x"""2, Mj-1/2), that is, we choose
1 = n;-1/2 and obtain

! (”fvf — b 1) +ar(fo)lyn — a2 (W)

(8.2.16)
+o (”7: il _f.cf'fll/z'%?fl/z) R

where
n— -1 n—1 7
R] 1/2 L]Qll/2 + " {(f“)ﬁ]/z — (uz)jil/z} —m" (8.2.17a)

. B + 1 n—1
,;11/2 = {hj ! <bj”j - bjl"jl) +— (fv), 1/2 +m{1 (“2)1'—1/2} }
(8.2.17b)



Differential Methods with Algebraic Turbulence Models 299

Egs. (8.2.12) and (8.2.16) are imposed for j=1, 2, ..., J — 1 at given 7 and the
transformed boundary-layer thickness, 7., is to be sufficiently large so that u — 1
asymptotically. The latter is usually satisfied when v(,) is less than approximately
1072,

The boundary conditions [Eq. (8.2.10)] yield, at x = x",

fo =fw up =0, uj =1 (8.2.18)

8.2.2 NEwTON’Ss METHOD

If we assume ];-”’1, uj’?’l, and, UJ’?’l to be known for 0 < j < J, then Egs. (8.2.12),
(8.2.16) and (8.2.18) form a system of 3J 4+ 3 equations for the solution of 3J + 3
unknowns ( f-”, ", ”) j=0,1,....J. To solve thls nonlinear system, we use Newton’s
method; we mtroduce the iterates [ f ] y=0, 1, 2,..., with initial value
(v =0) equal to those at the previous x- statlon x (Wthh is usually the best initial
guess available). For the higher iterates we set

A =g e Wt = W e, o = o el (8.2.19)

We then insert the right-hand sides of these expressions in place of f/', u, and v} in
Egs. (8.2.12) and (8.2.16) and drop the terms that are quadratic in 6 f )/ (V) and
0 v; ") This procedure yields the following linear system (the superscript n is dropped
from fj uj, vj and v from ¢ quantities for simplicity).

h.
o — 0fiy — Ef(au, + 6uj_1) = (n), (8.2.20a)

hj
(qu' — 5uj,1 — 5 61)]‘ + 51)];1 = (1‘3)j_1 (8.2.20b)

(51);00; + (52);0vj—1 + (s3);0fj + (s4);0fi—1 + (s5);0uj + (s6);0u—1 = (r2);
(8.2.20c¢)
where

() = £ =1 + (8.2.21a)
()1 = u =+l ) (8.2.21b)

(r); = Ry = e L)
_“2(”2), 1 o (, 11/2f, 12 f/'fll/zl{ifl/2>

(8.2.21¢)

(B = b)) + al(fv)j 2
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In writing the system given by Eqgs. (8.2.20) we have used a certain order for
them. The reason for this choice, as we shall see later, is to ensure that the Ay matrix
in Eq. (8.2.27a) is not singular.

The coefficients of the linearized momentum equation are

(s0); = 175 + S = S (8.2.22a)
(s2); = —h; ‘b f %n,”jl/z (8.2.22b)
(s3);, = %v}”) +%nv,'-’:f/2 (8.2.22¢)
(s4); = %uj@l +%n = (8.2.22d)
(s5); = —au” (8.2.22¢)
(s6); = —au”) (8.2.22f)
The boundary conditions, Eq. (8.2.18) become
oo =0, odup =0, odu; =0 (8.2.23)

As discussed in [1], the linear system given by Egs. (8.2.20) and (8.2.23) has
a block tridiagonal structure and can be written in matrix-vector form as

= —
AS =7 (8.2.24)
where
Ay Co 5o 7o
By A1 C 5 T
. ~ -
A= : 0 = T o= 8.2.25
Bj A G 3)] ’ 7>j ( )
Bj—1 A1 Gy )
By Ay 5 v
of; (r1)]
5= |ow| F=|(n)lo<j<y (8.2.26)
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and A, B;, Cjare 3 x 3 matrices defined as

10 0 I —m2 0
Ap=|0 1 0 Aj= (SS)J‘ (SS)J' (Sl)j 1<j<J~-1
0 —1 —h/2 0 T~y /2
(8.2.272)
1 —hj/2 0 -1 —h/2 0
Aj=|(s3);  (ss); (s1); | Bi=|(sa);  (s6); (s1); 1<j<J
0 1 0 0 0 0
(8.2.27b)
0 0 0
¢G=|0 0 0 0<j<J—1 (8.2.27¢)
0 1 —hin/2

Note that the first two rows of Ay and Cy and the last row of A; and B; correspond to
the boundary conditions [Eq. (8.2.23)]. To solve the continuity and momentum
equations for different boundary conditions, only the rows mentioned above need
altering.

8.2.3 BLocKk-ELIMINATION METHOD

The solution of Eq. (8.2.24) can be obtained efficiently and effectively by using the
block-elimination method described by Cebeci and Cousteix [1]. According to this
method, the solution procedure consists of two sweeps. In the first part of the
so-called forward sweep, we compute I';, 4; from the recursion formulas given by

4y = Ag (8.2.28a)
Tjdi .y =B j=1,2..J (8.2.28b)
4 =A-TiCy j=1,2,..,J (8.2.28¢)

where the I'; matrix has the same structure as B;. In the second part of the forward
sweep, we compute w; from the following relations

Wo = Ig (8.2.29a)

wi=r—-ITjw_ 1<j<J (8.2.29b)

In the so-called backward sweep, we compute 5j from the recursion formulas
given by

J =Wy (8.2.30a)

46, = Wi—Ciom  j=J—1,7=2,..0 (8.2.30b)
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The block elimination method is a general one and can be used to solve any
system of first-order equations. The amount of algebra in solving the recursion
formulas given by Eqgs. (8.2.28) to (8.2.30), however, depends on the order of the
matrices Aj, B;, C;. When it is small, the matrices I';, 4; and the vector Wj can be
obtained by relatively simple expressions, as discussed in subsection 8.2.4. However,
this procedure, though very efficient, becomes increasingly tedious as the order of
matrices increases and requires the use of an algorithm that reduces the algebra
internally. A general algorithm, called the “matrix solver” discussed by Cebeci and
Cousteix [1] and also in subsection 10.9.7 can be used for this purpose.

8.2.4 SuBrOUTINE SOLV3

The solution of Eq. (8.2.24) by the block-elimination method can be obtained by
using the recursion formulas given by Eqs. (8.2.28) to (8.2.30), and determining the
expressions such as 4;, I'; and Wj and E), To describe the procedure let us first
consider Eq. (8.2.28). Noting that the I'; matrix has the same structure as B; and
denoting the elements of I'iby vi (i, k=1, 2, 3), we can write I'; as

Ii=|(ya); (v22); (7v23); (8.2.31a)
0

Similarly, if the elements of 4; are denoted by «;; we can write 4; as [note that the
third row of 4; follows from the third row of A; according to Eq. (8.2.28c¢)]

(ann); (er2);  (a13);
4;=|(e21); (a2); (a23); 0<j<J—1 (8.2.31b)
0 -1 —hap

and for j = J, the first two rows are the same as the first two rows in Eq. (8.2.31b), but
the elements of the third row, which correspond to the boundary conditions at j = J,
are (0, 1, 0).

For j =0, 49 = Ay; therefore the values of («j)g are

(ai)g =1 (an)y =0 (a13)g =0
8.2.32
(a2)y = 0 (am2)y = 1 (azs)y = 0 (8232
and the values of (vy;) are
1
(v = -1 (v = _th (vi3); =0
(8.2.32b)

(o = 0y (o = =252 (s = () + ),
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The elements of the 4; matrices are calculated from Eq. (8.2.28¢). Using the
definitions of A;, I'; and Cj_, we find from Eq. (8.2.28¢) that for j =1, 2,..., J,

(an); =1 (an); = *%* (713); (a13); = %(713),-
(a21); = (s3); (a22); = (s5); — (v23); (a23); = (Sl)j+%(723)j

(8.2.33a)

To find the elements of the I'; matrices, we use Eq. (8.2.28b). With 4; defined by
Eq. (8.2.31b) and B; by Eq. (8.2.27b), it follows that for 2 < j < J,

(yu); = {(a23)j—1 +% [(%) (aa1);_y — (0422),_1} }/Ao
—{%%+ (Y1) |:(0‘12)j_1% - (0113),»_1} }/Ao

(v21); = {(s2);(021);—y — (s4);(e23);_,

+2[(S4)j(“22)j—1 - (Sﬁ)f(azl)j_l} }/AO

(le)j

(722)}' = {(‘%)j% - (Sz)j + (721)1' |:(a13)jl - (a12)j1%:| }/Al (8.2.33b)
(v23); = (va1)j(n2);y + (v22);(@22);—1 — (s6);

4o = (0‘13),'—1 (0‘21)]'—1 - (0‘23),'—1(0‘11);—1
h
) [(an)j—l (aa1);-y — (0422),-71(0411),-71}
h.
A1 = (o) 5 = (a23);

To summarize the calculation of I'; and 4; matrices, we first calculate o from
Eq. (8.2.31b) for j =0, v from Eq. (8.2.32b) for j =1, aj, from Eq. (8.2.33a) for
j =1, then v from Eq. (8.2.33b) for j = 2, ajx from Eq. (8.2.33a) for j =2, then vy
from Eq. (8.2.33b), o from Eq. (8.2.33a) for j =3, etc.

In the second part of the forward sweep we compute Wj from the relations given
by Eq. (8.2.29). If we denote the components of the vector WJ- by

(w1 )j
(W3)j
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Then it follows from Eq. (8.2.29a) that for j =0,
(wi)g = (r1)g (w2)g = (r2)g (W3)g = (r3)g
and from Eq. (8.2.29b) for 1 <j < J,
(Wl)j = (rl),' - (711)1' (Wl)jfl

(w2); = (r2); = (va1); (W1);,
(W3)j = (”S)j

= (v12); W2); 1 — (v13); (w3),_
S A A A o

—

(8.2.35a)

(8.2.35b)

In the backward sweep, 0;is computed from the formulas given by Eq. (8.2.30).

With the definitions of 6 j» 4 and W, it follows from Eq. (8.2.30a) that

ouy = (wz),
ex(air); — ei(aar),
(a23);(e11); — (a13) (e21),

e — (a13)J(5vJ
of) = — 247
b (a11)y

(31)] =

where

(a]z)]éuj
(agg)]éuj

er = (wi); —
€ = (Wz)J_

The components of 3), forj=J-1,J-2,...

. () w2); + ea(aaa) ] = (aar) (w); = es(aan) (),
Uj = Az
h;
511] = — j;_l (51)1 —e3
of — (w1); — (e12);0u; — (013),0v;
/ (al])j
where
hi
e3 = (w ) —oujp1 + -~ 6v,+1
1 = (o) (o)t — () )
2 = (ar)j(on2);=5= = (aar);(en3);
h]+1

_T(azz) (oql) + (0123) (0111)

(8.2.36a)

(8.2.36b)

(8.2.36¢)

,0, follow from Eq. (8.2.30b)

(8.2.37a)

(8.2.37b)

(8.2.37¢)

(8.2.37d)

To summarize, one iteration of Newton’s method is carried out as follows. The
vectors 7]- defined in Eq. (8.2.25) are computed from Eq. (8.2.21) by using the latest
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iterate. The matrix elements of A;, B; and C; defined in Eq. (8.2.24) are next deter-
mined by Eq. (8.2.22a) to (8.2.22f). Using the relations in Egs. (8.2.27) and (8.2.28),
the matrices I'; and 4; and vectors W are calculated. The matrix elements for I';
defined in Eq. (8.2.31a) are determined from Eq. (8.2.32b) and (8.2.33b).
The components of the vector Ww; ; defined in Eq. (8.2.34) are determined from
Eq. (8.2.35). In the backward sweep, the components of 5 j are computed
from Egs. (8.2.36) and (8.2.37). A subroutine which makes use of these formulas
and called SOLV3 is given on the companion site, store.elsevier.com/components/
9780080983356.

I 8.3 Prediction of Two-Dimensional Incompressible Flows

In this section and the following sections up to Section 8.7, we discuss the prediction
of incompressible and compressible, two-dimensional and axisymmetric flows with
the numerical method described in the previous section and the CS algebraic eddy-
viscosity formulation in Chapter 5. These results were all obtained previously
without improvements to the CS model proposed by Cebeci and Chang for strong
pressure-gradient flows as discussed in Section 5.4. The predictions of the CS model
with the Cebeci-Chang improvement are described in Sections 8.7 and 8.8 for two-
dimensional and three-dimensional flows with separation.

8.3.1 IMPERMEABLE SURFACE WITH ZERO PRESSURE GRADIENT

We first examine the accuracy of the momentum equation and compute the local
skin-friction coefficients for a Reynolds number of 10° <R, < 10°. We choose a unit
Reynolds number of 1 x 10° (e = 160 ft/sec, v=1.6 x 107* ftz/sec) and specify the
flow as turbulent at x = 0.01 ft. The boundary-layer thickness 7, is calculated in the
program as the calculations proceed downstream.

Figure 8.2 shows the results with two different 47 and 4x spacings (see Section
12.3). Figure 8.2 shows the results with fixed 4n spacing (h; =0.002, K = 1.226)
and with variable 4x spacing. The latter was chosen to be such that starting from
R, = 10°, the 4R, spacing was 2"% x 10°, 2"* x 10%, yielding approximately 20 and
40 x-stations, respectively, at R, = 10°. The cf values shown in Fig. 8.2a do not seem
to be very sensitive to Ax spacing. On the other hand, the computed values of
transformed boundary-layer thickness (Fig. 8.2b) show appreciable irregularity. The
number of n points J remains approximately constant.

Figure 8.3 shows a comparison between the calculations obtained with the CS
method (present method) and experimental data for incompressible flows with zero
pressure gradient. Figure 8.3a presents the local skin friction results for the data of
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Fig. 8.2 Flat-plate flow: effect of 4x spacing on the computed results. Calculations
were made for a fixed spacing. (a) ¢ values, (b) 5. values and J, the number of points
across the boundary layer.

Fig. 8.3 Comparison of calculated and experimental (a) local skin-friction coefficients,
(b, c) velocity profiles and (d) shear-stress distributions with experiment. The dashed line
in Fig. 8.3a is the solid line of Fig. 7.1.
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Fig. 8.4 Comparison of calculated and experimental Stanton numbers (a) uniform and
(b) step variation of wall temperature.

Coles [3], Figs. 8.3b and 8.3c the velocity profiles and Fig. 8.3d the shear stress
profiles, all for the data of Klebanoff [4].
In plotting the velocity profiles in Figs. 8.3b and 8.3c, we have used the definition

of 6 (E k(0 ue) ), which can also be written as (with IT = 0.55)
u, (1411)

6 = (2/er)'*(5°/3.78) = 0.375(5" /e ?) .

That was necessary because Klebanoff’s experimental data are for a unit Rey-
nolds number of approximately 3 X 10°. Furthermore, the above relation has the
advantage that it eliminates the difficulty of dealing with an ill-defined quantity 0.

We now study the accuracy of the energy equation for smooth impermeable walls
with different wall-temperature distributions, and compare the computed local
Stanton number with experiment. For more comparisons, see [5].

Figure 8.4 shows the results for (a) an isothermal heated plate and (b) step
variation of wall temperature. Similarly Fig. 8.5 shows the results for (a) double-step
and (b) step-ramp wall temperatures.

8.3.2 PERMEABLE SURFACE WITH ZERO PRESSURE GRADIENT

Again we first study the accuracy of the momentum equation, this time for flows with
suction and blowing for a wide range of mass-transfer parameters F' defined as
F = (ov)w/0elte, Which for incompressible flows is simply F' = vy/ue.

Figure 8.6 shows the computed velocity profiles for the boundary layer measured
by (a) McQuaid [9] for F =0.0046 and (b) Simpson et al. [10] for F = 0.00784.
Figure 8.6b also shows a comparison between the calculated local skin-friction
values and the values given by Simpson et al. Simpson’s values were obtained by
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Fig. 8.5 Comparison of calculated and experimental Stanton numbers for (a) double-
step and (b) step-ramp variation of wall temperature.

Fig. 8.6 Comparison of calculated velocity profiles for (a) F=0.0046, u.=50 ft/sec
and (b) F=0.00784 with experiment.

using the momentum integral equation and by a method based on a viscous-sublayer
model.

Figure 8.7 shows the results for a flow involving discontinuous injection. The
experimental data are due to McQuaid [9]. The calculations were started by using the
experimental velocity profile at x =0.958 ft and were continued downstream with
a uniform injection rate, F = 0.0034, up to and including x = 1.460 ft. The blowing
rate was set at zero at x = 1.460 ft and at all subsequent downstream locations.
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Fig. 8.7 Comparison of calculated velocity profiles for the discontinuous-injection
flow measured by McQuaid [9]. Profiles (a) upstream of discontinuity, (b) downstream.

Fig. 8.8 Comparison of calculated and experimental Stanton numbers for a turbulent
boundary layer with suction and blowing.

Results show that the experimental trends are closely followed by the calculations,
including the results for the region after which the mass transfer is zero.

We now investigate the accuracy of calculating local Stanton number for flows
with heat and mass transfer. Figure 8.8 shows the computed results for a wide ran-
ge of the mass-transfer parameter F. The experimental data are due to Moffat and
Kays [11]. As the results show, the agreement with experiment is good for all mass-
transfer rates.
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8.3.3 IMPERMEABLE SURFACE WITH PRESSURE GRADIENT

All of the previous examples were for flows with zero pressure gradient. The utility
of a general method depends on the accuracy of the results it gives for a wide variety
of flow conditions; hence it must be tested on flows with pressure gradient.

The accuracy of the CS method has been very thoroughly studied for a large
number of incompressible turbulent flows with pressure gradient. Here we present
several comparisons taken from the studies in [5,12,13].

Complete Development of the Boundary Layer about
a Streamlined Body

In a general practical problem, it is often necessary to calculate a complete
boundary-layer development from the leading edge of the body to its trailing edge,
which means that it is necessary to calculate the laminar layer, locate the transition
point, and then calculate the turbulent layer. Thus, for example, if one is interested in
calculating the total skin-friction drag of the body, the accuracy of the result depends
on doing each calculation for each region as accurately as possible.

In the studies reported in [12], the laminar layer was calculated by solving the
governing equations up to the transition point. Transition was computed by Smith’s
transition-correlation curve [Eq. (5.3.22)]. Then the turbulent-flow calculations were
started at the transition point by activating the eddy-viscosity expression and were
continued to the trailing edge. However, sometimes the calculations indicated
laminar separation before the transition point was reached. In those cases, the wall
shear became negative and prevented the solutions from converging; the laminar
separation point was then assumed to be tbe transition point, and turbulent flow was
assumed to start at that point.

Figure 8.9 shows the results for the airfoil tested by Newman [14]. The
measurements include pressure distribution, transition-point, turbulent velocity
profiles, and separation point. The calculations were started at the stagnation point of

Fig. 8.9 Comparison of calculated and experimental results for Newman’s airfoil.
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the airfoil. The experimental transition point was at x = 1.169 ft, but at x = 1.009 ft
the calculations predicted laminar-flow separation. Consequently, the transition point
was shifted to x=1.009 ft, at which point the turbulent-flow calculations were
started without the v term in the eddy-viscosity formulas and were continued until
x=4.926 ft. At this point, the calculations predicted turbulent-flow separation,
which agreed with the experimental separation point, within the accuracy of the
measurement. It is also interesting to note that the calculated result obtained by
starting the turbulent flow calculations at x =2.009 ft with the experimental velocity
profiles agreed extremely well with those obtained by starting them at the stagnation
point.

Equilibrium Flows

Figure 8.10 shows a comparison of calculated and experimental results for an
equilibrium flow in a (a) favorable and (b) adverse pressure gradient flow. It can be
seen that in general there is a good agreement with data.

Nonequilibrium and Separating Flows

From a practical standpoint, nonequilibrium and separating flows are perhaps the
most important flows, since they are so often encountered in the design of diffusers
and lifting surfaces. We now present the results for a flow of this type and consider an
airfoil-like body that has both favorable and adverse pressure gradients. The body is

Fig. 8.10 Comparison of calculated results for an equilibrium flow in (a) a favorable
pressure gradient 8 =-0.35 and (b) an adverse pressure gradient §=1.8.
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Fig. 8.11 Comparison of calculated and experimental results on a large airfoil-like
body [17].

two-dimensional and has a sharp nose. It is at a slight angle of attack, which produces
a pressure peak at the leading edge that causes transition. Separation is reported to
have taken place at 25.740.2 ft from the leading edge. Figure 8.11 shows some
computed and experimental velocity profiles. The experimental data are due to
Schubauer and Klebanoff [17].

Thermal Boundary Layers

Figure 8.12 shows a comparison of calculated and experimental results for an (a)
accelerating flow and a (b) decelerating flow. In the calculations, the experimental
temperature difference between wall and free stream A47(x) and the velocity distri-
bution u.(x) reported by Moretti and Kays [18] were used. This is the reason for the
small oscillations that show up in the calculated values of Stanton number. For more
comparisons, see [5].

8.3.4 PERMEABLE SURFACE WITH PRESSURE GRADIENT

McQuaid [9] made an extensive series of mean-velocity measurements on smooth
permeable surfaces with distributed injection. He measured boundary-layer devel-
opments for blowing rates F between 0 and 0.008 at free-stream velocities of 50 and
150 ft/sec. He used the momentum integral equation to obtain the local skin-friction
coefficient. As was pointed out by Simpson et al. [19] the reported skin-friction
values of McQuaid are very uncertain for these data. The reasons are that (1) there is
variation in injection velocity over the test surface, (2) the usable test section is short,
and (3) the fact that F is subtracted from the momentum-thickness gradient to obtain
local skin-friction coefficient.
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Fig. 8.12 Comparison of calculated and experimental Stanton numbers for (a) an
accelerating and (b) a decelerating boundary layer, Runs 24 and 36, respectively.

Figure 8.13a shows experimental and calculated velocity-profile comparisons for
a boundary layer in a favorable pressure gradient with 7 = 0.008. The calculations
were started by using the experimental velocity profile at x =0.958 ft and were
continued downstream with the given blowing rate. Figure 8.13b shows the results for
an adverse pressure gradient with ' = 0.002. The calculations were started by initially
matching zero-pressure-gradient data for the given blowing rate at x = 0.958 ft and
were continued downstream with the experimental velocity distribution. In both of
those figures, skin-friction comparisons were omitted because of the uncertainty in
experimental cf data.

Figure 8.14 shows the results for two highly accelerating flows with mass
transfer. In these cases, the flow starts in zero pressure gradient, then accelerates,
and later ends in zero pressure gradient, all with mass transfer. In both cases, the
acceleration parameter K (= ﬁ duc) is not very large. The results in Fig. 8.14a
show that the CS method computes the accelerating boundary layers with blowing
(F =0.006) quite well. Calculated velocity profiles and skin-friction values agree
well with experiment. On the other hand, the results in Fig. 8.14b show that the CS

method does not compute the highly accelerating boundary layers with suction
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Fig. 8.13 Comparison of calculated and experimental velocity profiles for (a) an accel-
erating boundary layer with blowing, F=0.008, and (b) a decelerating boundary layer
with blowing, F=0.002.

Fig. 8.14 Comparison of calculated and experimental results for two highly acceler-
ating boundary layers with mass transfer: (a) blowing, F=0.006; (b) suction, F=-0.004.

(F=-0.004) well. It should be noted, however, that for that suction case the
Reynolds number is quite low and that with acceleration and suction, the boundary
layer, which initially had an already low Reynolds number, has no doubt
laminarized.
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I 8.4 Axisymmetric Incompressible Flows

We first consider flows with zero pressure gradient, namely, flows past slender
cylinders. As was discussed in subsection 5.3.2, in such flows the transverse-
curvature effect plays an important role and causes the boundary-layer development
to be significantly different from those in flat-plate flows. The difference increases
with the slenderness of the cylinder.

Figure 5.4 in subsection 5.3.2 shows the velocity profiles and Table 8.1 presents
the local skin-friction values for two cylinders of diameters d =1 in. and 0.024 in.
The experimental data are due to Richmond [21]. The calculations were made by
Cebeci [22,23] and by White [24]. The values of Richmond, which were estimated
by using the “streamline hypothesis™ for the 0.024-in. cylinder, have been pointed
out by Rao [22] to be in error by a factor of 2. White’s values were obtained by
solving the momentum integral equation. They are given by

0.0015 + {0.20 n 0.016(x/r0)0'4] R;'3, 106 <R, < 10°

> x/r0){(5 x 107,
(4/R,)[(1/G) + (0.5772/G%)] ](?m g)és ,
where G =In(4R,/ ern) and R,) = ucro/v. White also gives the following equations
for the average skin-friction coefficient ¢y :

0.0015 + [0.34 + O.O7(L/r0)0'4} RV 100 <R, <109

(L/ro) < 10°

(4/Ry)[(1/G) + (0.5772/G%)] G>6, Ry, <20,

where G =1In(4R;/ ero) and Ry = u./v. Here L is the length of the cylinder.

The values of Cebeci [22,23] were obtained by using the CS method with
a two-dimensional mixing-length expression, Eq. (5.2.12), instead of the expression
given by Eq. (5.2.13). As may be seen from the results in Table 8.1, the Cebeci [23]
values agree closely with White’s values. Furthermore, the value of the local skin
friction for the 1-in. cylinder remains unchanged from that obtained earlier by

TABLE P8.1 Comparison of calculated c; values with other reported values for
incompressible flows on slender cylinders.

¢ x 103

d (in.) Re, , d/rgy Richmond [21] White [24] Cebeci [22] Cebeci [23]

0.024 2100 75 4.95 7.71 10.73 8.21

1.00 8750 2 2.90 3.18 3.03 3.02
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Cebeci [22]. However, for the 0.024-in. cylinder, the calculated c¢ differs from the
earlier one by 30%.

Figure 8.15 shows the results for axisymmetric flows with pressure gradient.
Figure 8.15a shows the results for a 285-ft-long airship with fineness ratio of 4.2. The
experimental data are due to Cornish and Boatwright [25]; the measurement was
along the top, where the flow should be nearly axisymmetric. The pressure distri-
bution and boundary-layer measurements were made in flight at speeds from 35 to 70
mph. No transition data were given, but from the configuration of the airship it was
inferred that the boundary layer was tripped at approximately x/L=0.05. The
example is of great importance because of the very large Reynolds number. The good
agreement establishes validity of the CS method at large scale.

Figure 8.15b shows the results for the axisymmetric bodies measured by Murphy
[26]. The experimental data include pressure distributions, skin-friction coefficients,
velocity profiles, and very carefully determined separation-point locations.

The calculations were made for three different shapes that represented a combi-
nation of one basic nose shape (A-2), a constant-area section, and different tail
shapes (Tails A-2, C-2, and C-4). Transition was tripped at an axial location 31 in.
from the nose of the body by a 2-in.-wide porous strip, which was used for mass-
transfer measurements (sealed for zero mass transfer). The skin-friction coefficients
were obtained by Preston tube, and experimental total-drag coefficients were
obtained from the wake profile. As can be seen from the results in Fig. 8.15b the

Fig. 8.15 Comparison of calculated and experimental results for the axisymmetric
bodies measured by (a) Cornish and Boatwright and (b) Murphy.
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agreement is quite good, considering the fact that the calculations were started at the
stagnation point and transition was specified at 31 in. The values calculated in this
manner match the experimental values; a slight discrepancy in skin friction may be
attributed to the effect of the porous strip.

I 8.5 Two-Dimensional Compressible Flows

8.5.1 IMPERMEABLE SURFACE WITH ZERO PRESSURE GRADIENT

The accuracy of the CS method has been studied for several compressible
turbulent boundary layers with heat and mass transfer for Mach numbers up to 7
[5,22,27]. Because of the scarcity of experimental data with pressure gradients,
most of the data considered in the studies have been restricted to zero-pressure-
gradient flows.

Adiabatic Flows

A considerable amount of data exists on adiabatic turbulent boundary layers with
zero pressure gradient. The data consist of accurate velocity profiles, Mach profiles,
and local skin-friction values, mostly for Mach numbers up to 5. Here we shall
present several comparisons of calculated and experimental results taken from the
study of such flows reported in [22].

Figure 8.16a shows a comparison of calculated and experimental velocity and
Mach-number profiles and local skin-friction coefficients for the boundary layer
measured by Coles [28]. Skin-friction coefficients were measured by floating
element. Computations for that flow and for the flows to be discussed next were made
by starting the flow as compressible laminar at x =0 and specifying that the flow
become turbulent at the next x station, which was arbitrarily taken to be at x = 0.001
ft. The computations were than continued on downstream until the experimental Ry
was obtained. Where experimental values of Ry were not reported, the same
procedure was used in matching the experimental R,. Then calculated results at that x
location were compared with the experimental data.

Figure 8.16b shows a comparison of calculated and experimental velocity and
Mach profiles for the boundary layer measured by Matting et al. [29].

Figure 8.17a shows a comparison of skin-friction values for the boundary layer
measured by Moore and Harkness [30] at a nominal M, = 2.8: The agreement is
good, even at very high Reynolds numbers. The experimental skin friction was
obtained by floating element.

Figure 8.17b shows a summary of calculated and experimental skin-friction
coefficients for compressible adiabatic turbulent zero-pressure-gradient flows
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Fig. 8.16 Comparison of calculated and experimental results for the data of (a) Coles
and (b) Matting et al.

Fig. 8.17 Comparison of calculated and experimental local skin-friction values for
adiabatic zero-pressure gradient flows (a) data of Moore and Harkness and (b) 43 exper-
imental values.

studied by Cebeci et al. [22]. The experimental values of skin friction were all
measured by the floating-element technique. The calculated values cover a
Mach number range of 0.40 to 5 and a momentum-thickness Reynolds number
range of 1.6 x 10° to 702 x 10°. The rms error based on 43 experimental values, all
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obtained by the floating-element technique, is 3.5%, which is within the experi-
mental scatter.

Flows with Heat Transfer

We now present several comparisons of calculated and experimental results for
compressible turbulent flows with heat transfer taken from the studies of Cebeci
[5,27]. Figure 8.18a shows a comparison of calculated and experimental Mach
profiles for the boundary layer measured by Michel [31] at a Mach number of 2.57.
The calculations were made by starting the flow as compressible laminar at x = 0 and
specifying that the flow become turbulent at the next x station, which was arbitrarily
taken to be at x =0.001 ft for T/T, = 1.95, which was assumed constant along the
plate. The computations were then continued downstream until the experimental R,
was obtained.

Figure 8.18b shows a comparison of calculated and experimental results for the
boundary layer measured by Pappas [32] for M, = 2.27 and T,,/T, = 2.16. Again the
calculations were made by assuming the flow to be compressible laminar at x = 0 and
specifying that the flow become turbulent at the next x station (x =0.01 ft). The
experimental Reynolds number based on momentum thickness varied between 3500
and 9500. For that reason, the calculated Mach profiles shown in Fig. 8.18b were
compared with the experimental data for Ry =3500 and 9500. The agreement is
good, and the calculations account for the Ry effect. The Stanton number was
calculated from the formula

St = _CIW/Qe“e(HaW — Hy).

The adiabatic wall enthalpy H,, was obtained by repeating the calculations for
adiabatic flow.

Fig. 8.18 Comparison of calculated and experimental results for a zero-pressure-
gradient flow with heat transfer. (@) T.,/T.=1.95; M.=2.57 and (b) T,/T.=2.16;
M.=2.27.
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Fig. 8.19 Comparison of calculated and experimental results for an adiabatic flat-plate
flow with mass transfer. M, =1.8; F=0.0013.

8.5.2 PERMEABLE SURFACE WITH ZERO PRESSURE GRADIENT

Figure 8.19 shows a comparison of calculated and experimental velocity profiles for
the adiabatic boundary layer measured by Squire [33]. The calculations were made
for a blowing rate F=0.0013 with M. = 1.8, and they were started by initially
matching the experimental momentum thickness at the first measuring station,
x = 8.6 in. downstream of the leading edge of the porous plate. Comparison of
calculated and experimental skin-friction values are omitted in Fig. 8.19 because the
experimental cf values, which were derived from a momentum balance, are subject to
large errors, see [34]. As can be seen, the agreement of the velocity profiles with
experiment is quite good. Similar good agreement with experiment was also reported
for the higher blowing rates studied by Thomas et al. [34].

8.5.3 IMPERMEABLE SURFACE WITH PRESSURE GRADIENT

Figure 8.20 shows a comparison of calculated and experimental results for an
accelerating adiabatic flow measured by Pasiuk et al. [35]. Calculations were started
by assuming an adiabatic flat-plate flow that matched the experimental momentum
thickness value at x = 0.94 ft. Then the experimental Mach-number distribution was
used to compute the rest of the flow. The edge Mach number varied from M, = 1.69
atx = 0.94 ft to M = 2.97 at x = 3.03 ft. Figures 8.20a and 8.20b show a comparison
of calculated and experimental velocity and temperature profiles together with c¢
values, respectively, for three x stations.

Figure 8.21 shows a comparison of calculated and experimental results for an
accelerating flow with constant heat flux. Again, the measurements are due to
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Fig. 8.20 Comparison of calculated and experimental results for an accelerating adia-
batic flow. The experimental skin-friction values were not measured but were deduced
by means of the momentum integral equation.

Fig. 8.21 Comparison of calculated and experimental results for an accelerating flow
with constant heat flux. (a) Velocity profiles; (b) temperature profiles and Stanton-
number distribution.
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Pasiuk et al. [35]. The calculations were started by assuming a constant heat flux
with zero pressure gradient that matched the experimental momentum-thickness
value at x = 0.94 ft. Then the experimental Mach-number distribution was used to
compute the rest of the flow for constant heat flux. The edge Mach number varied
from M, =1.69 at x=0.94 ft to M, =2.97 at x=3.03 ft. Figure 8.21a shows
a comparison of calculated and experimental velocity profiles for three x stations.
Similarly, Fig. 8.21b shows a comparison of calculated and experimental
temperature profiles, together with a comparison of local Stanton-number values.
Except for one x station, the calculated profiles are in good agreement with
experiment.

I 8.6 Axisymmetric Compressible Flows

Figure 5.4b in subsection 5.3.2 presented a comparison of calculated and experi-
mental velocity profiles in adiabatic compressible turbulent boundary layers on
slender cylinder. As we discussed in Sects. 5.3.2 and 8.4, in flows past such bodies,
the transverse-curvature effect causes the boundary-layer development to be
significantly different from those in two-dimensional zero-pressure gradient flows. A
modification of the two-dimensional eddy-viscosity distribution for thick axisym-
metric boundary layers improves the calculations.

Figure 8.22 shows the results for a waisted body of revolution for an adiabatic
compressible flow at two Mach numbers. The measurements are due to Winter et al.
[36]. The experimental skin-friction values were obtained by the “razor blade”
technique. The calculations in each case were started by using the experimental
velocity profile at X/L = 0.4 and by using the Crocco relationship. Calculations were
made with and without the transverse-curvature effect. In general, the calculated
results are in good agreement with experiment.

8.7 Prediction of Two-Dimensional Incompressible
Flows with Separation

The solution of the boundary-layer equations for laminar and turbulent external flows
with prescribed velocity distribution is sometimes referred to as the standard
problem or direct problem [1]. This approach allows viscous flow solutions provided
that boundary-layer separation, which corresponds to vanishing wall shear in two-
dimensional steady flows, does not occur. If the wall shear vanishes at some
x-location, solutions breakdown and convergence cannot be obtained. This is
referred to as the singular behaviour of the boundary-layer equations at separation.
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Fig. 8.22 Comparison of calculated and experimental results for a waisted body of
revolution for an adiabatic flow at two Mach numbers: (@) Mo =0.6, R; =107; (b)
M =1.4, R, =107 (TVC stands for transverse curvature).

The boundary-layer equations are not singular at separation if the external
velocity or pressure is computed as part of the solution. This procedure is known as
the inverse problem and has been extensively used for airfoil flows. In general two
procedures have been pursued. In the first procedure, developed by Le Balleur [37]
and Carter and Wornom [38], the solution of the boundary-layer equations is
obtained by the standard method, and a displacement-thickness, 6*%(x), distribution
is determined. If this initial calculation encounters separation, 6*0(x) is extrapolated
to the trailing edge of the airfoil. For the given 6*(x) distribution, the boundary-layer
equations are then solved in the inverse mode to obtain an external velocity ey (x).
An updated inviscid velocity distribution, uj(x), is then obtained from the inviscid
flow method with the added displacement thickness. A relaxation formula is intro-
duced to define an updated displacement-thickness distribution,

5 (x) = 6*°(x){1 o [”“(x) - 1] } (8.7.1d)

Uei (X)
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where w is a relaxation parameter, and the procedure is repeated with this updated
mass flux.

In the second approach, developed by Veldman [39], the external velocity u,(x)
and the displacement thickness 6*(x) are treated as unknown quantities, and the
equations are solved in the inverse mode simultaneously in successive sweeps over
the airfoil surface. For each sweep, the external boundary condition for the
boundary-layer equations in dimensionless form, with u,(x) normalized with ©, is
written as

Ue (x) = ug (x) + Ou, (x) (8.7.2a)

Here ug(x) denotes the inviscid velocity and ou, the perturbation velocity due to the
displacement thickness, which is calculated from the Hilbert integral

1 (%d, . d
dup = — / = (u6") -2 (8.7.2b)
w Jy, do xX—a

The term %(ueé*) in the above equation denotes the blowing velocity used to
simulate the boundary-layer in the region (x4, Xp).

This approach is more general and has been used in all external flow problems
requiring interaction by Cebeci [40]. His numerical method for calculating
two-dimensional incompressible flows is briefly described in Sections 8.8 and 8.9
and in detail in [40]. A sample of results are given in Section 8.10 for airfoil flows
and in Section 8.11 for wing flows, following a brief description of the interaction
problem in subsection 8.7.1.

8.7.1 INTERACTION PROBLEM

Predicting the flowfield by solutions based on inviscid-flow theory is usually
adequate as long as the viscous effects are negligible. A boundary layer that forms
on the surface causes the irrotational flow outside it to be on a surface displaced
into the fluid by a distance equal to the displacement thickness 6", which represents
the deficiency of mass within the boundary layer. Thus, a new boundary for the
inviscid flow, taking the boundary-layer effects into consideration, can be formed
by adding 6 to the body surface. The new surface is called the displacement
surface and, if its deviation from the original surface is not negligible, the inviscid
flow solutions can be improved by incorporating viscous effects into the inviscid
flow equations [40].

A convenient and popular approach described in detail in [40,42] for aero-
dynamic flows, is based on the concept that the displacement surface can also be
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formed by distributing a blowing or suction velocity on the body surface. The
strength of the blowing or suction velocity vy, is determined from the boundary-layer

solutions according to

d *

vy = —(ueé ) (8.7.3)
dx

where x is the surface distance of the body, and the variation of v, on the body
surface simulates the viscous effects in the potential flow solution. This approach,
which can be used for both incompressible and compressible flows [40], is
used in this section to address the interaction problem for an airfoil in subsonic
flows.

The approach to simulate a turbulent wake with the transpiration model is similar
to the approach discussed for an airfoil surface. A dividing streamline is chosen in
the wake to separate the upper and lower parts of the inviscid flow, and on this line
discontinuities are required in the normal components of velocity, so that it can be
thought of as a source sheet.

At points C and D on the upper and lower sided of the dividing streamline
(Fig. 8.23), the components of transpiration velocity, v;, v; are, respectively, see
Eq. (8.7.4)

1 d *

Vig = — —(Q;, Uiubu ) (8.7.4)
u o dx i wYu
and
1 d .
i = o a(Qiﬂ/lilél ) (8.7.5)

Fig. 8.23 Notation for the airfoil trailing-edge region.
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Fig. 8.24 Interactive boundary-layer scheme.

Here the sign convention has been used the v is measured positive in the direction
of the upward normal to the wake. Hence a jump 4v in the component of velocity
normal to the wake is required; it is given by

1 d * 1 d *
A= vy — vy = — —(0;,Uiyd — —(0,uj10 8.7.6
vi = Viu Vil - dx(Qmum u ) + 0 dx(Qllull 1 ) ( )

For a given airfoil geometry and freestream flow conditions, the inviscid velocity
distribution is usually obtained with a panel method, then the boundary-layer
equations are solved in the inverse mode as described in Section 8.8. The blowing
velocity distribution, vp(x), is computed from Eqgs. (8.7.3-8.7.6) and the displace-
ment thickness distribution 6*(x) on the airfoil and in the wake are then used in the
panel method to obtain an improved inviscid velocity distribution with viscous
effects (See Section 8.9). The 6:; is used to satisfy the Kutta condition in the panel
method at a distance equal to (3:;; this is known as the off-body Kutta condition
(Fig. 8.24). In the first iteration between the inviscid and the inverse boundary-layer
methods, vp(x) is used to replace the zero blowing velocity at the surface. At the next
and following iterations, a new value of vj(x) in each iteration is used as a boundary
condition in the panel method. This procedure is repeated for several cycles until
convergence is obtained, which is usually based on the lift and total drag coefficients
of the airfoil. Studies discussed in [40] show that with three boundary-layer sweeps
for one cycle, convergence is obtained in less than 10 cycles.

8.8 Numerical Solution of the Boundary-Layer Equations
in the Inverse Mode with Algebraic Turbulence Models

We consider a laminar and turbulent flow. We assume the calculations start at the
leading edge, x =0, for laminar flow and are performed for turbulent flow at any
x-location by specifying the transition location. The use of the two-point finite-
difference approximations for streamwise derivatives is proper and does not cause
numerical difficulties if there is no flow separation. If there is one, then it is necessary
to use backward difference formulas [40].
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We employ two separate but closely related transformations. The first one is the
Falkner-Skan transformation in which the dimensionless similarity variable 1 and
a dimensionless stream function f (x, n) are defined by Egs. (8.2.5).

The resulting equations with this transformation are given by Egs. (8.2.6) and
(8.2.7).

In the inverse mode, since u, (x) is also an unknown, slight changes are made to
the transformation given by Eq. (8.2.5), replacing u.(x) by u. and redefining new
variables Y and F by

Juto x
Y = el Y(x,y) = VuevxF(£,Y), & = I (8.8.1)

The resulting equation and its wall boundary equations can be written as

/! 1 /! 6F/ //aF
(bF"Y + SFF = E<FagF ag) —Ew dg (8.8.2)
Y=0, F=0, F=0 (8.8.3)

Here primes denote differentiations with respect to Y and w = ue/uico.
The edge boundary condition is obtained from Eq. (8.7.2). By applying a
discretization approximation to the Hilbert integral, Eq. (8.7.2b), we can write

i—1

ue(xi) = ud(§;) + CaDi + > _ CyDj + Z C;iD; (8.8.4)
j=1 j=i+l1

where the subscript i denotes the £-station where the inverse calculations are to be
performed, Cj; is a matrix of interaction coefficients obtained by the procedure
described in subroutine HIC, and D is given by D = u,0". In terms of transformed
variables, the parameter D becomes

~_ Db B
D= —-= \/I:L(Yew F.) (8.8.5)

and the relation between the external velocity u, and displacement thickness 6"
provided by the Hilbert integral can then be written in dimensionless form as

Y =Y., F,(§)—A[YF.(§) —F.(£)] = & (8.8.6)
where
A= Ci/€/RyL (8.8.7a)
. i—1 N
gi = u0(&)+> CyDj+ > CyD; (8.8.7b)
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8.8.1 NUMERICAL FORMULATION

The numerical method for the inverse problem is similar to the numerical method
described for the standard problem in Section 8.2. Since u,.(¢) must be computed as
part of the solution procedure, we treat it as an unknown. Remembering that the
external velocity w is a function of £ only, we write

w =0 (8.8.8)

As in the case of the standard problem, new variables U (§, Y), V (£, Y) are introduced
and Eq. (8.8.2) and its boundary conditions, Eq. (8.8.3) and (8.8.6), are expressed as
a first-order system,

Fl=U (8.8.9a)
U=V (8.8.9b)

, 1 - ouU oF dw
(bV)'+ 5 FV = .E(U 5 VGE> Ew Vi (8.8.9¢)
Y=0, F=U=0 (8.8.10a)
Y=Y, U=w, AF+{1-2)w=g (8.8.10b)

Finite-difference approximations to Eqgs. (8.8.8) and (8.8.9) are written in a similar
fashion to those expressed in the original Falkner-Skan variables, yielding

h;l(w;'—wj'gl) - (8.8.11a)
-1
I (Fj”—F;’_l) = UL, (8.8.11b)
h! (U; _ U;@l) =V (8.8.11¢c)

- 1
i (1 =) + (340 )V

+a"[(w?)]_,, — FLARE(?)_, ] 8.8.11d)

-1 -1 -1
+ o (VJn—l/zﬂn—l/z - F]}'/l—l/2‘/j{1—l/2> =R\,
where

-1 —1 -1 2\n—1
oy = L {(FV);_I/Z — FLARE(U )j_l/z} (8.8.12a)
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| 1 5 n—1
Ly = b (bjyy = bj-1vj1) + 5 (FV)j_1jp — " (W), P (8.8.12b)

In Eq. (8.8.11d), the parameter FLARE refers to the Fliigge-Lotz-Reyhner

o du . .
approximation [1] used to set u ™ equal to zero in the momentum equation whenever
X

u < 0. As a result, the numerical instabilities that plague attempts to integrate the
boundary-layer equations against the local directions of flow are avoided. In regions
of positive streamwise velocity (u; > 0), it is taken as unity and as zero in regions of
negative streamwise velocity (u; < 0).

The linearized form of Egs. (8.8.11) and (8.8.10) can be expressed in the form
given by Eq. (8.2.24) or

0F, U, 8V, dw, OF U 8V, dw; OF, dU; 8V, ow,
be {000 T 0 0 3Fo| |(ro
be.i0 1 0 0:i0 0O 0 0 8Uo| |(r)o
0 -1 It 0i0 -1 It o0 3Vo| |(rdo
o 0o 0 -1i0 0 o0 1 owol (o
-4 2L 0 0i-1 X 0 0i0 0 0 0[] |r)
(S (Se); (sp) (sa)i(ss) (ss) (s (s i 0 0 0 0 i @Y ()
0 0 0 0io0 - h/: 00 1 h‘; 0 i |V | |y
o o o o0oio O O -1i0 0 O 100w | [(rg)
-t 22 0 01 ZLo0 0 8F )
(Sa)y (Se)y (S2)y (Se)yi(Sa)y (Ssy (Sq)y (Sp)yi [OUy| |(r2)y
b.c. 0 0 0 0i0 0 0 0l |y
b.c. 0 0 0 0:i0 1 0 —1ibwl lr,
(8.8.13)
With ¢; and r; now defined by
OF ();
_ |9V _ | (r2);
& =svi| = (), (8.8.14)
ow; (r4);
and A;, B, Cj becoming 4 x 4 matrices defined by
h.
1 0 0 1 —EJ 0 0
0 1 0 0
A=y _; Moo A= (s3); (s5); (21’)/' (37)1, 1<j<Jy-1
0 0 & 0 -1 = Lo
a 0 0 0o -1

(8.8.15a)
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1 _hi 0 0 -1 f% 0 0
Ay = |(s3); (ss); (s1); (s7)5], B; = (V4)j (Sﬁ)j (VZ)j (VS)] , 1<j<d
Y1 0 0 Y2 0 0 0 0
0 1 0 —1 0 0 0 0
(8.8.15b)
0 0 0 0
0 0 0 0 )
G = 0 1 _% ol 0<;j<J -1 (8.8.15¢)
00 0 1

Here the first two rows of A and Cy and the last two rows of B; and A; correspond to
the linearized boundary conditions,

0Fy = oUg = 0; 0U; —owy = wy— Uy, ~v10F;+ v0wy = v3 (8.8.16)

where
Yi =4 Y2 =1=-2Y vz =g — (iFs1+vw) (8.8.17)
As a result
(r)y = (n)y =0 (8.8.18a)
(r3); = v3, (ra); =wy—Uy (8.8.18b)

The third and fourth rows of Ay and Cy correspond to Eq. (8.2.20b) and the
linearized form of Eq. (9.2.18a), that is,

owj — owj—1 = wi-1 —w; = (r4);_ (8.8.19)

if the unknows f, u, v are replaced by F, U and V. Similarly, the first and second rows
of A; and B; correspond to Eq. (8.2.20a) and (9.2.18a) with two terms added to its
left-hand side,

(57);0wj + (s8);0wj—1 (8.8.20a)
with (s7); and (sg); defined by
(s7); = o"wj,  (s3); = o"wjy (8.8.20b)

The coefficients (s1); to (s); defined by Egs. (8.2.22) remain unchanged provided
we set
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1
a = z—l—a”, o = o' (8.8.21)

and define (r); by

— — 1 n
(r2); = RiZ), = [hj BV = b Vi) + (§+0‘ >(FV)J'1/2

4o {(WZ) 112~ FLARE(U),_, /2} (8.8.22)

n—1 -1
+ o (Vjil/szfl/2 - 171{1/2%,1/2)}

The remaining elements of the 7 ; vector follow from Egs. (8.2.21), and (8.8.19) and
(8.8.22) so that, for [ < j < J, (r1);, (r2);, (r3)j—1 are given by Eqgs. (8.2.21a), (8.8.22)
and (8.2.21b), respectively. For the same j-values, (r4);1 is given by the right-hand
side of Eq. (8.8.19).

The parameters v1, v2 and 3 in Eq. (8.8.16) determine whether the system given
by the linearized form of Eqgs. (8.8.11) and their boundary conditions is to be solved
in standard or inverse form. For an inverse problem, they are represented by the
expressions given in Eq. (8.8.16) and for a standard problem by y; =0, vy, = 1.0 and
v3=0.

It should be noted that for flows with separation, it is necessary to use backward
differences as discussed for the CS and k-e models in Sections 10.7 to 10.10.

In that case, the coefficients (s1); to (s¢); are given by Eq. (9.2.25), and (r,); by
Eq. (9.2.26) with the relations given by Eq. (8.8.22).

The solution of Eq. (8.2.24), with ¢ ; and r; defined by Eq. (8.8.14) and with A;, B;
and C; matrices given by Egs. (8.8.15), can again be obtained by the block-
elimination of subsection 8.2.3. The resulting algorithm, is similar to SOLV3, and is
called SOLV4.

Numerical Method for Wake Flows

In interaction problems involving airfoils, it is usually sufficient to neglect the wake
effect and perform calculations on the airfoil only, provided that there is no or little
flow separation on the airfoil. With flow separation, the relative importance of
including the wake effect in the calculations depends on the flow separation as shown
in Fig. 8.25 taken from [40]. Figure (8.25a) shows the computed separation locations
on a NACA 0012 airfoil at a chord Reynolds number, R, of 3 X 10%. When the wake
effect is included, separation is encountered for angles of attack greater than 10°, and
attempts to obtain results without consideration of the wake effect lead to errone-
ously large regions of recirculation that increases with angle of attack, as discussed
in [40]. Figure (8.25b) shows that the difference in displacement thickness at the
trailing edge is negligible for « = 10° but more than 30% for o = 16° [40].
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Fig. 8.25 Wake effect on (a) flow separation and (b) displacement thickness — NACA
0012 airfoil. —, with wake:— — —, without wake.

As discussed in [40], the inverse boundary layer method described here can also be
extended to include wake flows. This requires the specification of a turbulence model
for wake flows and minor modifications to the numerical method.

The extension of the CS model for wall boundary layers to wake flows is given by
the following expressions described in [41]:

em = (em)yy + [(em)ie. — (€m)y) exp_(xm;txt'e') (8.8.23)

where 0. is the boundary layer thickness at the trailing edge, A is an empirical
parameters, (&,);.. is the eddy viscosity at the trailing edge, and (g,,),, is the eddy-
viscosity in the far wake given by the larger of

Ymin
(em)}, = 0.064 / (ue — u)dy (8.8.24)
and
(en)", = 0.064 / (te — u)dy (88.25)
ymm

with ymi, denoting the location where the velocity is a minimum.

The studies conducted in [41] indicate that a choice of A =20 is satisfactory for
single airfoils. Calculations with different values of A essentially produced similar
results, indicating that the modeling of wake flows with Eq. (8.8.23) was not too
sensitive to the choice of A. The application of the above model to wake flows with
strong adverse pressure gradient, however, indicated that this was not the case and
the value of the parameter is an important one. On the basis of that study, a value of
A =150 was found to produce best results and is used in the computer program
discussed in Section 10.14.



Differential Methods with Algebraic Turbulence Models 333

A modification to the numerical method of the previous section arises due to the
boundary conditions along the wake dividing streamline. The new “wall”’ boundary
conditions on f and u now become

=0, o =0, vpb=20 (8.8.26)

so that the second row of Eq. (8.8.23) can de written as

00 1 0 (8.8.27)

Before the boundary-layer equations can be solved for wake flows, the initial
velocity profiles must satisfy the wall and edge boundary conditions. When the
calculations are first performed for wall boundary layer flows and are then to be
extended to wake flows, it is necessary to modify the velocity profiles computed
for wall boundary layers. This is done in subroutine WAKEPR of the computer
program.

I 8.9 Hess-Smith (HS) Panel Method

For incompressible flows, a panel method is an ideal inviscid method for interactive
boundary layer approach. Of the several panel methods, here we choose the one due
to Hess and Smith [40]. The procedure for incorporating the viscous effects into the
panel method is discussed in Section 8.9.1. Changes required in an inviscid method
to extend the viscous flow calculations into the wake of an airfoil are discussed in
Section 8.9.2. A brief description of the computer program for the HS method with
viscous effects is given in Section 10.4.

We consider an airfoil at rest in an onset flow of velocity V. We assume that
the airfoil is at an angle of attack, « (the angle between its chord line and the onset
velocity), and that the upper and lower surfaces are given by functions Y,(x) and
Y)(x), respectively. These functions can be defined analytically, or (as is often the
case) by a set of (x, y) values of the airfoil coordinates. We denote the distance of
any field point (x, y) from an arbitrary point, b, on the airfoil surface by r, as shown
in Fig. 8.25. Let 7’ also denote the unit vector normal to the airfoil surface and
directed from the body into the fluid, and “f’a unit vector tangential to the surface,
and assume that the inclination of 7 to the x-axis is given by 6. It follows from
Fig. 8.25 that with 7 and 7 denoting unit vectors in the x- and y-directions,
respectively,

= —sinfi + 00507
-
= cosf i +sind j

~L 3l
!

(8.9.1)
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If the airfoil contour is divided into a large number of small segments, ds, then we
can write

dx = cosf ds

dy = sinf ds (8.9.2)

with ds calculated from ds = 1/ (dx)* + (dy)*.

We next assume that the airfoil geometry is represented by a finite number (V) of
short straight-line elements called panels, defined by (N+1)(x; y;) pairs called
boundary points. It is customary to input the (x, y) coordinates starting at the lower
surface trailing edge, proceeding clockwise around the airfoil, and ending back at the
upper surface trailing edge. If we denote the boundary points by

(x1, y1)s (x2, ¥2)5 -+ -, (xn, YN)s (XN41, YN+1) (8.9.3)

then the pairs (x1, y;) and (xy+1, yn+1) are identical for a closed trailing edge
(but not for an open trailing edge) and represent the trailing edge. It is customary to
refer to the element between (x;, y;) and (xj41, yj+1) as the j-th panel, and to the
midpoints of the panels as the control points. Note from Fig. 8.26 that as one
traverses from the i-th boundary point to the (i+1)-th boundary point, the airfoil
body is on the right-hand side. This numbering sequence is consistent with the
common definition of the unit normal vector 7; and unit tangential vector t—,> for all
panel surfaces, i.e., Ff is directed from the body into the fluid and t—l> from the i-th
boundary point to the (i + 1)-th boundary point with its inclination to the x-axis
given by 0;.

'\n t xy)
/ $6 source and vorticity distributions

trailing edge

Y=Y ()

control points

boundary

Fig. 8.26 Panel representation of airfoil surface and notation for an airfoil at incidence «.
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In the HS panel method, the velocity V at any point (x, y) is represented by
V=U+7 (8.9.4)

-
where U is the velocity of the uniform flow at infinity

—

— . —
U =Ve (cos o i +sinaj ) (8.9.5)

and v’ is the disturbance field due to the body which is represented by two elementary
flows corresponding to source and vortex flows. A source or vortex on the j-th panel
causes an induced source velocity vy at (x, y) or an induced vortex velocity V', at (x, y),
respectively, and these are obtained by taking radients of a potential source

q

(,bx = Elnr (896)
and a potential vortex
I/
= —0 8.9.7
¢, = 50, (8.9.7)

both centered at the origin, so that, with integrals applied to the airfoil surface,

V(x,y) = /v_;qj(s)dstr/v_Jrj(s)dsj (8.9.8)

Here g;ds; is the source strength for the element ds; on the j-th panel. Similarly, t;ds;
is the vorticity strength for the element ds; on the same panel.

Each of the N panels is represented by similar sources and vortices distributed on
the airfoil surface. The induced velocities in Eq. (8.9.8) satisfy the irrotationality
condition and the boundary condition at infinity

a0

w0 Wy ose (8.9.92)
0x Oy

b= _ Wy Gina (8.9.9b)
Oy 0x

For uniqueness of the solutions, it is also necessary to specify the magnitude of the
circulation around the body. To satisfy the boundary conditions on the body, which
correspond to the requirement that the surface of the body is a streamline of the flow,
that is,

0¢

Y = constant or ™ =0 (8.9.10)
n

at the surface on which 7 is the direction of the normal, the sum of the source induced
and vorticity-induced velocities and freestream velocity is set to zero in the direction
normal to the surface of each of the N panels. It is customary to choose the control
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points to numerically satisfy the requirement that the resultant flow is tangent to the
surface. If the tangential and normal components of the total velocity at the control
point of the i-th panel are denoted by (V); and (V");, respectively, the flow tangency
conditions are then satisfied at panel control points by requiring that the resultant
velocity at each control point has only (V');, and

(V", =0 i=12,..,N (8.9.11)

Thus, to solve the Laplace equation with this approach, at the i-th panel control point
we compute the normal (V"); and tangential (V');, (i = 1, 2, . . ., N) velocity
components induced by the source and vorticity distributions on all panels, j (j =1,
2, ..., N), including the i-th panel itself, and separately sum all the induced
velocities for the normal and tangential components together with the freestream
velocity components. The resulting expressions, which satisfy the irrotationality
condition, must also satisfy the boundary conditions discussed above. Before dis-
cussing this aspect of the problem, it is convenient to write Eq. (8.9.4) expressed in
terms of its velocity components (V"); and ), by

N
S A3 B+ Veusin(a— 6) (8.9.12a)
j=1 j=1

N
ZAUCI/ + > Bjtj + Vacos(a — 6;) (8.9.12b)

j=1 j=1

i B",-j s Alij , B’ij are known as influence coefficients, defined as the
velocities induced at a control point (x,, ym); more specifically, A”; and At,-j
denote the normal and tangential velocity components, respectively, induced at the
i-th panel control point by a unit strength source distribution on the j-th panel, and
B"; and B’,-j are those induced by unit strength vorticity distribution on the j-th
panel. The influence coefficients are related to the airfoil geometry and the panel
arrangement; they are given by the following expressions:

where A"

Lﬂ [sin(@i —6;) In :H + cos(b; )ﬂ,j] i#j

wy=17 iJ (8.9.13)
2 =
i [ i B;; — cos(8; — 6;) In ”H} i#j

Al = 2w sin(; = 0;) Bi 7 / (8.9.14)
0 i=j

Bl = —AL B = A (8.9.15)
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Here
1/2
5 2
Fije1 = [(xmi — xj+1) + m, — y/+1) }

1/2
i = [ Gon = 5)” + Om = 2)?]

—

(i +yj+1) (8.9.16)

N =

(X +X11)s  Ym =

N —

Xy =

i

0, = tanl(yi+l _)’i)’ 0 = tan~! (yj+1 _yj>
Xkl — Xi Xj+1 — Xj
8; — tan! (ym,- —YJ+1> I (M y]')
Xm; — Xj+1 Xm; — Xj
Regardless of the nature of g;(s) and t,(s), Eq. (8.9.12) satisfies the irrotationality
condition and the boundary condition at infinity, Eq. (8.9.9). To satisfy the require-
ments given by Eq. (8.9.11) and the condition related to the circulation, it is necessary
to adjust these functions. In the approach adopted by Hess and Smith [40], the source
strength g;(s) is assumed to be constant over the j-th panel and is adjusted to give zero
normal velocity over the airfoil, and the vorticity strength 7; is taken to be constant on
all panels (t; =7) and its single value is adjusted to satisfy the condition associated with
the specification of circulation. Since the specification of the circulation renders the
solution unique, a rational way to determine the solution is required.

The best approach is to adjust the circulation to give the correct force on the body
as determined by experiment. However, this requires advance knowledge of that force,
and one of the principal aims of a flow calculation method is to calculate the force and
not to take it as given. Thus, another criterion for determining circulation is needed.

For smooth bodies such as ellipses, the problem of rationally determining the
circulation has yet to be solved. Such bodies have circulation associated with them,
and resulting lift forces, but there is no rule for calculating these forces. If, on the
other hand, we deal with an airfoil havinga sharp trailing edge, we can apply the
Kutta condition [40]. It turns out that for every value of circulation except one,
the inviscid velocity is infinite at the trailing edge. The Kutta condition states
that the particular value of circulation that gives a finite velocity at the trailing edge
is the proper one to choose. This condition does not include bodies with nonsharp
trailing edges and bodies on which the viscous effects have been simulated by, for
example, surface blowing, as discussed [4]. Thus, the classical Kutta condition is of
strictly limited validity. It is customary to apply a “Kutta condition” to bodies
outside its narrow definition, but this is an approximation; nevertheless the calcu-
lations are often in close accord with experiment.

In the panel method, the Kutta condition is indirectly applied by deducing
another property of the flow at the trailing edge that is a direct consequence of the
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finiteness of velocity; this property is used as ‘“‘the Kutta condition’’. Properties that
have been used in lieu of “the Kutta condition” in panel methods include the
following:

(a) A streamline of the flow leaves the trailing edge along the bisector of the trai-
ling-edge angle.

(b) Upper and lower displacement total velocities approach a common limit at the
trailing edge. The limiting value is zero if the trailing-edge angle is nonzero.

(¢) Source and/or vorticity strengths at the trailing edge must satisfy conditions to
allow finite velocity.

Of the above, property (b) is more widely used. At first it may be thought that this
property requires setting both the upper and lower surface velocities equal to zero.
This gives two conditions, which cannot be satisfied by adjusting a single parameter.
The most reasonable choice is to make these two total velocities in the downstream
direction at the 1st and N-th panel control points equal so that the flow leaves the
trailing edge smoothly. Since the normal velocity on the surface is zero according to
Eq. (8.9.11), the magnitudes of the two tangential velocities at the trailing edge must
be equal to each other, that is,

(Vy = —(V), (8.9.17)

Introducingthe flow tangency condition, Eq. (8.9.11), into Eq. (8.9.12a) and noting
that Tj =1, we get

ZAUqJ+TZB"+Voo51na—6) 0, i=12,...,N (8.9.18)
j=1 j=1
In terms of the unknowns, ¢; (j = 1, 2, . . ., N) and 7, the Kutta condition of

Eq. (8.9.17) and Eq. (8.9.18) for a system of algebraic equations which can be written
in the following form,

Ax = b (8.9.19)

Here A is a square matrix of order (N + 1), that is

ai a2 aij ainN a1 N+1
an| any az; asN az N+1
A= a;| ap ajj an ai N+1 (8.9.20)
ani an? aNj AaANN aN N+1
ay+1,1 4aN412 ... A4N+1j --- ANHI N  AN+1N+1
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and X =(q1,.... ... qnv D) and b= (by, ..., by ..., by, bys1)" with denoting
the transpose. The elements of the coefficient matrix A follow from Eq. (8.9.18)
i=12,...N
a;j = Ag., =12 N (8.9.21a)
N
ainyi = Y By i=12,...,N (8.9.21b)

A"jj are given by Eq. (8.9.13) and B";; by Eq. (8.9.15). The relation in Eq. (8.9.20)
follows from the definition of X where 7 is essentially xy. ;.

To find ayy1,; (J =1, ..., N)and ays1,n+1 in the coefficient matrix A, we use the
Kutta condition and apply Eq. (8.9.17) to Eq. (8.9.12b) and, with 7 as a constant, we
write the resulting expression as

N N
ZAtquj + ‘CZBIU + Vecos(a —6;)
i=1 i=1

N N
= - ZAquj + ‘EZB;W + Ve cos(a — )
i=1 i=1

or as

N N
Z(A’lj + AN)gj + IZ(BIU +By;) = —Vacos(a — 1) — Vacos(a — Oy)

Jj=1 j=1

(8.9.22b)
so that,
an1j = Ajj+ Ay J = 1,2,..,N (8.9.23a)
N
ayiine1 = Y (B +By;) (8.9.23b)

j=

where now Atlj and Ale are computed from Eq. (8.9.14) and B’lj and B’Nj from
Eq. (8.9.15). .
The components of b again follow from Egs. (8.9.18) and (8.9.21). From
Eq. (8.9.18),
bi = —Vesin(a—10;), i=1,....N (8.9.24a)

and from Eq. (8.9.22),

bni1 = —Vawcos(a— 1) — Vecos(a — by) (8.9.24b)
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With all the elements of g;; determined from Eqgs. (8.9.21) and (8.9.23) and the
elements of b from Eq. (8.9.24), the solution of Eq. (8 9.19) can be obtained by the
Gaussian elimination method [42]. The elements of X are given by

| R 25 B
= B = Y ay | =N (8.9.25)
ii j=i+1
where
- k=1,..,N
—1 .
(k) _ (k=1) %k -1y J=k+1,..N+1
Y=y 0% o i=k+1,. N+1 (8.9.262)
ek (0)
aij = dajj
a(k 1) k=1,...,N
o = oY S, sk LN (8.9.26b)
Dk b0 = b,

8.9.1 Viscous ErrecTs

The viscous effects can be introduced into the panel method by (1) replacing the zero
normal-velocity condition, Eq. (8.9.11), by a nonzero normal-velocity condition
Viw(x) and by (2) satisfying the Kutta condition, Eq. (8.9.17), not on the surface of the
airfoil trailing edge but at some distance away from the surface.

Here it will be assumed that the nonzero normal-velocity distribution Vj,,(x) along
the surface of the airfoil and in its wake is known, together with the distance from the
surface, say displacement thickness 6", where the Kutta condition is to be satisfied.
We now describe how these two new conditions can be incorporated into the panel
method.

To include the nonzero normal-velocity condition into the solution procedure, we
write Eq. (8.9.18) as

N N
D ALgi+1>  Bigi+ Vasin(a — 0;) = viy(xm,) (8.9.27)
j=1 j=1

To satisfy the Kutta condition at the normal distance 6" from the surface of the trailing
edge, called the “off-body” Kutta condition, the total velocities at the N-th and first
off-body control points are again required to be equal. Since the normal velocity
component is not zero, we write the off-body Kutta condition at distance 6" as

V)y = —=(V), (8.9.28)
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where Vis the total velocity at the two control points. The off-body total velocities
are computed from
VY

Vi— 4 Vtv = V"sing + V'cos¢ (8.9.29)

V = =
Vv Vv

where V" and V' are computed by expressions identical to those given by Egs.
(8.9.12) at the two off-body control points, I = 1, I = N, that is,

(v, = ZA q; + TZB,, + Vosin(a — ) (8.9.30a)
j=1 j=1
(v, = ZA,]q] + TZB + Ve cos(a — ) (8.9.30b)
j=1 j=1
and where
¢ = tan"'[(V"),/(V"),] (8.9.31)

With Egs. (8.9.30), the expression for the total velocity given by Eq. (8.9.29) can be
written as

N N
V = Z(AZ sing —|—AIJ cosp)q; + ’EZ BI/ sing + BIJ cose)
j=1 j=1
+ Vesin(a — 0;)sing + Ve cos(a — 07)cose (8.9.32a)
or as
N N
V=Y Ajgi+1Y Bj+ Vacos(a— 0 — ¢) (8.9.32b)
j=1 j=1
where
A',j = AJ;-sing + Aj;-coso, B’,j = Bj;-sing + Bj;-cos¢ (8.9.33a)
A = L0, — 6) ™ 4 cos(6) — 0,)8 (8.9.33b)
b= 2 ! J I ! b o
1. T1j+1
A}j =3 [sm(ﬁl — 0;) B; — cos(6; — 0;) In rl;,; ] (8.9.33¢)
B} = —A}, Bl = Al (8.9.33d)
If we define

0 = 6,+¢ (8.9.34)
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then it can be shown that Eq. (8.9.32b) can be written as

vV = XN:A',jqj +1 ZN:BQJ. + Ve cos(a — 67) (8.9.35)
i=1 j=1
where
Ay = 2177 [sm( 0;) By — cos(6; — 6)) ln%] (8.9.36a)
B’,j = % [sin(ﬁ} 0;) In’L ”l.j +cos( )61]] (8.9.36b)

The off-body Kutta condition can now be expressed in a form similar to that
of Eq. (8.9.22). Applying Eq. (8.9.28) to Eq. (8.9.35), we write the resulting
expression as

N N
ZA;quj + rZBjVj + Ve cos(a — )
j=1 j=1

N
thﬂ/ +1) Bjj+ Vcos(a — 6)) (8.9.37a)
j=1 ji=1

z:l( 1 T AN q,—l—rz:l 1j T Byj) + Vacos(a — 0)) + Vecos(a — y) = 0
j= =

(8.9.37b)

8.9.2 FLowrieLD CALCULATION IN THE WAKE

The calculation of airfoils in incompressible viscous flows can be accomplished
without taking into account the wake effect; that is, the viscous flow calculations are
performed up to the trailing edge only and are not extended into the wake. This
procedure, which may be sufficient at low to moderate angles of attack without flow
separation, is not sufficient at higher angles of attack, including post-stall flows.
Additional changes are required in the panel method (and in the boundary-layer
method), as discussed in this section.

The viscous wake calculations usually include a streamline issuing from the
trailing edge of the airfoil. The computation of the location of this streamline is
relatively simple if conformal mapping methods are used to determine the velocity
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field. In this case, the stream function ¥ is usually known, and because the airfoil
surface is represented by y(x, y) = const, the calculation of the wake streamline
amounts to tracing the curve after it leaves the airfoil. When the flowfield is
computed by a panel method or by a finite-difference method, however, the results
are known only at discrete points in the field in terms of the velocity components. In
this case, the wake streamline is determined from the numerical integration of

dy v

= - 8.9.38
dx u (8.9.38)

aft of the trailing edge with known initial conditions. However, some care is
necessary in selecting the initial conditions, especially when the trailing edge is
blunt. As a general rule, the initial direction of the streamline is given to a good
approximation by the bisector of the trailing-edge angle of the airfoil.

The panel method, which was modified only for an airfoil flow, now requires
similar modifications to include the viscous effects in the wake which behaves as
a distribution of sinks. It is divided into nwp panels along the dividing streamline
with suction velocities or sink strengths g¢; = 4,; (N + 1 <i < N + nwp), distributed
on the wake panels and determined from boundary-layer solutions in the wake by
Eq. (8.9.12). As before, off-body boundary points and ‘““‘control” points are intro-
duced at the intersections of the 6" surface with the normals through panel boundary
points and panel control points, respectively. Summation of all the induced veloci-
ties, separately for the normal and tangential components and together with the
freestream velocity components, produces (V*);and (Vi);atI=1,2,..., N + nwp.
The wake velocity distribution, as the airfoil velocity distribution, is computed on the
o*-surface, rather than on the dividing streamline.

The total velocities are again computed from Eq. (8.9.29), with (V*); and (V);
from Egs. (8.9.30), except that now

N+nwp

(VY = ) Algi+rt ZB, + Vesin(a — ;) (8.9.39a)
j=1 j=1
N+nwp
V), = D Apg+ ‘L'ZBIJ + Vecos(a — ) (8.9.39b)
j=1 j=1

As before, the expression for the total velocity is written in the same form as
Eq. (8.9.32a), except that now

N-+nwp N
V= Z (AJ;-sing + Aj;-cosg)q; + IZ(B?j~sin¢+B§j'cos¢)
= =

+ Veosin(a — 67)sing + Ve (o — 0y)cosé (8.9.40)
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where A"j;, A'jj, B"; and B'y;, are identical to those given by Eq. (8.9.33). Similarly,
Eq. (8.9.35) with Aj; and Bj; given by Eq. (8.9.36) is

N-+nwp N
V=Y Aj;+1tY Bjj+ Vecos(a— b)) (8.9.41)
j=1 j=1

and the Kutta condition given by Egs. (8.9.37a) becomes

N+nwp N
Z Ayjgj T 7 ZB;VJ + Ve cos(a — 0))

j=1 j=1

N-+nwp N

= —| > A+t B+ Vecos(a—0) (8.9.42a)
j=1 j=1
or
N+nwp N

g 1 (A/lj +A§Vj)qj +1 g I(Bllj +B§vj) + Vecos(a — 8)) + Vawcos(a — ) = 0
j= j=
(8.9.42b)

In computing the wake velocity distribution at distances 6" from the wake
dividing streamline, the velocities in the upper wake are equal to those in the lower
wake for a symmetrical airfoil at zero angle of attack. This is, however, not the case if
the airfoil is asymmetric or if the airfoil is at an angle of incidence. While the
external velocities on the upper and lower surfaces at the trailing edge are equal to
each other, they are not equal to each other in the wake region since the 6*-distri-
bution in the upper wake is different from the ¢*-distribution in the lower wake.

I 8.10 Results for Airfoil Flows

The interactive boundary-layer method dicussed in subsection 8.8 employing the
improved CS model (subsection 5.4.2) has been extensively tested for single and
multielement airfoils with extensive flow separation. A sample of results were pre-
sented in Fig. 5.8b for an airfoil at low Reynolds number (see subsection 5.3.4) and in
Figs. 5.12 and 5.13 for airfoils at high Reynolds number (see subsection 5.4.2). Here
we present more results for single airfoils and also include multielement airfoils. For
additional results, see [40].

Figure 8.27 shows the variation of the lift and drag coefficients of the NACA
0012 airfoil for a chord Reynolds number of 3 x 10°. As can be seen from Fig. 8.27a,
viscous effects have a considerable effect on the maximum lift coefficient, (¢;)max,
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Fig. 8.27 Comparison between calculated (solid lines) and experimental values
(symbols) of: (@) ¢; vs «, and (b) ¢, vs ¢ NACA 0012 airfoil at R. =3 x 106,

of the airfoil, which occurs at a stall angle of around 16° and the calculated results
agree well with measurements [40,42].

Figure 8.27b shows the variation of the drag coefficient with lift coefficient. As
can be seen, the measurements of drag coefficients do not extend beyond an angle of
attack of 12 degrees and at smaller angles agree well with the calculations. The
nature of the lift-drag curve is interesting at higher angles of attack with the
expected increase in drag coefficient and reduction in lift coefficient for post-stall
angles.

Figure 8.28 shows the variation of the local skin-friction coefficient ¢ for the
same airfoil at the same Reynolds number. As can be seen, flow separation occurs
around o = 10° and its extent increases with increasing angle of attack. At an angle
of attack o = 18°, the flow separation on the airfoils is 50% of the chord length.

Figure 8.29 shows a comparison of calculated and experimental velocity profiles
for the NACA 663-018 airfoil. The transition location was at £=0.81. The

Fig. 8.28 Variation of local skin-friction coefficient distribution. NACA 0012 airfoil at
R.=3x10°
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Fig. 8.29 Comparison of calculated (solid lines) and measured (symbols) velocity
profiles for the NACA 665-018 airfoil for & =0°, R.=2 x 10°.

calculations with transition location at Z=0.81 made use of the CS model with
low Reynolds number and transitional flow effects (subsection 5.3.4). As in the
results for Fig. 5.8b, the agreement between the calculated and experimental results
is very good.

The accuracy of the calculation method employing the CS model has also been
investigated extensively for several multielement airfoil configurations. Here we
show the results for the airfoil/flap configuration of Van den Berg and Oskam, see
[40], which corresponds to a supercritical main airfoil (NLR 7301) with a flap of
32% of the main chord at a deflection angle of 20 degrees and with a gap of 2.6%
chord. Measurements of surface pressure and velocity profiles were obtained at
a chord Reynolds number of 2.51 x 10° and for angles of attack of 6 and 13.1
degrees.

Fig. 8.30 (a) NLR 7301 airfoil with flap and (b) calculated and measured lift
coefficients.
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Figure 8.30b shows a comparison between calculated and measured lift coeffi-
cients. While some discrepancies exist at higher angles of attack, the stall is pre-
dicted accurately. It is believed that these discrepancies are due to the merging of the
airfoil shear layer with the boundary-layer on the upper surface of the flap which was
not considered in the calculation method described in [40].

8.11 Prediction of Three-Dimensional Flows
with Separation

The calculation method described in the previous section for airfoils and multiele-
ment airfoils has also been extended and evaluated for wing and multielement wings
as described in [40]. Here again we present results for one wing and two slat-wing-
flap configurations.

Figure 8.31a shows the lift coefficient variation with angle of attack for the RAE
wing tested by Lovell, see [40]. This wing has an airfoil section having a consider-
able rear loading with the maximum thickness of 11.7% occuring at 37.5% chord and
the maximum camber occuring at 75% chord. It has no twist nor dihedral, but has
a quarter-chord sweep angle of 28°, a taper ratio of 1/4 and an aspect ratio of 8.35.
The experiments were conducted at a test Reynolds number of 1.35 X 10® with one
set of measurements corresponding to free transition and with another to fixed
transition for a freestream Mach number of 0.223. The wing has a semispan of 1.07
m and a mean aerodynamic chord of 0.26 m.

The calculations for this wing were performed with the Hess panel method [40]
and the inverse boundary-layer method of Cebeci [40] described in Section 8.8.
Initially, the calculations were done with angle of attack increments of 2° until 10°.

Fig. 8.31 (a) Effect of turbulence model on the lift coefficient of the RAE wing and (b)
distribution of flow separation along the span at two angles of attack.
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The increment in angle of attack is reduced to 1° beyond that point. Results show that
with the original CS turbulence model (see Section 5) the lift coefficient keeps
increasing past the measured stall angle (around 12° with free transition). With the
modified CS turbulence model, on the other hand, the agreement between measured
and calculated lift coefficient is excellent up to 14°. At 15°, the boundary layer
calculations did not converge near the trailing edge due to the large separated flow
region.

Figure 8.31b shows flow separation along the span at angles of attack, o = 13°
and 14°. As can be seen, there is a significant increase in the amount of flow
separation with one degree increase in «.

Figures 8.32 and 8.33 present results for the RAE slat-wing-flap configurations
with the slat deflected at 25°, and the flap deflected at 10° and 25°, respectively.
Again, the inviscid lift coefficient is included to show how the introduction of the
viscous effects allows obtaining reasonable predictions of lift and drag coefficients.
The discrepancies may be due to the merging of shear layers which was not
accounted for. In addition, the large recirculating flow region in the slat cove — larger
at low angles of incidence — was removed with the fairing and may contribute to the
disagreement at low angles of attack.

Stall is not captured for the configurations tested. However, it is worthwhile to
note that, at the present time, the reliable prediction of stall for slat-wing-flap
configurations still offers significant challenges for two-dimensional flows. Unlike
for single element and wing-flap configurations, stall can occur without flow sepa-
ration on the body but may be due instead to a sudden increase of the wake thickness
thus reducing the circulation on the entire configuration. Therefore, the results of the
calculation method of [40] should be viewed as quite satisfactory.

Fig. 8.32 RAE wing with slat deflected at 25° and flap deflected at 10°, (a) wing cross-
section, (b) lift coefficient, and (c) drag coefficient.
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Fig. 8.33 RAE wing with both slat and flap deflected at 25°, (a) wing cross-section,
(b) lift coefficient, and (c) drag coefficient.

I Problems

8.1 For a two-dimensional steady incompressible laminar and turbulent flow, the
energy equation Eq. (3.3.23), and its boundary conditions for specified wall
temperature can be written as

oT  aT PT 9 —
—dv— = a— — —(T P8.1.1
u6x+v6y aé)y2 ay( V) (P8.1.1)

y=0, T=T,(x) (P8.1.2a)
y=0, T=T, (P8.1.2b)

Using the turbulent Prandtl number concept, Pr,, and the Falkner-Skan trans-
formation given by Eq. (8.2.5), show that Eqs. (P8.1.1) and (P8.1.2) can be written as

n,m+1 ., / /08 ,0f

—_— 1-— = —— g P8.1.3
(eg') +——fe' +n(1 - g)f x( 5% ar (P8.1.3)
n=0 g=0 (P8.1.4a)
n="mn, g&=1 (P8.1.4b)

Here a prime denotes differentiation with respect to 1 and
T, —T X d

= = —(Ty — T, P8.1.5

8 T, —T, n To—T, dx( w e) ( a)

1 Pr
= —(1+e— P8.1.5b
‘T hr ( + EmPrt) ( )
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8.2 The calculation of convective heat transfer in boundary-layer flows requires
the solution of the continuity, momentum and energy equations. For two-
dimensional incompressible flows, this can be done by either solving Eqgs.
(5.2.8), (5.2.9) and (P8.1.1) together or by first solving Eqgs. (5.2.8) and
(5.2.9) and then Eq. (P8.1.1) since the energy equation is not coupled to
the momentum equation. Here we will consider the second choice for conve-
nience and seek the solution of the energy equation separately from the solu-
tion of the continuity and momentum equations which is already available.
Solve Eq. (P8.1.3) subject to the boundary conditions given by Eq. (P8.1.4).
Use the procedure similar to the momentum equation discussed in Section
8.2 and outlined below.

1. First reduce the system to first order by defining

d=p (P8.2.1)

and using the same definitions of u, v for f/ and f” in the momentum equation,
Eq. (8.2.6).
2. Write difference approximations for the two first-order equations and express
the first-order energy equation in the following form

() + ()1 + G3) (g +g1) = (), 1<j<T (#822)

3. Write the resulting system in the following form

b.c 1 0 0 0
I R S R
,,,,,,,,, R TR U SRR
(s3) (s0)j ¢ (83); (s); 0 0
0 o : o : 1 ~hj,
S Lo 2 2
D(s3)y (52 YT ;
b.c. L0 0o 1 0
¢ R (P8.2.3)

[(r.)o]
()0
§ [g,-j - {(n)jj

p; N (rz)/
[g\,j ((n)./j
\Zi/)] L (1),

Note that there is no need for Newton’s method since the energy equation is linear.
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Noting that Eq. (P8.2.3) is of the matrix-vector form given by Eqs. (8.2.24), use
the block elimination method to solve the linear system. Check your algorithm,
which we shall call SOLV2 (subsection 10.13.2). Note that this algorithm is written
for wall and edge boundary conditions in the form
Wall:

180 + a1po Yo (P8.2.4a)

Edge:

Bogs +Bips = 711 (P8.2.4b)

When gq is specified, ag=1, a; =0 and v is known. When py is specified,
ap=0, a; =1 and v is known. Similarly, when gy is specified 8p =1 and §; =0.
When pj is specified g =0 and §; =1.0

In our problem, ap=1, a1 =0, =1 and §; =0.

8.3 Using the computer program discussed in Problem 8.2 and the computer
program (BLP2) for solving the continuity and momentum equations (Section
10.3), obtain solution of the energy equation for similar laminar flows with
uniform wall temperature (n =0). Take m =0, with Pr=0.72. Compare the
wall heat transfer parameter g’,, with the values given below.

m g,
0 0.2957
1 0.5017

8.4 Repeat Problem 8.3 for a laminar and turbulent flow over a uniformly heated flat
plate of length L =3 ft, u, = 160 ft/sec, v=1.6 x 107* ft%/cm. Assume transi-
tion at x =1 ft and take Pr, = 1.0.

8.5 For an incompressible laminar and turbulent flow over an infinite swept
wing, the boundary-layer equations are given by the continuity equation,
Eq. (5.2.8), x-momentum equation, Eq. (5.2.9), and the z-momentum equations
given by

ow ow Pw 9 ——
- T (W
u o +v 3 v6y2 6y(wv). (P8.5.1)

(a) Using the eddy viscosity concept, &, and the Falkner-Skan transformation
given by Eq. (8.2.5), show that Eq. (P8.5.1) and its boundary conditions
y=0, w=0 (P8.5.2a)

y=20, w=w, (P8.5.2b)
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can be written as

+1 dg’ af
ho')’ m 1o 98 19 P8.5.3
(be") + ——/"¢ o8 ( )
n=0 g=0 (P8.5.4a)
n=mn, & =1 (P8.5.4b)

Here a prime again denotes differentiation with respect to 7 and
b=1+e, ¢ =— (P8.5.5)
We

(b) Express the eddy-viscosity formulation given by Egs. (5.7.4) for three-
dimensional flows in terms of Falkner-Skan variables.

8.6 Using the boundary-layer program BLP2 discussed in Section 10.3, develop
a new program to solve the infinite swept wing equations, which, in transformed
variables, are given by Eqgs. (8.2.7), (P8.2.3) and (P8.2.4). Follow the steps below.
1. Reduce Eq. (P8.5.3) to second order by defining

g =G

and to a system of two first order equations by defining

G =pr
Use the same definitions of u, v for f’ and f” in the momentum equation,
Eq. (8.2.6).
2. Write difference approximations similar to the procedure used in
Problem 8.2.

3. Solve the resulting linear system with SOLV2.

8.7 As discussed in [1,41], for incompressible flows the external velocity distribu-
tion for an infinite swept wing can be obtained from a panel method for two-
dimensional flows. The streamwise external velocity u./v, can be calculated

from
5—: - (::) 2Dcosx (P8.7.1a)
and the spanwise velocity w,/v, from
Ye _ sin 2 (P8.7.1b)

Ve

Here 4 is the sweep angle and v, is the total velocity,

Vo = \/U%, + w2 (P8.7.2)



Differential Methods with Algebraic Turbulence Models 353

(a) Use
the panel method (HSPM) given in Section 10.4 and calculate u,/Ve and u,/Ve
for the upper surface of an infinite swept wing having the NACA 0012 airfoil
cross-section (given on the companion website: store.elsevier.com/companions/
9780080983356) and A =30°, o =0°.
Note: The identification of upper and lower surface requires the location of the
airfoil stagnation point.
(b) Using the computer program discussed in Problem 8.4, obtain laminar flow
solutions up to flow separation for the external velocity given in (a).
8.8 Repeat Problem 8.7(b) for a laminar and turbulent flow with transition at
x/c =0.20.
8.9 In some problems, it is desirable to start turbulent flow calculations by speci-
fying the initial velocity profiles. A convenient formula for this purpose is to
use Eq. (4.4.41) for y© < 50 and Eq. (4.4.38) for y© > 50.
In terms of the Falkner-Skan variables, Eq. (4.4.41) can be written as

4
.2 em 7I§e—
S o= , . 4 by (P8O
I ci+cln (em) +c31n (e1m) +ca(ern) SoSns -
1 1

where ¢y, ¢p, c3 and ¢4 are the coefficients of Eq. (P8.9.1) and

c UpX Uw L
e1 = VR, 3" R, = T — RyiE, R = =~ (P8.9.2)

1%

Similarly, for n > 50/e;, Eq. (4.4.38) can be written as

Vo= i (en) e g} () (2)]
fyl—=—-In|emm|+c+—-|II{1 —cosm— |+ |— ] —|— (P8.9.3)
cr K K Ne Ne Ne

where

5
7. = VR« ; (P8.9.4)

It is clear that a complete velocity profile for a turbulent boundary-layer can be
obtained from Egs. (P8.9.1) and (P8.9.3) provided that the boundary-layer thickness
o0 and the profile parameter IT are known. Since they are not known at first, they must
be calculated in a manner they are compatible with Ry and ¢y

A convenient procedure is to assume 6" (v = 0) and, calculate IT from Eq. (4.4.38)
evaluated at the boundary-layer edge, n = 7,. The initial estimate of ¢ is obtained
from the power-law relation, Eq. (7.2.10b), which for n =7

0
-~ 0.10
0
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Here 6 is calculated from the specified value of Ry,

9= R, (P8.9.5)

Ue

The next values of 6" (v =1, 2,...,n) are obtained from

0+ — g0 _ 9 (P8.9.6)
(%)
do
Where, with ¢(= R¢/R;) given by Eq. (4.4.39c) and ] denoting the momentum
thickness calculated from Eq. (P8.9.3),

= 60— o¢, (P8.9.7a)
dé de, dIl
=~ = (P8.9.7b)
and with
drl 1
atl _ 1 P8.9.
5 o (P8.9.7¢)

obtained by differentiating Eq. (4.4.40) with respect to 6.

Using the computer program BLP2 (Section 10.3) and the subroutine IVPT, see
subsection 10.13.1, both given on the companion website: store.elsevier.com/
companions/9780080983356, we can perform turbulent flow calculations for
a given external velocity distribution with initial values of Ry and H given at £ = &,

(a) Compute turbulent flow on a flat plate of length 20 ft for a Reynolds number per
foot, u./v, equal to 10°. Take uniform stepsin & (4£) equal to 1, with h; = 0.01,
k=1.14,&y=5 ft with Ry and H at £ = £, equal to 6000 and 1.4, respectively.

(b) Repeat (a) with 4x =2 ft.

Note: Experience shows that the calculations which begin with velocity
profiles generated in this way show oscillations in wall shear for x-stations
greater than xg. A convenient procedure is to perform calculations, say
for the first two x-stations x; and xp, then average the solutions in the
midpoint of xy and x1, x % , and xq and xp, xq % and then average the solutions
X % and x; % at x; to define a new solution and start the calculations at x = x;.
Another useful procedure which is effective in avoiding oscillations is the
use of first-order backward differences for the streamwise derivatives.
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I 9.1 Introduction

In Sections 9.2 and 9.3 we discuss the numerical solution of the boundary-layer
equations employing transport-equation turbulence models. There are several
models that can be used for this purpose, and there are several approaches that can
be pursued. For example, in one approach the solution of the k- model equations
can be obtained with and without the wall functions as discussed in subsection
6.2.1. In the case without wall functions, the usual boundary conditions are replaced
by boundary conditions specified at some distance y =yy. In the case with wall
functions, the boundary conditions are specified at y = 0. Another approach which
we shall refer to it as the zonal approach, the boundary-layer equations are solved in
two regions with each region employing different turbulence models. In effect this
approach may be regarded as the use of the k-¢ model with wall functions. In
Section 9.2 we discuss the numerical solution of the k-& model equations with this
zonal method; in Section 9.3, the numerical solution of the k- model equations
with and without wall functions; and in Section 9.4, the numerical solution of the k-
w and SST model equations.

In Section 9.5 we consider four turbulence models discussed in Sections 6.2
and 6.3 and evaluate their relative performance for free-shear flows and attached
and separated boundary-layers flows. In discussing the performance of these
transport-equation turbulence models, it would be more consistent with this book
to present results obtained from the solution of the boundary-layer equations.
However, such a study is yet to be conducted for a range of flows including
free-shear layer and wall boundary layers with and without separation. For this
reason, we present results obtained from the solution of the Navier-Stokes
equations.

I 9.2 Zonal Method for k-¢ Model

In the zonal method considered here, the boundary-layer is divided into two
zones. The inner zone is identified by y < yj, yg = (you./v) = 100, where the
continuity and momentum equations, Egs. (5.2.8) and (8.2.1), are solved subject
to the wall boundary conditions given by Eq. (8.2.2a), with eddy viscosity &,
given by the inner region of the CS model. In the outer zone, y >yg, the
continuity Eq. (5.2.8), momentum Eq. (8.2.1), turbulent Kkinetic energy
Eq. (6.2.7) and rate of dissipation Eq. (6.2.8) are solved subject to the inner
boundary condition given by Egs. (6.2.13) and (6.2.14) and edge boundary
conditions given by Eqgs. (6.2.16) and (6.2.18), with eddy viscosity &, computed
from Eq. (6.2.6).
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The turbulence equations and boundary conditions for this zonal method are
provided in the following subsection; the finite-difference equations together with
Newton’s method are discussed in the subsequent subsection.

9.2.1 TurBULENCE EQUATIONS AND BOUNDARY CONDITIONS

As with the differential method with algebraic turbulence models, we again express
the turbulence equations in terms of transformed variables. The mean-flow equa-
tions remain the same as those considered in Chapter 8, namely, Egs. (8.2.6)
and (8.2.7). The turbulent kinetic energy and rate of dissipation equations and
their boundary conditions are also expressed in transformed variables. With the
transformation

v = Jaoxf, 1= ,/%y, k= =2 9.2.1)

and with the definition of stream function, Eq. (8.2.3), they can be written as

dk o)
(b2k) + mifk' + & (£") — & — 2mf'k = x(f’a— —K a—f) (9.2.2)
X X
£ &2 de )
(b38/)/+l’l’l]f8/ + Cglflge; ")2 —Caf T (3m — l)f'g = x(f’a — e'a—£>
(9.2.3)
where the tilde has been dropped from the equations and
—+ + 1
by = 14m py = pylm O, T (9.2.4)
o) O¢ v 2
With the introduction of new variables
ff=u u=v, =5 =g (9.2.5)
Egs. (8.2.6), (9.2.2) and (9.2.3) can be written as
/ 2 614 af
1— = — =V 2.
(blv) +m1fv+m( u ) x(uax U6x> (9.2.6)
dk )
(bzs)/+m1fs + e:gvz —&—2muk = x(ua—x — sé) 9.2.7)
2
/ € L 5 € de af
(b3q) +mifg + Cs1f1%e;v —Cafr - (3m — 1)ue = x(ua —q5-) 928)
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These equations form a system of seven first-order differential equations with
seven dependent variables (f, u, v, k, s, € and g) for the outer zone and three for
the inner zone. The definitions, ¥ =0, s'=0, ¢ =0, and ¢ =0, respectively,
replace the last two expressions in Eq. (9.2.5) and the equations (9.2.7) and (9.2.8)
in the solution algorithm to represent the equations for the inner zone, so there are
seven first-order equations from the wall to the edge of the boundary layer that
require solution subject to the seven boundary conditions given by Egs. (8.2.2),
(6.2.14)—(6.2.16) and (6.2.18), which in terms of transformed variables can be
written as

n=0 f=u=0 (9.2.92)
K? )
n =m0, (en)es = Refucus &= (en)es? (9.2.9b)

ok
n=mn, u=1.0, xa—+8+2m2k = 0,
X
(9.2.9¢)
e £
xa—F C82f2?—|- (3m— 1)8 =0

9.2.2 SoLuTION PROCEDURE

In general, differential methods for turbulent flows require the specification of initial
profiles at x = x. With methods employing algebraic viscosity models, the initial
profiles correspond to streamwise u and normal v velocity profiles. However, when
the calculations are performed for both laminar and turbulent flows, as was discussed
in Chapter 8, the initial velocity profiles may be assumed to correspond to those at
the transition location. With methods employing transport-equation models, since
the calculations are for turbulent flows, it is often necessary to specify initial profiles,
which in the case of k-e model, correspond not only to u and v profiles, but also to k,
&y and ¢ profiles.

Experience with the box method discussed in Chapter 8 has shown that when
profiles are used to start the turbulent flow calculations, the solutions at the
subsequent x-locations oscillate. A common cure to this problem is to compute
the first two x-stations equally spaced and take an average of the solutions at the
midpoint of x¢ and x;, say x, and x; and xj, say x,. Then another average of
the solutions is taken at x,, and x, defining a new solution at x;. When new calcu-
lations begin at x, with averaged profiles at x = xj, the solutions at x > x; do not
exhibit oscillations.

While this cure is relatively easy to incorporate into a computer program and in
most cases provides stable solutions in adverse pressure gradient flows, sometimes
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the solutions may breakdown due to oscillations. On the other hand, the author and
his colleagues observed that if one uses backward difference approximations for the
x-derivates in the boundary-layer equations, rather than central differences as used
in the box method, the solutions do not oscillate and are more stable. For this
reason, when the box method is used for turbulent flow calculations with initial
profiles, we will represent the x-derivates with backward finite difference
approximations.

As discussed in Section 6.2, the k-e model equations without wall functions use
“wall” boundary conditions specified at some distance yq outside the viscous sub-
layer. The boundary conditions on u and v are usually represented by Egs. (6.2.10)
and those for k and € by Eqgs. (6.2.13) and (6.2.14), although in the latter case, there
are other choices. In such cases, the friction velocity u, appearing in # and v equa-
tions is unknown and must be determined as part of the solution. One approach is to
assume u;, To (say from the initial profiles at the previous x-station), solve the
governing equations subject to the “wall” and edge boundary conditions. From the
solution determine T at yo,

9
0 = 0(em)y <a—;t>0 (9.2.10)

and compute u, from Eq. (6.2.11). If the calculated value of u; does not agree with
the estimated value within a specified tolerance parameter 6y,

|t — k| < 6y (9.2.11)

then a new solution is obtained with the updated values of u, and t¢. This procedure
is repeated until convergence.

This iterative procedure can be replaced with a more efficient one by treating u,
as an unknown. Since u; is a function of x only, we can write

u, =0 (9.2.12)

thus increasing the number of first-order equations from seven to eight. Although the
A;, B, C; matrices now become 8 x 8, rather than 7 x 7, this procedure does not
increase the storage much and allows the solutions to converge faster, especially for
flows with strong adverse pressure gradient.

In the solution procedure described here, the numerical method is formulated for
eight unknowns, not only for the k-¢ model equations with the zonal method but also
for the k-¢ model equations with and without wall functions and with the zonal
method. This choice does not increase the complexity of the solution procedure, and
as we shall discuss in Chapter 10, it paves the way to solve the k- model equations or
others in an inverse mode if the solution procedure is to be extended to flows with
separation (see Section 10.9).
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Inner Region

The numerical solution of the k- model equations with the zonal method requires
that in the inner region Eq. (8.2.6) is solved subject to the true wall boundary
conditions f= 0, u = 0. Since, however, the solution procedure is being formulated
for the general case which includes the solution of the k-¢ model equations without
wall functions, it is nescessary to specify a boundary condition for u.. This can be
done as described below.

From the definition of u, (E ue\/?> , We can write
oy = \/c:f (9.2.13a)
Ue 2

\/7
- (9.2.13b)

or in transformed variables,

w =
Ry
The boundary condition for w is
wo = @ (9.2.14)
/4
Ry

Next the eight first-order equations can be written by letting ' =, k¥ =0, s’ =0,
£ =0,w=0,q =0, f =uand the momentum equation (9.2.6). For j = 0, with the
first three equations corresponding to boundary conditions, the equations for the
inner region are ordered as

fo=0 (9.2.15a)
up =0 (9.2.15b)
wo = %;_j (9.2.15¢)
W= v (9.2.15d)
K =0 (9.2.15¢)
s =0 (9.2.15f)
¢ =0 (9.2.159)
qd =0 (9.2.15h)

With finite-difference approximations and linearization, they become
oo = (r1)y =0 (9.2.16a)
oug = (r2)g = 0 (9.2.16b)
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ovg — 2v/Rewodwy = (r3)y = VRWS — vo (9.2.16¢)

h;
ouj — duj_y — é(avj +0vi1) = (ra); = w1 —uj+ iy (9.2.16d)

okj — 0kj—1 = (rs); = 0 (9.2.16¢)
0s; — 0sj—1 = (1’6)]- =0 (9.2.161)
ogj — 0gj—1 = (r7); = 0 (9.2.16g)
ogj — 6gj—1 = (rs); = 0 (9.2.16h)

For 1 <j <, the order of the equations is the same as those above except that the
first three equations are replaced by

W =0 (9.2.17a)
f=u (9.2.17b)
momentum Eq.(9.2.6) (9.2.17¢)

In linearized form they can be written as

5Wj — (5Wj_1 = (r1 )j =0 (9.2.18&)
h;
of — Ofi—1 — é(auj +oui1) = (r2); = fi-1 —fi + by (9.2.18b)

(51);0fj + (52);0fj—1 + (53);0u; + (s4);0uj—1 + (s5);00; + (s6),0v—1 = (r3);
(9.2.18¢)

The finite-difference procedure for Eq. (9.2.6) is identical to the procedure
described in subsection 8.2.1. The only difference occurs in the solution of
Eq. (9.2.6) where we use three-point or two-point backward finite-difference
formulas for the x-wise derivatives rather than central differences as we did in
subsection 8.2.1. For this purpose, for any variable V, the derivative of %—Z is
defined by

v " n—2 n—1 n
) = A VAL AV ARV (9.2.19)
where for first-order
1 1
Al =0, Ay= ——— A3 = —— (9.2.20)

Xp — Xp—1 Xn — Xp—1
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and second-order

A — (xn - xnfl)
| =
(xn—2 - xn—l) (xn—2 - xn)
Ay = (n = Xn2) 9.2.21)
(xnfl - xn72) (xnfl - xn)
A3 _ an — Xn—1 — Xp-2

(xn - xn—2) (xn - xn—l)

Representing the x-derivatives in Eq. (9.2.6) with either two-point or three-point
backward difference approximations at x=x" and using central differences in the
n-direction, we can write Eq. (9.2.6) as

7! [(bv);l - (bv);l—l} +mi(fv);_yp +m" {1 - (“2);—1/2}

=2, 5 (w), (5), )

Linearizing we get

(9.2.22)

- (bpouy — o1 )

71(]‘ ov; + v} oy + fL ovj1 4+ V) o )

—m" (ujéuj + uj,léuj,l)

AN 9 (ou*\" (9.2.23)
-5l (ax>,. " (a)c)jl‘s“fl]
of of of
|G ) oo (), e
ad
f"‘af(f) 0]

From Eq. (9.2.19), it follows that

o [ou*\" 9 [ou*\"
() =24, (=) =24
Gu(ax)j 345 Gu(ax)j_l Wit

(9.2.24)
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The linearized expression can be written in the form given by Eq. (9.2.18c). The
coefficients (s1); to (s¢); and (r»); are given by

(s1); = %(ml +x”) vy (9.2.25a)
1 l’l

(s2); = 5{mi +2" Jui, (9.2.25b)
(s3); = —(m"—l-x;A3)M;l (9.2.25¢)
(54)j = —(m” —|—%nA3)MJ’-11 (9.2.25d)

din m" . x2 6f n
(ss); = by b + 5L+ (—x>j (9.2.25¢)

—1zn af "
(s6); = —h; bj, —f + (ax) (9.2.25)

(V3 [ : [ bv)n j 1] + mf fv)j 1/2 + m" {1 (uz);.l_l/z”

n (9.2.26)

- 2x" L?X( )]j 1/2 2 [(Ua), " (va>,’—1}

The linearized finite-difference equations and their boundary conditions, Egs.
9.2.16) El)'ld (9.2.17), are again written in matrix-vector form, with eight dimensional
vectors ¢ ; and 7]- for each value of j defined by

ofj (rl)j
(5uj (rz)j
0v; (’"3)1'
3 = g’;f , T = E::;j (9.227)
58]' (rﬁ)j
0qj (”7)]'
ow; (rs);

leading to the following definitions of 8 x 8 matrices A;, B; and C; in the inner region,
0<j<Js
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1 0 0 0 0 0 0 0
o1 0 0 0 0 0 0
00 1 0 0 0 0 —2/Rw
a— |0 ! $ 0 0 00 0 (9.2.284)
0O 0 0 -1 0 0 0 0
00 0 0 -1 0 0 0
00 0 0 0 —1 0 0
0O 0 0 0 0 0 -1 0
00 0 00000
00 0 00000
00 0 00000
01 - 00000
G =10 o 1000 o 0SISh (9.2.28b)
00 0 01000
00 0 007100
00 0 00010
0 O 0 0 0 0 1
1 % 0o o 0o 0 o0 0
(s1); (s3); (5, 0 0 0 0 0
Aj = 0o~ hgl o 0 0 00 1<j<js—1 (9.2.28¢)
O 0 0 -1 0 0 0 0
o 0 0 0 -1 0 0 0
0o 0 0 -1 0 0
0o 0 0 0 -1 0
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o o
I
—_

)
=)
~

1<j<j (9.2.28d)

S O o O O

S O O O O o o O
SO O OO O o o O
=l el el ol = ehlohle]
SO O O O O o o O
SO O O O O OO

Interface between Inner and Outer Regions

The first-order system of equations are now ordered as

W =0 (9.2.292)
ff=u (9.2.29b)
momentum Eq. (9.2.6) (9.2.29¢)
b.c. Eq. (9.2.9b) (9.2.29d)
b.c. Eq. (9.2.9b) (9.2.29)

W =v (9.2.291)

K =s (9.2.29¢)

e =g (9.2.29h)

The resulting A; and C; matrices from the linearized equations, with B; given by
Eq. (9.2.28d) and (s1); to (se); by. Eq. (9.2.25) at j = j; are

0 0 o 0 0o 0 0 1
1% 0o o 0o 0 0 0
(s1);, (s3); (s5); O 0 0 0 0
0 0 D D> 0 D; 0 0
Ai =10 0O Dy Ds 0O Dg 0 0 (9.2.30a)
o -1 M09 0o o o0 o
0 0 o -1 2L o 0o o
0 o o o -1 o
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00 0 0 0O 0 0 0
00 0 0 0O 0 0 0
00 0 0 0O 0 0 0
00 0 0 0O 0 0 0
Gs=lo0o0 0 0 0 0 0 0 (9.2.30b)
o1 220 0o o 0o o0
oo o 1 2o o o
o0 o o o 1 Mmoo

Here the fourth and fifth rows of Aj;; follow from the boundary conditions, Eq.
(9.2.9b), at n = ng. After the application of Newton’s method to the finite-difference
form of these equations, D to Dg are given by the following expressions.

Di = 6 (eh)es D2 = —2Racuky, Ds = (o)) 9.2.31a)
Dy = 2Rycukiv;,, Ds = —2Rycukjv7, Dg = —2ej, (9.2.31b)
The associated (r4);5 and (r5); are
(ra);, = Recyk? — () s (9.2.32a)
(r5);, = € —Recu(kiv;)? (9.2.32b)

Outer Region

The finite-difference approximations for the outer region defined for j; + 1 <
j < J are written by using a similar procedure described for the inner region
equations. The system of first-order equations are arranged similar to those given by
Egs. (9.2.29) except that Egs. (9.2.29d) and (9.2.29¢) are replaced by Eqgs. (9.2.7) and
(9.2.8). The resulting matrices from the linearized equations, with C; matrix
remaining the same as that given by Eq. (9.2.30b) for j, <j < J -1, are

0 0 0 0 0 0 0 —1
-1 % 0 o0 0 0 0 0
(s2); (s4); (s6); (s8); O  (s12); O 0
- |(e2); (a4); (a6); (ag); (a10); (ar2); O 0] . .
Bl ) Be) By O By By 0T SIS
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(9.2.33a)
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o 0 0 0 0 0 0 1
B0 00 0 0 0 0

(Sl)j (53)]' (SS)j (57)]' 0 (Sll)j 0 0

(al)j (0‘3)j (“5).,' (0‘7),' (0‘9)j (all)j 0 0

A =1(81); (Bs); (Bs); (B1), O (Bu); (B13); O
o -1 " 0 0o o0 0 0

o 0o 0o -1 o 0 0

o o o o o -1 Moo

Ay = (a1); (az); (as); (a7); (a9); (ann);
Br); B3); Bs)y, By 0 (Bi); (Biz)y
0 1 0 0 0 0 0
0 0 0 E 0 E; 0
0 0 0 Es 0 Ey 0

=l el e e e e =

]s+1<]§-]_1

(9.2.33b)

(9.2.33¢)

Here (s1); to (s12);, (1)}, to («v12); and (81); to (814); given in Appendix 9A correspond
to the coefficients of the linearized momentum (9.2.6), kinetic energy of turbulence
(9.2.7), and rate of dissipation (9.2.8) equations written in the following forms,

respectively,

(s1);0f; + (52);0fi—1 + (53);0uj + (s4);0uj—1 + (s5);00;
+(56);00j-1 + (57);0k; + (s8);0k;—1 + (s11);0¢;
+(s12),06-1 = (r3);

(a])jéﬁ + (az)jéﬁ,] + (a3)j(3uj + (a4)j(3uj,1 + (‘XS)j(SUj
+(a6);00j-1 + (a7);0k; + (ag);0ki—1 + (9); 5
+(a10);087-1 + (a11);08; + (et12);08j-1 = (ra);

(9.2.34)

(9.2.35)



370 Analysis of Turbulent Flows with Computer Programs

(81);0f; + (82);0fi—1 + (83)0u; + (B4);0uj-1 + (Bs);0v;
+(Bs);0vj—1 + (87);0k; + (Bs);0kj—1 + (B11),0¢) (9.2.36)
+(B12);0€j-1 + (813);04; + (B14),0g;-1 = (rs);

The last three rows of the A; matrix correspond to the edge boundary conditions
and follow from the linearized forms of Eq. (9.2.9¢c). They are given by

b= a0l (B
=2t o))

2\"
&
1, E3 = —c&ffgkzgi (9.2.37)
J
n 2 l’l

d (de
E. -1 £
4 = 3m" —l—x”a <6 )J Ce, fr—= k"

E>

where

9 [ok\" 9 (9"
—A %Y _ 4 238
dk (ax>, 3 Ge (ax>, 3 ©-2.38)

The coefficients (r7); and (rg); are given by

ok\"
(r1); = — [xn (ax) +é&) + 2m"k;’} (9.2.39a)
7

— % " T (82)3 n __ n
(rg); = —|x" + ce, /3 + (3m" —1)é} (9.2.39b)
dx/ kY

As before, the linear system expressed in the form of Eq. (8.2.24) can be solved
by the block-elimination method discussed in subsection 8.2.3. The solution
procedure, however, is somewhat more involved than that used to solve the
boundary-layer equations with an algebraic eddy-viscosity formulation since the
formulation of the zonal method requires that the linearized inner boundary condi-
tions resulting from Eq. (9.2.9b) also be satisfied as well as the usual boundary
conditions at the surface and the boundary-layer edge. Subsection 10.9.5 presents an
algorithm called KESOLYV for this purpose. It employs the block-elimination method
and follows the structure of the solution procedure used in the zonal method as well
as the procedure used in the solution of the k- model equations with and without
wall functions discussed in the following section. Sections 10.7 to 10.11 describe
a computer program for the zonal method discussed in Section 9.2 and the method
described in Section 9.3. A computer program is given on the companion website.
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9.3 Solution of the k-¢ Model Equations with
and without Wall Functions

The solution of the k-¢ model equations with and without wall functions is similar
to the solution of the k-e model equations with the zonal method. Their solution
with either one can be accomplished with minor changes to the solution algorithm
described in the previous section. In both cases changes are made to the A;; matrix,
Eq. (9.2.30a), by modifying or redefining the elements of the first five rows which
in this case correspond to the boundary conditions at y = yg or y = 0. In either case,
for j =0, after the five boundary conditions are specified, the next three equations
correspond to those given by Egs. (9.2.29f) to (9.2.29h). For j > 1, the ordering of
the first-order equations is identical to that used for the outer region, that is, the
equations are ordered according to those given by Eqgs. (9.2.29) except that
Egs. (9.2.29d) and (9.2.29¢) are replaced by Egs. (9.2.7) and (9.2.8), respectively.
In addition of course, the coefficients of the momentum, kinetic energy and rate of
dissipation are different.

9.3.1 SoLuTION OF THE k-¢ MODEL EQUATIONS WiITHOUT WALL FUNCTIONS

The k-e model equations without wall functions given by Egs. (6.2.7) and (6.2.8) for
high Reynolds number together with the continuity and momentum equations are
subject to the four boundary conditions given by Egs. (6.2.10), (6.2.13) and (6.2.15)
at y = yg and to those at the edge, n = J, given by Egs. (6.2.16) and (6.2.18) together
with the relation given by Eq. (6.2.12). To discuss the solution procedure in terms of
transformed variables, let us consider first the two boundary conditions at n = 7. In
terms of transformed variables, Egs. (6.2.10) become

/ 1

Jo = wo [;m(\/Rxwono) +c] (9.3.1a)
o d

20 fo = il +iﬂ (9.3.1b)
O0x 0 dx

where
1
R = 2% =52 k=041, m = % (9.3.2)
v

with f' = u, u,/u, = wo, Egs. (9.3.1) in linearized form can be written as

dug + agdwy = (r1), (9.3.3)
B10fo + B20ug + Bgowo = (r2) (9.3.4)
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where

1 1
ag = — = [EIH(VRXWOUO> +C} s B =a+m, a= )/z_n (9.3.52)

n

n—1 n—1
Br = —mo [ml +a<l —Won ﬂ , Bg = —ugmoa "o 5 (9.3.5b)
hC (wp)
(r1)g = wo Eln (x/R_wano> + c} — up (9.3.5¢)
n—1
(r2)o = uomo {ml + a(l - in" ﬂ - a(f(;’ fg‘l) — myfl! (9.3.5d)
0

The third boundary condition in Eq. (6.2.13), which makes use of Bradshaw’s
relation in Eq. (6.3.2), and with

and with ¢, defined by Eq. (6.2.6), can be written as

a) = Cuga—y

or in terms of dimensionless and transformed variables, as

k
a = C“EVR"U (9.3.6)

all evaluated at n = no with k = k/ uz and ¢ = £ as defined before. Linearization
gives

Y3000 -+ v40ko + vedE) = 13 (9.3.7)

Here we have dropped the tilde (*) from k and & and defined

Y3 = cuVReko, 74 = cuv/Ravo, 76 = —/eu (9.3.8)
r3 = \/Cu€o — cuVRukovo. (9.3.9)
The fourth boundary condition at 1 = 7y assumes
(em)cs = (em)i—e (9.3.10a)
that is,
poe_ K (9.3.10b)

ay Fe
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In terms of dimensionless quantities and transformed variables, in linearized form,
Eq. (9.3.10b) can be written as

030vg + 040ky + Og0eq = ry4 (9.3.11)

where
03 = —cyeo, b0a = 2cuvVRiko, 06 = —cyvo, 9.3.12)
c = (Kn-damping)2, T4 = CuUpEp —cux/ka(z) (9.3.13)

If y is sufficiently away from the wall, i.e. y(J{ > 60, then the damping term, such as
the one used in the CS model, is equal to 1.0.

The fifth boundary condition which connects 1y at y=yg and t,, at y=0, is
obtained from Eq. (6.2.12). With Thompson’s and log law velocity profiles, it can be
written as

x dt d,
0 = T+ @ yod—:+yod—i (9.3.14)
Here o is given by
a =05 clln(yo) ‘e Inyy 4¢3+ N (9.3.15)

Yo
where

c1 = 5.9488, ¢ = 13.4682, c3 = 13.5718, c4 = —785.20

4 _ XNg (9.3.16)
Yo = VRiing, yo =
0 e VR,

In terms of transformed variables, Eq. (9.3.14), after linearization, can be expressed
in the form

030v9 + 046ko + 6deg + dgdwy = (r5), (9.3.17)
where
k2
03 = R, -2 (9.3.182)
€0
ko
04 = 2c,Ry—g (9.3.18b)
€0
kg
66 = —CMRX—2U0 (9.3.18C)
£

0
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0s = —2wo{VR; + a g (e +2m1) }

oot (9.3.18d)
(%)O{a[wmz(ws*)z +2m1(W8)2}
and
2 * n)2 n—1\2 n)2
(rs)g = VRoW* + « no{a{(wo) —(WO ) } +2m1(w0) }
) (9.3.19)

k
0,2
—nomy — ¢ Ry—1;
£

With the five boundary conditions defined, the A; matrix, which is essentially the
Ao matrix in this case, becomes

01 0 0 0 0 0 ag
B B 0O 0 0 0 0 B
0 0 v3 v 0 v 0 O
0 0 6 6, 0 6 0 0
Ad=10 0 b6 & 0 b 0 b (9.3.20)
0 -1 - 0o o 0o 0 o0
0o 0 0 -1 -4 0o o0 o0
0o 0 0 o0 o0 -1 B oo

®)

9.3.2 SoLuTION OF THE k-¢ MoDEL EQuUATIONS wiTH WALL FUNCTIONS

The solution of the k- model equations with wall functions is similar to the
procedure described for the case without wall functions. Again the only changes
occur in the first five rows of the A; matrix, Eq. (9.2.30a). Of the five boundary
conditions at the wall, the first three are written in the order given by Egs.
(9.2.15a,b,c) and the fourth and fifth ones are given by

ko =0 (9.3.21a)
g =0 (9.3.21b)

or in linearized form
Oko = (r4)y = 0 (9.3.22a)

deg = (rs)y = 0 (9.3.22b)
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The structure of the other matrices remain the same, but of course, the coefficients of
the linearized momentum, kinetic energy and dissipation equations, Eqgs. (9.2.34),
(9.2.35) and (9.2.36), respectively are different than those for k- model equations
without wall functions. These coefficients naturally vary depending on the wall
functions used.

The Ao matrix for the k- model equations with wall functions, with the last three
rows identical to those in Eq. (9.3.20), is

1 0 0 0 0 0 0 0
o1 0 0 0 0 0 0
00 1 0 0 0 0 —2y/Rup
00 0 1 0 0 0 0

=10 0 0 0 0o 1 o0 0 9-3.23)
0 -1 - o o o0 o 0
0o 0 0o -1 -%4 0o o 0
00 0 0 0 -1 -M 0

In some model equations, the boundary conditions on ¢ = 0 is replaced by g—; = 0
in that case, the fifth row of Ag-matrix becomes

00000010 (9.3.24)

I 9.4 Solution of the k-w and SST Model Equations

The solution of the k-w model equations is similar to the solution of the k-& model
equations with wall functions. Again the k- model equations, Egs. (6.2.19), (6.2.23)
and (6.2.28), are expressed in terms of Falkner-Skan variables.

Since the SST model equations make use of the k-e model equations in the inner
region and the k-e model equations in the outer region we express them, for the sake
of compactness, in the following form in transformed variables.

[(1 + axef K] —2mf'k + mfkd + ek (") —6 wk = x<f/g]; —K gﬁ) (9.4.1)
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[(1+ awe:;)a)’]/—i—2(l - Fl)awz%k/w’ +mof —(m—1)f'w

(9.4.2)

A2 N2 _ /67(*)_ ,(if
B+ Rulf7)"= x(f ax “ox

where w and k are dimensions, normalized by x/u, and 1/ uf respectively. Equations
(9.4.1) and (9.4.2) are the equations used in the SST model. To recover Wilcox’s k-w
model equations expressed in transformed variables, we let F'{ =1 and take

or = 0.5, o, =05, g =0.075

2
=009, k=041, y = 66*0“’ K (9.4.3)

In the SST model, the above constants are determined from the relation, Eq. (6.2.45)
¢ = Fi¢) + (1 —F1)o, (6.2.45)

where the constant ¢; is determined from Eq. (6.2.46) and the constant ¢, from
Eq. (6.2.47). F is determined from Eq. (6.2.41), where its arg; given by Eq. (6.2.42)
can be written us

arg; = min[max(4,42), 23] (9.4.4)

In terms of transformed quantities, A; to A3 are

k kR
o= Yk VEVR (9.4.52)
0.09wy wn 0.09
500 500
ho = = 28 (9.4.5b)
y2w nw
400,k
A3 = 2 4.
37 Dy O439)
10kd 2k
CD., = max <2@0wzw,1 _20) =
w dy dy

1
max (— Ko, 1020> 7’
3]

We first find the maximum of A1 and A; (say A4), then calculate the minimum of A4 and A3
and thus determine arg; and F. Once F is calculated, then the constants in Egs. (9.4.1)
and (9.4.2) are determined from the relation given by Eq. (6.2.45). For example,

5o = 0.5F| + 0.856(1 — Fy)
8 — 0.0750F) + 0.0828(1 — F) )etc.
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Next we determine the eddy viscosity distribution across the boundary layer. In
terms of transformed variables, Eq. (6.2.36) can be written as (v = f”. a; = 0.31)

k
e R.— ajw > QF,
+ m w

e =" _ (9.4.6)
vRyark
" v i ayw < QF,
v|F>
where
_ |ou _ i [Ue
ay uelf | v,

and F; is determined from Eq. (6.2.37a) where arg; is
arg, = max(24,42) (9.4.7)

In the SST model, once the constants are determined and the distribution of eddy
viscosity is calculated, then Eqs. (9.4.1) and (9.4.2) are solved together with the
continuity and momentum equations; a new arg, argp, F'; and F», new constants and
eddy viscosity distribution are determined. This procedure is repeated until
convergence.

It should be noted that, for F; = 1, the whole region is the inner region governed
by the k-w model equations.When F| = 0, the whole region is governed by the k-
model equations.

Before we discuss the solution procedure for the SST model equations, it is useful
to point out that the structure of the solution algorithm for the k- model equations
with wall functions is almost identical to the one for the SST model equations. This
means all the Aj, B;, C; matrices have the same structure; the difference occurs in the
definitions of the coefficients of the linearized momentum, kinetic energy and rate-
of-dissipation equations and in the definition of the boundary condition for  which
occurs in the fourth row of Ap-matrix.

To describe the numerical method for the k-w model equations, we start with the
kinetic energy equation, Eq. (9.4.1), and write it in the same form as Eq. (9.4.2) by
defining Q and F by

0=p8wk, F=0 (9.4.8)

The definition of P remains the same. Next we write Eq. (9.4.2) in the form

! /a /a / /
(b30)) +P, — Q1 +E = x(f 8_(;:_ 13} G_J;) + (m—=1)f'w—muof (9.4.9)
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where
R)C N
E=2(1- Fl)Uwzzk w (9.4.10)
0 = B’
Py = yR(f")’
With
w =gq
Equation (9.4.9) can be written as
dw )
(b3q)'+P1 — Q1 +E = x(ua — qa—])z) + (m—1uw —miqf (9.4.11)

A comparison of Eq. (9.4.11) with Eq. (9A.10) shows that if we let € = w for notation
purposes, then the coefficients of linearized specific dissipation rate equation are
very similar to those given by Eqs. (9A.14a) and (9A.15a). Except for the definitions
of O and F in the kinetic energy-equation, Eq. (9.4.1), the coefficients of the line-
arized kinetic energy equation are identical to those given by Eqs. (9A.7) and (9A.8).
Appropriate changes then can be easily made to subroutine KECOEF (see Section
11.9) in order to adopt the computer program of Sections 11.7 to 11.10 to solve the
kinetic energy and specific dissipation rate kinetic energy equations in the SST
model. Of course, other changes also should be made, but these are not discussed
here. A good understanding of the computer program for the k-¢ model equations is
needed to make the necessary changes.

I 9.5 Evaluation of Four Turbulence Models

In Sections 8.3 to 8.6 and 8.9, 8.10 we discussed the evaluation of the CS model with
a differential method based on the solution of the boundary-layer equations. In this
section we present a similar discussion for transport-equation turbulence models
with a differential method based on the solution of the Navier-Stokes equations. The
discussion is based on the study conducted in [2] where Bardina et al. evaluated the
performance of four higher-order turbulence models. The models were: 1) the k-
model of Wilcox (subsection 6.2.2), 2) k-¢ model of Launder and Sharma (subsection
6.2.1), 3) the SST model of Menter (subsection 6.2.3) and 4) the SA model
(subsection 6.3.2). The flows investigated were five free shear flows and five
boundary-layer flows consisting of an incompressible and compressible flat plate,
a separated boundary layer, an axisymmetric shock-wave/boundary-layer interac-
tion, and an RAE 2822 transonic airfoil.
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In this section we present a sample of results for some of these flows obtained
from this study and discuss a summary of the conclusions regarding the relative
performance of the various models tested. For additional results and discussion, the
reader is referred to [2].

9.5.1 FRee-SHEAR FLows

Five free-shear flows corresponding to a mixing layer, plane jet, round jet, plane
wake and a compressible mixing layer were considered in [2], and four eddy
viscosity models were validated for the prediction of these flows. The validation of
each model was mainly based on the ability of the models to predict the mean
velocity profile and spreading rate of each one of these fully developed free-shear
flows. Sensitivity analyses, the validation results to freestream turbulence, grid
resolution and initial profiles were also included in their study. Here, however, we
only present the mean velocity profiles and spreading rate of each flow.

Mixing Layer

Figure 9.1 shows a comparison of the predictions of the mean velocity profile u/u;
against 7 = y/x and the experimental data of Liepmann and Laufer [3] for a half jet.
See also Fig. 7.20. The dimensionless coordinate 7 was defined with its origin
located where the mean velocity ratio was 1/2.

According to the calculations in [2], the results of the k-¢ and SST models are
insensitive to freestream turbulence and show good agreement in the middle of the
mixing zone and sharp edge profiles at the boundaries. The small difference between
the predictions of these two models near the edge of the freestream at rest is due to
the different value of their diffusion model constant, o,. The results of the SA model

Fig. 9.1 Predictions of four turbulence models for the mixing layer of Liepmann
and Laufer, after [3].
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show very good agreement with the experimental data, but show a wider mean
velocity profile with very large values of freestream eddy viscosity
(1073 < N E%). In practice, these large values of dimensionless eddy viscosity are
much larger than the molecular viscosity, and the errors can be controlled by limiting
the eddy viscosity in the freestream, (8; < 10’3RL = U L/v). The k-w model
shows two different results of mean velocity profiles, one for low values and another
for high values of freestream w, and a range of profiles in between these two values,
(102 <w= wx/u; < 10). The profiles show significant underprediction in the low-
speed side and overprediction in the high-speed side of the mixing layer with low
freestream w, (W < 10_2), and underprediction in the higher speed side with high
freestream w, (W > 10).

Figure 9.1 also compares the calculated and measured spreading rates for the
mixing layer. Considering that the experimental value of 0.115 also shows an
uncertainty of about £ 10%, the predictions of all four models are very good. The
range of values reported for the k — w model is due to the effects of low and high
freestream w values [2].

Plane Jet

Figure 9.2 shows a comparison of the predictions of the mean velocity profile u/u;
against n =y/x and the experimental data of Bradbury for a plane jet [4]. See also
subsection 7.5.1. As discussed in [2], the SST model gives excellent agreement with
the experimental data and is also insensitive to low freestream values of w. The
profile of the k- model is similar, except near the freestream at rest, and is insensitive
to low freestream values of e. The small difference between the predictions of these
two models is due to the different value of their diffusion model constant, .. The SA
model overpredicts the mean velocity profile thickness; the results are insensitive to

Fig. 9.2 Predictions of four turbulence models for the plane jet of Bradbury, after [ |.



Differential Methods with Transport-Equation Turbulence Models 381

freestream eddy viscosity for N=e¢,,/ujx < 1073. Results with larger freestream
eddy viscosities give much larger overpredictions and are not shown in Fig. 9.2. In
practice, these errors can be controlled by limiting the values of the eddy viscosity in
the freestream, e$ < 1073R;. The results of the k-w model show two predictions;
one largely overpredicts and the other underpredicts the thickness of the mean
velocity profile, corresponding to low and high freestream W = ‘;’—lx values, (W < 107
and W > 103), respectively. This model gives a set of intermediate solutions (not
shown in Fig. 9.2) depending on the values of freestream w, (107 < W < 10%).

Figure 9.2 also compares the calculated and measured spreading rates for the
plane jet. The range of experimental values is reported between 0.10 and 0.11 and is
given only as reference values.

The k-¢ and the SST models give close predictions of the experimental spreading
rate, while the SA model overpredicts the spreading rate. The k-w model predicts
a range of values due to the effects of low and high freestream w.

Round Jet

Figure 9.3 shows the comparison of the predictions of the mean velocity profile u/u;
against 7 - y/x and the experimental data of Wygnanski and Fiedler [7]. As discussed
in [2], all models overpredict the thickness of the experimental mean velocity profile.
This classical anomaly is well known in these models that have been fine-tuned with
empirical data of mixing layer, plane jet, and/or far wake experiments.

The results of the k- and SST models are closer to the experimental data and are
also insensitive to low freestream values of € or w, respectively. The small difference
between the predictions of these two models near the edge of the freestream is also
due to the different value of their diffusion model constant, o,.. The SA model gives

Fig. 9.3 Prediction of four turbulence models for the round jet of Wygnanski and
Fiedler, after [2].
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a considerably larger overprediction of the mean velocity profile thickness, and the
results are insensitive to freestream eddy viscosity for N=e¢, /u; x < 103, Results
with larger freestream eddy viscosities give much larger overpredictions and are not
shown in Fig. 9.3. In practice, these large values of dimensionless eddy viscosity are
much larger than the molecular viscosity, and the errors can be controlled by limiting
the eddy viscosity in the freestream e,t < 1073R;. The results of the k-« model show
two overpredictions of the thickness of the mean velocity profile, corresponding to
low and high freestream W = wx/u; values, (W < 10 and W > 104), and a set of
intermediate solutions (not shown in Fig. 9.3) depending on the values of freestream
w, (107 < W < 10% [2].

The spreading rate is defined as the value of the nondimensional jet radius,
S = y/(x — x¢), where the mean speed is half its centerline value. This definition of
spreading rate is one of several formulations that have been proposed. The spreading
rate provides an estimate of the thickness of the round jet and is widely used in
turbulence modeling. However, it is only one parameter and it does not provide
information about the shape of the velocity profile.

Figure 9.3 also compares the spreading rates obtained with the turbulence models
and the recommended experimental value. The range of experimental values is
between 0.086 and 0.095. All models overpredict the spreading rate. The range of
values reported for the k-w model is due to the effects of low and high freestream
w values.

Plane Wake

U—Umin
Ue—Umin
compared with the

Figure 9.4 shows a comparison of the predictions of the mean velocity profiles
against the dimensionless coordinate 1 = y(guw /ux) 172

Fig. 9.4 Predictions of four turbulence models for the plane wake of Fage and Falkner,
after [2].
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experimental data of Fage and Falkner [8]. The k-e and SST models give thinner
profiles than the experiment and are insensitive to low freestream values of € or w,
respectively. The small difference between the predictions of these two models near
the freestream is due to the different value of their diffusion model constant, .. The
SA model gives the best agreement with the experimental profile, and the results are
insensitive to freestream eddy viscosity for N < 10~. Results with much larger
freestream eddy viscosities give overpredictions and are not shown in Fig. 9.4; in
practice, these errors can be controlled by limiting the eddy viscosity in the free-
stream, (gjnr < 1073Ry). The results of the k- model show two predictions; one
largely overpredicts and the other underpredicts the thickness of the mean velocity
profile, corresponding to low and high freestream W values, (W < 10 and W > 10° ),
respectively. This model gives a set of intermediate solutions (not shown in Fig. 9.4)
depending on the intermediate values of freestream w, (104 <WwW< 103).

The spreading rate S is defined as the difference S=1ny5 — no of the nondi-
mensional coordinate n between the points where the nondimensional mean speed is
one half and zero, respectively. The definition of spreading rate is one of several
formulations that have been proposed and it is widely used in turbulence modeling.

Figure 9.4 also compares the spreading rates obtained with the turbulence models
and the recommended experimental value 0.365 of Fage and Falkner [8]. As can be
seen, the k-e and the SST models underpredict the experimental spreading rate by
30%, while the SA model gives a value much closer to the experimental spreading
rate (7%). The k-w model predicts a range of values due to the effects of low and high
freestream ), within an underprediction of 43% and an overprediction of 35%.

Compressible Mixing Layer

Figure 9.5 shows a comparison between the predictions of the dimensionless mean
velocity profile ﬁ of the mixing layer, using the standard turbulence models and
the experimental data of Samimy and Elliot against the coordinate ((n — 79.5)/0., [9].
This particular coordinate system was used in order to show all the data in a simpler
plot. The nondimensional coordinate, n=y/x, the coordinate 7ngs represents the
point where the nondimensional speed is 0.5, and §,, is the vorticity thickness of the
mixing layer where 6., = (u; — up)/( j—?])max. The experimental data are shown with
convective Mach numbers of M, =0.51, 0.64, and 0.86. The experimental data of
Liepmann and Laufer [3] for the incompressible mixing layer, M, = 0, is also shown
in this figure as a reference. The numerical predictions with the four different
turbulence models were obtained over a wide range of convective Mach numbers,
and Fig. 9.5 shows the predictions for M. =0, 0.8, and 1.6. The vertical arrows
indicate the trend of the predictions with increasing convective Mach numbers. The
convective Mach number, M. = (u; — up)/(a; + ay) is defined in terms of the mean
velocity, u1, and the sound speed, a, in each freestream.
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Fig. 9.5 Comparison of velocity profiles for compressible mixing layer, after [2].

All velocity profiles show some degree of agreement with the experimental data
due to the particular coordinate system of the plot. These plot coordinates bound the
range and collapse all data at the midpoint. The results of the k-¢ and SST models
show good agreement with the nondimensional shape of the experimental profile.
The results of the SA model also show good agreement with the experimental data,
except for very high freestream eddy viscosity. The mean velocity profiles of the k-w
model show sensitivity to low freestream w values. The relative good agreement of
prediction with data is due to the use of d; in the nondimensional plots. The
dimensional profiles and spreading rates show a much stronger dependence on Mach
number, as discussed in detail in [2].

Figure 9.6 shows a comparison of spreading rates predicted with the four
turbulence models with no compressibility corrections and the experimental Langley
data [10]. Here the spreading rate S is defined as dd/dx where d(x) is the thickness of
the mixing layer. The predicted results are shown with lines and the experimental
data are shown with symbols. The most significant result is that all models fail to
predict the experimental data on the decrease of spreading rate with increasing
convective Mach number. This is a well-known weakness of present turbulence
models. For additional details, see [2].

9.5.2 ATTACHED AND SEPARATED TURBULENT BOUNDARY LAYERS

Studies in [2] for attached and separated turbulent boundary layers included the flow
over an adiabatic flat plate of an incompressible flow and a compressible flow at
Mach 5, an adverse pressure gradient flow on an axisymmetric cylinder, a shock/
boundary layer flow on an axisymmetric bump, and a transonic flow on the RAE
2822 airfoil. A brief description of the performance of the four turbulence models for
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Fig. 9.6 Comparison of spreading rate of the mean velocity profile for compressible
mixing layer, after [2].

these flows except the last one are given below. For additional discussion, the reader
is referred to [2].

Flat Plate Flows

The studies for flat plate flows were conducted in order to investigate the predictions
of the turbulence models with the well established correlations such as the velocity
profile expression of Coles, Eq. (4.4.34), for incompressible flows and the local skin-
friction coefficient expression of Van Driest, Eq. (7.2.54), for compressible flows.
Studies were also conducted to investigate the sensitivity of the solutions to inlet
conditions and to grid. Overall, all turbulence models performed well, as they should,
for these zero-pressure gradient flows. The predicted boundary-layer parameters
such as ¢y, 0, H and velocity profiles agreed well with data and with correlations [2].

Axisymmetric Flow with Adverse Pressure Gradient

This flow corresponds to an axial flow along a cylinder with superimposed adverse
pressure gradient. The experiment was performed by Driver [11]. Boundary layer
suction was applied through slots on the wind tunnel walls, and this mass flow
removal (about 10% of the incoming mass flow through the tunnel) allowed the flow
to remain attached along the tunnel walls in the presence of the strong pressure
gradient. Experimental data, including velocity and Reynolds stress profiles, have
been measured in several locations. Since flow separation was observed experi-
mentally, a full Navier—Stokes prediction method was performed and is recom-
mended. The solution procedure requires the specification of an outer boundary such
as a streamline. The experimental velocity profiles have been integrated to obtain the
stream function and corresponding outer streamline. From a computational point of
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Fig. 9.7 Comparison of surface pressure and skin friction coefficients, after [2].

view, this method allows the flow to be treated as flow in an annular duct with one
boundary defined with the surface of the cylinder (no-slip condition) and other
boundary defined with an outer streamline (slip condition). The recommended outer
streamline distance & as a function of the coordinate distance is given in [2].

Figure 9.7 shows comparisons of the pressure and skin friction coefficients. With
the exception of the k-& model, all models predict flow separation. Overall, the SST
model gives the best performance.

Comparisons of a sample of the velocity, turbulent kinetic energy, and shear
stresses at some specific measured locations are displayed in Figs. 9.8, 9.9, and 9.10
respectively. Additional results are given in [2]. Again, the figures show that the SST
model gives the best overall performance, the k-¢ model the worst, and the other two
models are in between.

Transonic Flow with Separation over an Axisymmetric Body

The experiment [12] was conducted in the Ames 2- by 2-Foot Transonic Wind
Tunnel with total temperature and total pressure of 302 K and 9.5 x 10* N/m?,
respectively. The axisymmetric flow model consisted of an annular bump on
a circular cylinder aligned with the flow direction. The longitudinal section of the
bump was a circular arc. The axisymmetric configuration was chosen to circumvent



Differential Methods with Transport-Equation Turbulence Models 387

Fig. 9.8 Comparison of velocity profiles at different x/Ro-locations, after [2].

Fig. 9.9 Comparison of turbulent-kinetic energy profiles at different x/Ro-locations,
after [2].

the problem of sidewall boundary layer contamination of two-dimensionality that
can occur in full-span two-dimensional tests. The thin-walled cylinder was 0.0762 m
in outside radius and extended 61 cm upstream of the bump leading edge. The
straight section of the cylinder permitted natural transition and a turbulent boundary
layer just ahead of the bump of sufficient thickness to allow accurate determination
of boundary layer information. However, the boundary layer was not so thick, in
comparison with the interaction on airfoils, that separation of greater severity would
occur than is representative of full scale. The circular-arc bump had a 20.32 cm chord
and a thickness of 1.905 cm. Its leading edge was joined to the cylinder by a smooth
circular arc that was tangent to the cylinder and the bump at its two end points. Test
conditions were a freestream Mach number of 0.875 and unit Reynolds number of
13.1 x 10%m. At this freestream Mach number, a shock wave was generated of
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Fig. 9.10 Comparison of shear-stress profiles at different x/Ro-locations, after [2].

Fig. 9.11 Comparison of surface pressure coefficient, after [2].

sufficient strength to produce a relatively large region of separated flow. The sepa-
ration and reattachment points were at approximately 0.7 and 1.1 chords, respec-
tively. Boundary layer measurements were obtained by the laser velocimeter
technique from upstream of separation through reattachment. These data consist of
profiles of mean velocities, turbulence intensities, and shear stresses in the stream-
wise and normal direction. Separation and reattachment locations were determined
from oil-flow visualizations, and local surface static pressures were obtained with
conventional pressure instrumentation.

Figure 9.11 shows a comparison of the pressure coefficients along the surface of
the axisymmetric ‘“bump.” Both k- and k-w models predict a delay of the shock
position and, therefore, underpredict the size of the flow separation. The SST model
provides the best overall performance, and the SA model comes second.
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Fig. 9.12 Comparison of mean velocity profiles at different x/c-locations, after [2]. See
symbols in Fig. 9.11.

Fig. 9.13 Comparison of mean shear-stress profiles. See symbols in Fig. 9.11.

A sample of comparisons of the velocity, shear stress, and turbulent kinetic
energy profiles at specified measured positions are shown in Fig. 9.12,9.13, and 9.14,
respectively. Since experimental data provide only two components of normal
stresses, the turbulent kinetic energies shown in Fig. 9.14 were obtained by setting
w? = (u? +1/?)/2. The SST model gives the best agreement of the mean velocity
profile with experiment, and closer agreement of mean shear-stress profiles.

9.5.3 SUMMARY

The study conducted in [2] and briefly summarized in the previous two subsections
investigated the relative performance of four turbulence models corresponding to k-¢,
k-w, SA and SST models. Of the ten flows tested, seven were relatively simple
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Fig. 9.14 Comparison of turbulent kinetic-energy profiles. See symbols in Fig. 9.11.

free-shear and zero-pressure gradient boundary-layer flows, and three were relatively
complex flows involving separation. In addition to testing the relative performance of
the turbulence models used with Navier—Stokes equations by comparing predictions
with experimental data, tests to determine the numerical performance of the models
were also conducted. These tests, discussed in detail in [2], included studies of grid
refinement and sensitivity to initial and boundary conditions.

In this careful and very good investigation, the conclusion of the authors
regarding the relative performance of various models studied is as follows. The best
overall model was judged to be the SST model, followed by the SA model, then the
k-e model, and finally the k-w model. The SST model was considered the best
because it did the best overall job in predicting the complex flows involving
separation, while giving results comparable with the best of the other models for
the simple flows. For the simple free-shear flows, all of the models except the k-w
were about equal in their performance, with the SA giving best predictions of the
mixing layer and plane wake flows, and the k- and SST models giving the best
predictions of the jet flows. The performance of the k-w model was judged to be
poor for these flows because of its sensitivity to freestream conditions, with the
resulting unreliability of solutions. None of the unmodified models did well in
predicting the compressible mixing layer, although with compressibility modifi-
cations they did give improved predictions.

For the complex flows the best overall model was the SST because of its ability in
predicting separation. The worst model in this regard was the k-¢, with the SA and
k- models falling in between. The k-w model did not appear to be as sensitive to
freestream conditions for the complex flows (where a Navier-Stokes solver was used)
as it was for the free-shear flows, although there was sensitivity. While there appear
to be several possible explanations for this, the authors did not offer a definitive
explanation at that time.
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With regard to the numerical performance of the models, the SA was found to be
the best, followed by the SS7, and then the k-¢ and k-w models. This evaluation was
based on grid spacing required for accurate solutions and the maximum y™ allowable
at the first grid point off the wall.

Although they stated that the SS7 and SA models were found to give superior
performance compared with the other models needed, there was considerable room
for improvement of these models. The SST needed improvement on the wake flow,
and the SA needed improvement on the jet flows. All of the models needed better
compressibility corrections for free-shear flows. Although not discussed in their
study, none of the models appeared to do well on recovering flows downstream of
reattachment. Corrections for rotation and curvature were still another area requiring
attention.

An area that was not investigated in [2] is the ability of these turbulence models to
predict flows with extensive regions of separation, i.e. airfoil flows near stall or post
stall. Studies, either with Navier-Stokes or interactive boundary-layer methods, need
to be conducted to explore the relative performance of these four transport equation
turbulence models in predicting the accuracy of airfoil flows near stall or post stall.
A study, for example, conducted in [17] with the SA and CS models showed that,
while the predictions of the SA model were very good at low and moderate angles of
attack, that was not the case at higher angles of attack.

Figures 9.15 and 9.16 show the results for the NACA 0012 airfoil at a Mach
number of 0.3 and a chord Reynolds number of 3.9 x 10°. Figure 9.15 shows
a comparison between the calculated and measured lift coefficients. The calculated
results with the CS model employing the modification of Cebeci-Chang discussed in

Fig. 9.15 Comparison of calculated lift coefficients with experimental data for the
NACA 0012 airfoil at Mo, =0.3 and R.=3.9 x 10°.
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Fig. 9.16 Flow separation on the NACA 0012 airfoil at M., = 0.3 and R.= 3.9 x 10° at
a=13.5°

subsection 5.4.2 indicate good agreement with data. The predictions of the SA model,
while satisfactory at low and moderate angles of attack, are not satisfactory near and
post stall. They resemble those obtained with the CS model with « in Eq. (5.4.14) as
constant equal to 0.0168.

Figure 9.16 shows flow separation calculated with both turbulence models at
o =13.5°, which is near the stall angle. As can be seen, while the CS model predicts
separation at & = 0.80, the SA model predicts it at 7 = 0.90. Less flow separation
predicted with the latter model is the reason why the calculated lift coefficient is higher
than the experimental data. The reason for this may be the ability of the SA model not to
decrease the law of the wall region in the presence of strong adverse pressure gradient.
For example, for a zero-pressure gradient flow, a constant value of « (= 0.0168) in
Eq. (5.4.14), predicts roughly 20% inner region and 80% outer region. A variable
« allows the inner region to decrease in the presence of a strong pressure gradient.

For additional comparisons between the CS and SA models and data, the reader is
referred to [13].

9A Appendix: Coefficients of the Linearized
Finite-Difference Equations for the k-¢ Model

We write the kinetic energy equation Eq. (6.2.19), in the general form
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In terms of transformal variables, the above equation becomes

(bok") +P —Q + F = 2mnk—m1fk’+x< ?—k’g]j (9A.2)

where (bok’) denotes the diffusion term, P and Q defined by
P=¢V, Q=¢+4 (9A.3)
denote the production and dissipation terms, respectively. The right-hand side of

Eq. (9.A.2) represents the convection term.
With k' = s, Eq. (9.A.2) becomes

ok 9
(bzs) +P — Q+F — 2mnk +mfs = x(u& - sa—i) (9A.4)

With x-wise derivation represented either by two- or three-point backward
differences the finite-difference approximations to Eq. (9.A.4) are
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Linearizing, we get
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. [(ak) o + (ag)f " (av)jav,-
8P>” aP\" aP\"
(% 6k~_1+<—> 58._1+<_> av._l]
(Ok i1 ] de i1 J dv -1 /
Tl(f"ésj-i-s”éjj—i—f 108j-1 + 87 0fj- )

(a0 K 5K+ K Gy |
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aQ n 6Q ' ("Q n .
- Kak>16k + (ag)j dej + (&l]ék]_l

(9A.6)
6 n
“(5e), o]
de i1
3| (Ge) oo () o (G0),
+= | =) 0ki+ | — ) o+ | = ok;_1
2| \0k/; de ) ; ok /) ;4
aF\"
(), o]
o ok\ " a [ok\"
= 6u-+5u‘1) (-) +ul {— <—> ok;
2{( PRI )\ox) Ly, T2 0k \ax )
d [0k\" ar\"
i (ae), ] = (o0 0000) (),
of af
i (50, 95 @)+ 0
The coefficients of Eq. (9.2.35) can now be written as
_omf o, X, of
(al)j - 7‘;] +_ j l/2af <(9X) (OA.7a)
mi X" o of
(aZ)j = 71‘9] 1+ Si— ]/26f (ax> (OA.7b)
Xt (0k\"
(a3). = —m"kKt —— (—> (9A7C)
J J 2 Ox j 1/2
x" [k
(0(4). = —m'k! | —— () (9A.7d)
7 J—1 2 a.x j 1/2
1 /oP\"
(Ols)j =3 <$>1 (9A.7¢)
1 /9P\"
(a); = 5 (av)“ (9A7)
B ab\" 1 /9P 1 (00\"
_ 122 i el e B R I
(ar); = B /(ak)j 2( k)j J 2<8k)j
(9A.7g)
JL(OEY (R
2\ak), " 2" 7ek \ax )
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b \" 1 /0P
_ -1
(C(S)j = _hj s/’?—l <W>j1 +§ (ﬁ)l»] — m"u}’_l

(9A.7h)

1<8Q>" +1<aF)" X9 <6k>"
_(% () iy O (%

2\ok ), " 2\ok),, 2776k \ox);

_ 1 n m_” n x_n a_f " .

(a9); = By (b2)] + /IR (ax>j]/2 (9A.71)

— 1 n m_n n x_n a_f " .

(a10); = —h; (b2)iy + S+ <6x>j1/2 (9A.7))

. % n l a_f ni a_Q n 6_F n
(an); = h''s] <6€)J- +3 [((98)]_ < E)j + (aeﬂ (9A.7K)

_ aby\"
(12); = =y sy <0_8>

j—1

. o o (9A.71)
== (=) +(=
2 Ka&’),’—l (ag)j—l (a€>j—1]
(ra); = [ (25} = (B2s)] |7
B {P;’l—l/z = Oy HEL = 2 k) OA S0
.04

— ()1

X u. -— — 5. —_—
7=1/2\9n j—1/2 =172\ ox j—1/2

Remembering the definitions of diffusion, production, dissipation, convection and F
terms, Eq. (9A.8a) can also be written as

(r4)j = — {diffusion + production — dissipation + F — convection} (9A.8b)

The parameter P, Q and F are model dependent. As a result, the derivatives with
respect to k, € and v will be different for each model. The derivatives of % and %
with respect to k and f are straightforward.

In term of transformed variables the parameters P, Q and F are (here ¢ is €)

k
P = CufqugU (9A.9a)
152 152

Fo | L (17 / 9A.9
—@@ﬁﬂ OA)
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The rate of dissipation equation is given by Eq. (6.2.20); in terms of transformed
variables it can be written as (¢ = €)

d d
(b3g/)/+P1 —0O1+E = x<u£ — g’a_£> + (3m — l)ue — me’f (9A.10)

where (b3¢')’ denotes the diffusion term, Py and Q; defined by
Py = caficufuv’k (9A.11a)
01 = cafhe’/k (9A.11b)

denote the generation and destruction terms, respectively. The right hand side of
Eq. (9.A.10) represents the convective term.
With £ = g, Eq. (9.A.10) becomes

(9A.12)

de af
Ox 0x

(b361)/+P1 — Q1 +E+mfg— (3m—1)ue = x <u—q

Following a procedure similar to the one used for the kinetic energy equation, the
finite-difference approximations for the above equation are

n! [(bgq),'-’ - (bsq)}’,l} + Py = (@1 +EL
mia)]y o = (3m" 1) (we)" (9A.13)

{n (ae)n ; (af>n ]
=12\ ox 2 12\ dx j—1/2

After linearization, the resulting expression can be expressed in the form given by
Eq. (9.2.36),

n n a
(51),' = 71 +x qj 1/26f (aj;) (9A.14a)
n n 6
(B2); = 761, 1+ q, 123 (ai) (9A.14b)
x* [0e .
(B3); = — (a)j_l/z - 5(3m —1)éf (9A.14c)
X" (0e 1 "
(B4); = =% <3x>] s —5(3m — )&, (9A.14d)

1 /oP\"
(55),' =5 (a_vl>] (9A.14e)
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1 (oP\"
(Bs); = 5 <W) . (9A.14f)
ab 1 /0P 1/9 "
_ 1 n 3 1 I -2
(B7); = 1y (6k> +2<ak)j 2(6k)j (OA-14g)
B b 1 /0P \"  1/00;\"
1 n 3 1 1
i (953 (o0 1 (9% A.14h
(68)] hj qj—l<ak>._ +2<6k),_1 2 ok i1 (9 )
_ dbs 1 /00/\" 1 [/oE\"
1 .n __ == =
(Bu); = hia (68) 2<66>j+2<€ j
(9A.14i)
n . X', 0 [de\"
— | 3m" — 1 Mj Euj71/2$ a— ;
_ 0bs 1/901\" 1 /0E\"
— _pln == —_ =
(612)j = - 1(‘98) 2(‘98 >j—1+2< E)j—l
(9A.14j)
A — 1 0 [de\"
23 ) e\
m’l’ LA
.= LR A A.14k
By = 5 5 () oA 140
X of\"
610, = =1 O+ 5+ () ©OA14D
1 2 ax ]-71/2
(rs); = ~h;"! [<b3q>;’ ~ (b3a)]- |
+(P1)i1p — (@) o + EL )
n n n n 9A.15
+m(fq);_y ;» — (Sm - l)(us)j_l/z} ( 2)
@), (),
—1/2 i1 J=1/2\ 9y i1/
Equation (9A.15a) can also be written are
(rs)j = —|diffusion + generation — destruction — convection + E] ~ (9A.15b)

I Problems

9.1 Consider the SA model discussed in subsection 6.3.2. Using the Falkner-Skan
transformation, Eq. (8.2.5), show that the transport equation for eddy viscosity,
Eq. (6.3.10), can be written as



398 Analysis of Turbulent Flows with Computer Programs

81/+ 6f ok k
X(f’a—;— Vja) —m (Vj)/f = Chl (1 _ftz)s Vt

+\2
—(Cwlfw - %sz) (V;IZ) (9.1.1)

10+ 6 T +en [0

9.2 The solution of the transformed continuity and momentum equations, Egs.
(8.2.6) and (8.2.7) and Eq. (P9.1.1) can be obtained with the Box method dis-
cussed in Section 8.2.

(a) Show that Egs. (8.2.6) and (P9.1.1) can be written as a system of five first-
order equations by defining

f=u (P9.2.1a)
W =v (P9.2.1b)
) =g (P9.2.1¢c)
(bu)/—l—mLfv + m(l — uz) = (ug—z — U%) (P9.2.1d)

+mgf (P9.2.1e)

9.3 For the net rectangle shown in Fig. 8.1, write finite difference approximations to
the equations in Problem 9.2 and check your answer with those given below. Use
backward differences for the streamwise derivatives which are needed to avoid
oscillations when initial conditions are specified for turbulent flow. Also, to keep
the code simple, in Eq. (P9.2.1¢) we have defined the diffusion term f, by

1 /
([ +5)g] +eng’} (P9.3.12)

production term p, by
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12
_ v
pr=cp(1—f) l%f + \/Rx|v|v+] (P9.3.1b)
and dissipation term
12
~ 14 C,
d, = (7’2) [cwlfw - %ftz} (P9.3.1¢)

9.4 Using Newton’s method, linearize the algebraic system in Problem 9.3. In order
to obtain quadratic convergence, differentiate variables f, M,ﬁ,,cfe with respect
to ™. Show that the sesulting system of linear equations can be written in the
form (note »,;” =v™ for convenience)

h.

of — Ofi—1 — é(auj +oui1) = (n); (P9.4.1a)
h.

514]' - 5uj_1 — Ej(évj + 6vj_1) = (}’4).]-71 (P9.4.1b)
h.

v —ovl - Ef(égj +0gi-1) = (rs5);4 (P9.4.1¢c)

(s1);0f; + (52);0fj—1 + (53);0u; + (54);0uj—1 + (55);00;

(P9.4.1d)
+(s6);0vj-1 + (57)]'5’{,'+ + (SS)janJr—l = (n2);
(e1);0f; + (e2);0fi—1 + (e3);0u; + (ea);0uj—1 + (e5);0v;
+(e6);00j-1 + (€7);0v" + (es);0v,"; + (e0);0g) (P9.4.1¢)
+ (e10);08j-1 = (r3);
Here the coefficients of Eq. (P9.4.1) are
(s1); = awj_1n +%vj (P9.4.2a)
(s1); = avj_12 +%Uj—1 (P9.4.2b)
(s3); = —(m+ )y (P9.4.2¢)
(s4); = —(m+ &)uj—y (P9.4.2d)

-1, m of
R N IR W (e P9.4.2
(55)] bjh; 2]3 OSx(ax)j_l/2 (P9.4.2e)
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_ o
= bk T 0.5k B P9.4.2
(56); il 1+05x<ax>j ” (P9.4.2f)
b -
(s7); = (au—+> vy (P9.4.2¢)
J
b -
(s8); = —(ay—+) vj—1h; ! (P9.4.2h)
j-1

du 9 :
(r2); = x<ua—z = év) T [(bv) 41 fo+m(1 = )], (PO.A2N)
i

The coefficients of Eq. (P9.4.1e) are

mi 0 af
e = Tmlgj +gj_1/2)€§ <a>l (P943a)
m o (0
ey = 71m1 g1+ 817y <a§> (P9.4.3b)
j—1
d +
3 = —O.Sxay—x, es = e3 (P9.4.3¢)

] (P9.4.3d)
j

(%)
i), () e
|
|

ade> }
- (P9.4.30)
j (‘W j

9 (ot o 1 [/ p, dd.
%= m<ﬁ)j_l+ <—+> | 3 (o L (aw)j_l] (P43
J
1 o,
0 — _x(a_f> gy (P (P9.4.3h)
2°\ox) ;1 2 %),
1 (9 of
el = =X —f +m1f]'-71 —+ Q (P9431)
2\0x/ 1) 98 j-1

g X<af> m1(f8) ]

- —8j— - —my i

i o =172 IR (9.43))
—(futpr— de)jq/z
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Here the diffusion, production and destruction terms, f s p, and cL, respectively, are
given by

1+c¢ _
o = %{(1+Vj+)gj_ <1+Vjtl)g.i*1]hj - Zz V;r 1/2( —&j- 1)h !

N (v*)? .
pr = en, (1= fo) |5 fe + VRulp

K2(n? +1v2)

and

dv —v if v>0
~ 2
o, _ (T o
dy 2 | "a
) _1teng leng—g—1
ovt | c h 20 h;
j
W\ _ ltonga leng—gi
vt o h; 20 h;
j—1

~ +
Oy T4epl+vt cplip
dg @ hj g h

p, i,
vt ~h o+

v of,  of.,
S A

v )2 07 VR |]

vt
vt
+K2—7)2fv2:|
2
ad, (vh) [ Afw  cp, af,z} 2wt cp
T = ———= |cwi - = ewifv — 5/
dvt n? + (V:;)z "ot K2 ovt n? + (va)z( WRW 2 l)

In the above equations, f,, fu,, fu» fi, and their variations with respect to » and v" are as
follows

fo = ctBexp[— cr, (V+)2:|
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9f;
aytj- = _th4y+ﬁ2
()’

(u+)3+c3]

fo =

afvl _ 3031 (V+)2

ot {(V+)3+c,§lr

LA

fvz - _1+V+ful
af,

12 v
ofy, (v*) vt

W (14t )

(1 +c?ﬁ) 1/6
o - 7]
(1 + c?%gl_é)
g1 = 1T+ Cy (rr6 - rr)
—1
()’ ()’
mro= oy y+\/§;‘v’ + pe S,
Ofw _ Ofw g 0(rr)
g dg1d(rr) dv
afw _ 6& agl a(rr)
vt dg1 d(rr) vt
where
af_w _ C&}g?ﬁfw
Jg, [gl (1 + C?V}gl’ﬁﬂ
Og1_ _ 1+ ey, (6r° — 1)
a(rr) 2
-2
or) _ () [ ()’
v K2(n2+12) g \/ﬁ;’v}Jervz

1 if v>0
)

-1 if v<O
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a(rr) _ (1/*’)2

v+ 2 (n? +v2)

w

- 1
V+\/R_x{v| + ﬁfvzl

(n? + v,

+)2 +
. l#"ﬁ VR +K22”—)fv2]

2 (n* +9,2) 0 (n* + v,

2T

2
A Iy O G N
+I<2(772+V:VZ) 14 Rx‘v|+l<2 2+V*2)fv2]

(n* + 7,

9.5 Show that the linear system of equations given by Egs. (P9.4) subject to the
boundary conditions

=0, f=u=v"=0
N ="M U= 1) V+ = Vj (P951)
which in linearized form
(3140 = (3f() = (3V+ =0
0 (P9.5.2)

ouy = 61}}’ =0

can be written in matrix-vector form, given by Eq. (8.2.24) with five-dimen-
sional vectors Q}. and z for each value of j defined by

5]; (rl )j
6MJ (r2)j
6. = | oy |, r.=| (r3); (P9.5.3)
~J T ~J .
5Vj (r4)j
58j (”S)j
and the 5 x 5 matrices A;, Bj, C;j given by
1 0 0 0 0
0 1 0 0 0
Ap =10 O 0 1 0 (P9.5.4a)
0 -1 -4 o0 o0
o0 o -1 -4
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- -4 0 0 0
(SZ)j (54),' (56),' (58)]' 0
B; = (ez)j (@4)j (%)j (es)j (610),' o 1sjsJ (P9.5.4b)
0 0 0 0 0
0 0 0 0 0
1 —h/2 0 0 0
(s1);  (s3); (ss);  (s7); 0
Aj = (El)j (63)]' (65)]' (97).,' (69)‘,' ;o 1<j<sJ—1 (P9.5.40)
0 -1 —hj1/2 0 0
0 0 0 -1 —hj1/2
0 0 0 0 0
0 0 0 0 0
C;i=100 0 0 0 , 0<j<Jy—-1 (P9.5.4d)
0 1 —hy/2 0O 0
0 0 0 1 —hjp/2

9.6

9.7

Aj = |(e1);  (s3); (s5); (s7); (s9); (P9.5.4¢)
0 1 o 0 0
0 0 o 1 0

Using the matrix solver, MSA (subsection 10.7.3), write an algorithm for the
linear system in Problem 9.5. Check your code with the one given on the
companion site.

To develop a computer program to solve the equations using the SA model, it is
necessary to specify initial profiles for f;, u;, v;, vj+ and g;. It is also necessary to
generate the boundary layer grid, account for the boundary layer growth, etc.
A convenient procedure is to use the computer program described in Section
10.3 with initial velocity profiles incorporated in a new subroutine IVPT as de-
scribed in Problem 8.9. The initial profiles for ijr and g; can be calculated from
those calculated in subroutine EDDY since vj+ =( ez)j. Thus with initial profiles
specified in this manner, we can replace subroutine COEF3 and SOLV3 in BLP2
with new subroutines, say COEF5 which contains the coefficients in Problem
9.4, and the algorithm discussed in Problem 9.6. Obviously, we need to
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incorporate other changes to the logic of the computations in order to extend the
computer program of Problem 8.6 to solve the SA model equations.

9.8 The properties of a two-dimensional nonsimilar plane jet for a turbulent flow can
also be calculated with an algebraic eddy viscosity formulation using the
computer program described in Section 10.3. As before, we again use trans-
formed variables.

(a) Show that, with the eddy viscosity concept and neglecting the pressure-gradient
term, the continuity and momentum equations given by Egs. (5.2.8) and (5.2.9)
can be written as

! / 1 /a. ! //6
(Bf") +(F )+ " = 3&(}‘%-]‘ a%) (P9.8.1)

with the transformation defined by

uy y x
v\ i v VL) 098D

Here ug, L denote a reference velocity and length, respectively, and

b=1+en/v=1+¢! (P9.8.3)

(b) With
f=u (P9.8.4a)
W =v (P9.8.4b)

Eq. (P9.8.1) can be written as

(bv) +u® + fu = 3¢ (ug—z - vgi;> (P9.8.4c)

Write finite difference approximations to the above equations and show that
Eq. (P9.8.4c) can be expressed in the same form as Eq. (8.2.20c) and that the
coefficients (sy); are identical to those given by Egs. (8.2.22), provided that we
take m; =1 and mp =-1.

(c) With the boundary conditions given by

n=0 f=v=0 (P9.8.5a)
n=mn, u=20 (P9.8.5b)
or in linearized form

ofp =0, ouy=0, ou =0 (P9.8.6)
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the linear system of equations can again be expressed in the form given by
Eq. (8.2.24) and can be solved with minor changes to the computer program
described in Section 10.3. One of the changes occurs in subroutine IVPL that
defines the initial velocity profiles for laminar flows. For either laminar or
turbulent plane jet, this subroutine requires changes. An initial velocity profile
can be generated by assuming the profile to be of the form

uﬁc - % [1 — tanh 5(% . gcﬂ (P9.8.7)
Here 8 and ¢, are specified constants, and 4 is the half-width of the duct. This
profile essentially corresponds to a uniform velocity at the exit of the duct. The
fairing given by the above equation is to remove the discontinuity at y/h = 1.
Plot the above equation for two values of  equal to 10 and 20 with ¢, =1 and
show that in transformed variables, this equation can be written in the form

F 3g2/3
e =3 {1 —tanh 8 [\/%_L@ - ) (P9.8.8)

Here R; is a dimensionless Reynolds number, ugL/v and & is the E-location at
which the initial profiles are specified. The reference length L is usually taken to
be equal to the half-width of the duct.

(d) In addition to subroutine IVPL, we need to make changes in subroutine
EDDY and replace the eddy viscosity formulas in that subroutine with a new
one. There are several formulations that can be used for this purpose.
A simple one is

em = 0.037u.0 (P9.8.9)

where 0 represents the half-width (taken as the point where u/u, = 0.5 and u,
is the centerline viscosity.
Show that this equation can be written in transformed variables as

e = 0.037VRE 31, of! (P9.8.10)

Here 7, is the transformed 7-distance where u = % uc, and f is the
dimensionless centerline velocity.

(e) Compute the variation of the dimensionless centerline velocity for a turbulent
flow with the revised computer program of Section 10.3. Take R; = 5300,
8 =20, ¢.=1.0and &y = 1. Plot u/ug as a function of y/L at £ = 1.054, 1.249,
1.581, 2.976, 4.484, 6.819, 10.

(f) Include the intermittency term vy

1

= P9.8.11
1+5.5(y/6)° ( )

Y
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in Eq. (P9.8.10) and repeat the calculations in (e) with this modification to &,
Compare your results with those in (e).
(g) Compare the results in (f) with experimental data given on the companion site.
(h) Repeat (g) with 0.037 in Eq. (P9.8.10) replaced with 0.035, 0.033 to study the
effect of this constant on the solutions.

9.9 Repeat (e) in Problem P9.8 for Ry = 100.
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I 10.1 Introduction

In this chapter we describe several computer programs for calculating two-
dimensional laminar and turbulent incompressible flows. In Section 10.2 we first
describe computer programs based on integral methods discussed in Chapter 7 and
present sample calculations. The computer program in Section 10.3 is based on
the differential method discussed in Chapter 8 and is applicable to both laminar
and turbulent flows for a given external velocity distribution and transition loca-
tion. In this section we also present sample calculations for an airfoil with the
external velocity distribution obtained from the panel method discussed in Section
10.4. Sections 10.5 and 10.6 present computer programs for incompressible
laminar and turbulent flows with heat transfer and for infinite-swept wing flows,
respectively. Sections 10.7 to 10.10 present another differential method for two-
dimensional incompressible turbulent flows with CS and k- models. The
computer program with the CS model is essentially similar to the one in
Section 10.3 except that the wall boundary conditions for the momentum and
continuity equations are specified at some distance from the wall. The computer
program for the k-e model includes the zonal method with a combination of the
CS model for the inner region and the k-e model for the outer region as discussed
in Section 9.2. It also includes the solution of the k- model equations with and
without wall functions. Section 10.11 presents a differential method for the SA
model using the numerical procedure discussed in Problems 9.1 to 9.7 and Section
10.12 for a plane jet discussed in Problem 9.8. Section 10.13 presents several
subroutines discussed in Chapters 8 and 9. Section 10.14 presents the differential
method for the inverse boundary-layer discussed in Section 8.8 and subsection
10.15.1 presents sample calculations for the panel method of Section 8.9 without
viscous affects. Sample calculations for the inverse boundary-layer program is
discussed in subsection 10.15.2 and those for the interactive boundary-layer
program in subsection 10.15.3.

All programs, including the three programs in Chapter 5, can be found on the
companion site, store.elsevier.com/companions/9780080983356.
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I 10.2 Integral Methods

In Chapter 7 we discussed integral methods for calculating heat and momentum
transfer in two-dimensional and axisymmetric laminar and turbulent flows. In this
section we describe  FORTRAN programs for them and present sample
calculations.

10.2.1 THWAITES’ METHOD

This method is applicable to both two-dimensional and axisymmetric laminar flows
(see Problem 7.11) and has the following input requirements:

NXT Total number of x-stations.

KASE Flow index, 0 for two-dimensional flow, 1 for two-dimensional flow that starts as
stagnation-point flow, and 2 for axisymmetric flow.

KDIS Index for surface distance; 1 when surface distance is input, 0 when surface distance
is calculated.

UREF Reference velocity, urf, feet per second or meters per second.

BIGL Reference length, L, feet or meters.

CNU Kinematic viscosity, v, square feet per second or square meters per second.

X Dimensionless chordwise or axial distance, x/L. If KDIS = 1, then X is the surface
distance, s.

UE Dimensionless velocity, ug/uref.

R Dimensionless two-dimensional body ordinate or body of revolution radius; r/L.

Its output includes 6%, 6, H, c¢rand Ry = u,0/v together with Reynolds mumber,
RS, based on surface distance and external velocity.

10.2.2 SMITH-SPALDING METHOD

This method is for laminar boundary-layer flows with variable u, but uniform surface
temperature. Its input is similar to Thwaites’ method and consists of NXT, KASE,
KDIS, UREF, BIGL, CNU and PR. We again read in X, R and UE.

The output includes X, S, UE and ST (Stanton number).

10.2.3 Heap’s METHOD

This method is applicable to only two-dimensional incompressible turbulent flows.
Its input consists of the specification of the external velocity distribution, u,/u«,
UE(]), as a function of surface distance x/L, X(I), with . denoting the reference
freestream velocity and L a reference length. The initial conditions consist of
a dimensionless momentum thickness, /L, T(1), and shape factor H, H(1), at the first
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station. In addition, we specify a reference Reynolds number R; = uL/v, RL and
the total number of x-stations, NXT. In the code, the derivative of external velocity
du./dx, DUEDX(I), is computed by using a three-point Lagrange-interpolation
formula. The output includes X(I), UE(I), DUEDX(I), T(I), HI), DELST(), 6*/L,
CF(I) and DELTA(I), 6, defined by Eq. (7.3.2).

10.2.4 AMBROK’S METHOD

This method is only for two-dimensional turbulent flows. Its input and output
instructions are similar to Head’s method.

10.3 Differential Method with CS Model:
Two-Dimensional Laminar and Turbulent Flows

In this section we present the computer program discussed in Chapter 8 for two-
dimensional incompressible laminar and turbulent flows. Its extension to flows with
heat transfer is discussed in Section 10.5 and to infinite-swept wing flows in Section
10.6, to turbulent flows employing the SA model in Section 10.11 and to a plane jet
in Section 10.12.

This computer program, called BLP2, and also described in [1], consists of
a MAIN routine, which contains the logic of the computations, and seven subrou-
tines: INPUT, IVPL, GROWTH, COEF3, SOLV3, EDDY and OUTPUT. The
following subsections describe the function of each subroutine.

10.3.1 MAIN

BLP2 solves the linearized form of the equations. Thus an iteration procedure in
which the solution of Eq. (8.2.24) is obtained for successive estimates of the
velocity profiles is needed with a subsequent need to check the convergence of the
solutions. A convergence criterion based on vy which corresponds to f/ is usually
used and the iterations, which are generally quadratic for laminar flows, are stopped
when

|6ug(= DELV(1))| < & (10.3.1)

with g taken as 107. For turbulent flows, due to the approximate linearization
procedure used for the turbulent diffusion term, the rate of convergence is not
quadratic and solutions are usually acceptable when the ratio of |6vp/vo| is less than
0.02. With proper linearization, quadratic convergence of the solutions can be
obtained as described in [1].
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After the convergence of the solutions, the OUTPUT subroutine is called and the
profiles F, U, V and B, which represent the variables f;, u;, v; and b; are shifted.

10.3.2 SusrouTINE INPUT

This subroutine prepares data for boundary layer calculations. The data includes grid
in £- and n-directions, dimensionless pressure gradient m(£), mass transfer f,,(§)
parameter and calculation of the yq-term in the CS model which is given by Egs.
(5.3.18) and (5.3.19).

The streamwise grid is generated by reading the values at £ In general, the §-grid
distribution depends on the variation of u, with & so that rapid variations in external
velocity distribution and the approach to separation require small 4&-steps (k). For
laminar flows, it is often sufficient to use a uniform grid in the n-direction. A choice of
transformed boundary-layer thicknesses 7, equal to 8 often ensures that the dimen-
sionless slope of the velocity profile at the edge, " (n.), is sufficiently small (< 1073
and that approximately 61 grid points are adequate for most flows. For turbulent flows,
however, a uniform grid is not satisfactory because the boundary-layer thickness 7,
and the dimensionless wall shear parameter »,, (= f",,) are much larger in turbulent
flows than laminar flows. Due to the rapid variation of the velocity profile close to the
wall, it is necessary to take much smaller steps in 7 close to the wall.

The program uses a n-grid which has the property that the ratio of lengths of any
two adjacent intervals is a constant, that is, #; = Kh;_; and the distance to the j-th line
is given by

j=1,2,...0 K>1 (10.3.2)

There are two parameters: /1, the length of the first An-step, and K, the variable grid
parameter. The total number of points, J, is calculated from

In[l + (K = 1)(n./M)]

J =
InK

+1 (10.3.3)

In practice, it is common to choose #; [DETA(1)] and K (VGP) so that, for an
assumed maximum value of 7, (ETAE), the number of j-points do not exceed the
total number (NPT) specified in the code. For example, for n, = 50 and #; = 0.01, the
number of j-points depends on K. Figure 10.1 can help in the selection of K and
shows that, for example for J = 61, the value of the variable grid parameter must be
less than about 1.1.

With velocities known at each &-station, called NX-stations, the pressure gradient
parameters m (P2) and m; (P1) are computed from their definitions for all £-stations,
except the first one at which m is specified, after the derivative of du,/dé (DUDS)
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Fig. 10.1 Variation of K with h; for different n.-values.

needed in the calculation of m is obtained by using three-point Lagrange interpo-
lation formulas given by (n < N):

du, Z*I "
(dug)n = _%(gn—t—l - gn) +Z72(gn+l - Zgn +‘En—l)

un+ 1

T G )

(10.3.4)

Here N refers to the last £” station and

A = (En - gnfl)(gnJrl - 'Enfl)
Ay = (En - gn—l)(5n+1 - ‘En) (10.3.5)
Az = (gn+1 - gn)(sn—}-l - ‘En—l)

The derivative of du,/d¢ at the end point n = N is given by
du, B ul =2 N-1
(%), ="
N
e
3

(B — &)+

- (Ex — En_a)
(10.3.6)
+ Z—(ZEN —En_2—En-1)

where now

A = (Ev—1 —Env-2)(En — En—2)
Ay = (Ey—1 —En—2)(En — En—1) (10.3.7)
Az = (Ey —Env—1)(Ev — En—2)
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The yq-term, which accounts for the transition region between a laminar and
turbulent flow, is calculated as a function of £ once the onset of transition is
specified.

In this subroutine we specify 7, at £ =0 and the reference Reynolds number R,
(RL). In addition, the following data are also read in and the total number of j-points
J(NP) is computed from Eq. (10.3.2).

NXT Total number of x-stations
NTR NX-station for transition location x
NPT Total number of 7-grid points.

DETA()  An-initial step size of the variable grid system. Use An=0.01 for turbulent flows. If
desired, it may be changed.

ETAE Transformed boundary-layer thickness, 7.

VGP Kis the variable-grid parameter. Use K= 1.0 for laminar flow and K= 1.12 for turbulent
flow. For a flow consisting of both laminar and turbulent flows, use K=1.12.

RL Reynolds number, “=t

X Surface distance, feet or meters, or dimensionless.

Ue Velocity, feet per second or meter per second, or dimensionless.

10.3.3 SusrouTtiNE IVPL

At x=0 with b=1, Eq. (8.2.6) reduces to the Falkner-Skan similarity equation
which can be solved subject to the boundary conditions of Eq. (8.2.7). Since the
equations are solved in linearized form, initial estimates of f;, u; and v; are needed in
order to obtain the solutions of the nonlinear Falkner-Skan equation. Various
expressions can be used for this purpose. Since Newton’s method is used, however,
it is useful to provide as good an estimate as is possible and an expression of
the form.

1 /n\?3
u = 52__(i> (10.3.8)

usually satisfies this requirement. The above equation is obtained by assuming
a third-order polynomial of the form

fr=a+bn+ery

and by determining constants a, b, ¢ from the boundary conditions given by Eq.
(8.2.7) for the zero-mass transfer case and from one of the properties of momentum
equation which requires that f” =0 at n = 7,.
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The other profiles f;, v; follow from Eq. (10.3.4) and can be written as

2 2
M (M5 (M
=5 P2
o 31 _ 77j 2
v = T {1 (m) ] (10.3.10)

10.3.4 SuBroutINE GROWTH

For most laminar-boundary-layer flows the transformed boundary-layer thickness
Ne(x) is almost constant. A value of 1, =28 is sufficient. However, for turbulent
boundary-layers, 7.(x) generally increases with increasing x. An estimate of 1.(x) is
determined by the following procedure.

We always require that 7,(x") > ng(x"_l), and in fact the calculations start with
76(0) = n.(x;). When the computations on x=x" (for any n>1) have been
completed, we test to see if | V] | < ¢, at n,(x") where, say &, =5 x 10, This test is
done in MAIN. If this test is satisfied, we set 7,(x"*!) = 1,(x"). Otherwise, we call
GROWTH and set Jyey = Joig + £, Where ¢ is a number of points, say = 1. In this
case we also specify values of (f/', u, v}, b}) for the new n; points. We take the values
of uj=1, v;? =0, ]3” = (nj — 1. uj +f7, and bj’»‘ = b. This is also done for the
values of];-”’l, vj’}’l, and b]’?’l.

10.3.5 SuBrouTINE COEF3

This is one of the most important subroutines of BLP2. It defines the coefficients of
the linearized momentum equation given by Eqgs. (8.2.20) and (8.2.23).

10.3.6 SusBrouTINE EDDY

This subroutine contains the CS algebraic eddy viscosity model in Section 5.8. For
simplicity we do not include the low Reynolds number effect, roughness effect, mass
transfer effect and strong pressure gradient effect (variable «) in this subroutine.
These capabilities, if desired, can easily incorporated into the formula as defined in
this subroutine. The formulas for the inner and outer eddy-viscosity expressions are
given by Eqgs. (5.2.11) with each side of equation multiplied by vy, given by Egs.
(5.3.18) and (5.3.19).

In terms of transformed variables ( e;)i and ( 52)0 given by Eq. (5.2.11) can be
written as

(4); = 0.16RY?[1 — exp(— y/A)*n* vy, (10.3.11a)
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(1) = 0.0168Ry/? (ne —fe)vtrv (103.11b)
Yy N i/a 1) UeX
1= R Re= =5 (10.3.12)

10.3.7 SusrouTINE SOLV3

This subroutine is used to obtain the solution of Eq. (8.2.24) with the block-elimi-
nation method discussed in subsection 8.2.3 and with the recursion formulas given in
subsection 8.2.4.

10.3.8 SusroutiINE OUTPUT

This subroutine prints out the desired profiles such as f;, u;, v;, and b; as functions of
n;. It also computes the boundary-layer parameters, c5 6°, § and R,.

I 10.4 Hess-Smith Panel Method with Viscous Effects

In this section we present a computer program for the panel method discussed in
Section 8.9. This program can be used interactively with the boundary-layer program
of Section 10.14 so that, as discussed in detail in [2,3] and briefly in Section 8.9,
more accurate solutions of inviscid and viscous flow equations can be obtained by
includingthe viscous effects in the panel method of Section 8.9.

The computer program of the panel method has five subroutines and MAIN, as
described below.

10.4.1 MAIN

MAIN contains the input information which comprises (1) the number of panels
alongthe surface of the airfoil, NODTOT, and the number of panels in the wake, NW.
The code is arranged so that it can be used for inviscid flows with and without viscous
effects. For inviscid flows, NW is equal to zero. (2) The next input data also comprises
airfoil coordinates normalized with respect to its chord ¢, x/c, y/c, [=X(D),Y(D)]. If
NW =+ 0, then it is necessary to specify the dimensionless displacement thickness
0"/c (=DLSP(I)), dimensionless blowingv elocity u,, /s (=VNP(I)) distributions
on the airfoil, as well as the wake coordinates XW(I), YW(I) of the dividing-
streamline, the dimensionless displacement thickness distribution on the upper wake
DELW(,1) and lower wake DELW(I,2) and velocity jump QW(I). It should be noted
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that all input data for wake includes values at the trailing edge. The input also in-
cludes angle of attack oo (= ALPHA) and Mach number M (=FMACH).

The panel slopes are calculated from Eq. (8.9.2). The subroutine COEF iscalled
to compute A and D in Eq. (8.9.19) subroutine OBKUTA to calculate the off-body
Kutta condition, subroutine GAUSS to compute X, subroutine VPDIS to compute
the velocity and pressure distributions, and subroutine CLCM to compute the airfoil
characteristics correspondingto lift (CL) and pitchingmoment (CM) coefficients.

10.4.2 SusroutINE COEF

This subroutine calculates the elements a;; of the coefficient matrix A from Egs. (8.9.21)
and (8.9.23) and the elements of b from Eq. (8.9.24) We note that N + 1 corresponds to
KUTTA, and N to NODTOT

10.4.3 SusrouTiINE OBKUTA

This subroutine is used to calculate the body-off Kutta condition.

10.4.4 SusrouTtINE GAUSS

The solution of Eq. (8.9.19) is obtained with the Gauss elimination method described
in Section 8.9.

10.4.5 SusroutINE VPDIS

Once X is determined by subroutine GAUSS so that source strengths g; i =1, 2,..., N)
and vorticity  on the airfoil surface are known, the tangential velocity component (V)
at each control point can be calculated. Denoting g; with Q(I) and T with GAMMA, the
tangential velocities (V*); are obtained with the help of Eq. (8.9.12b). This subroutine
also determines the distributions of the dimensionless pressure coefficient C,, (= CP)
defined by

P — Do
which in terms of velocities can be written as
V2
C =1~ (V_> (10.4.1b)

It is common to use panel methods for low Mach number flows by introdu-
cingcompressibilit y corrections which depend upon the linearized form of the
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compressibility velocity potential equation and are based on the assumption of small
perturbations and thin airfoils [4]. A simple correction formula for this purpose is the
Karman-Tsien formula which uses the “tangent gas” approximation to simplify the
compressible potential-flow equations. Accordingto this formula, the effect of Mach
number on the pressure coefficient is estimated from

_ Cpi
@ = B ME 1+ B)](en/2) (104.2)

and the correspondingv elocities are computed from
1 )
V2= 14— [1 (1 —I—Cgcp)l/”} (10.4.3)
C6

Here c),; denotes the incompressible pressure coefficient, M« the freestream
Mach number and

-1 1
B=\1-M% cs = oM, cq = % ¢ = SYML, v = 14
(10.4.4)

In this subroutine we also include this capability in the HS panel method.

10.4.6 SusrouTtINE CLCM

The dimensionless pressure in the appropriate directions is integrated to compute the
aerodynamic force and the coefficients for lift (CL) and pitchingmoment (CM) about
the leading edge of the airfoil.

10.4.7 SusrouTINE VPDWK

This subroutine calculates the total velocity and pressure coefficient at each
control point alongthe upper and lower wakes separately. The normal and
tangential components of the total velocities are computed from Eqgs. (8.9.39a) and
(8.9.39b).

10.5 Differential Method with CS Model:
Two-Dimensional Flows with Heat Transfer

The program which for convenience we called BLP2H is the same computer
program BLP2 which now includes the solution of the energy equation. Two
subroutines, COEF2 and SOLV2, are added to BLP2 to calculate incompressible
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laminar and turbulent flows with heat transfer (see Problem 8.3). Sample calculations
presented on the companion site, store.elsevier.com/components/9780080983356,
represent the application of this code to Problems 8.4 and 8.5.

10.6 Differential Method with CS Model: Infinite
Swept-Wing Flows

This program, called BLP2ISW, is also the extension of BLP2 to the calculation of
infinite swept-wing equations for incompressible laminar and turbulent flows as
discussed in Problem 8.6. Again two subroutines are added to BLP2 and changes are
made to the eddy viscosity subroutines. Subroutine COEF2 includes the coefficients
of the z-momentum equation and subroutine SOLV2 is the same solution algorithm
used in BLP2H see subsection 10.13.1.

For three-dimensional turbulent flows, the eddy viscosity formulas require
changes to those for two-dimensional flows. Here they are defined according to Eqgs.
(5.7.4) and (5.7.5).

Sample calculations for an infinite swept wing having the NACA 0012 airfoil
cross section with a sweep angle of A =30°, an angle of attack of o =2°, chord
Reynolds number R, =5 x 10° and transition location at x/c = 0.10 are presented on
the companion site, store.elsevier.com/components/9780080983356. See also
Problem 8.7.

10.7 Differential Method with CS and k-¢ Models:
Components of the Computer Program Common
to both Models

This section includes a MAIN routine which contains the logic of the computations
and five subroutines, INPUT, IVPT, GROWTH, GRID and OUTPUT, described
below.

10.7.1 MAIN

Here we first read in input data (subroutine INPUT) and generate the initial turbulent
velocity profile (subroutine IVPT) and the eddy viscosity distribution for the CS
model (subroutine EDDY), k-profile (subroutine KEINITK), e-profile (subroutine
KEINITG). Since linearized equations are being solved, we use an iteration proce-
dure in which the solutions of the equations are obtained for successive estimates of
velocity, kinetic energy, dissipation profiles with a subsequent need to check the


http://store.elsevier.com/components/9780080983356
http://store.elsevier.com/components/9780080983356

422 Analysis of Turbulent Flows with Computer Programs

. L. ov0 .
convergence of the solutions. A convergence criterion based on 0 < 0.02 is used
v

and the iterations are stopped when

00
V!

< 0.02

During this iteration procedure, we introduce an under-relaxation procedure for the
iterations as described in MAIN. This is useful, especially with transport equation
turbulence models.

When the solutions converge, we also check to see whether the boundary-layer
thickness, 7,, used in the calculations for that x-station is large enough so that the
asymptotic behavior of the solutions is reached. If this is not the case, we call
subroutine GROWH.

After the convergence of the solutions. the OUTPUT subroutine is called and the
profiles which represent the variables such as f;, u;, vj, k;, & etc. are shifted.

10.7.2 SusrouTINE INPUT

In this subroutine we read in input data and set up the flow calculations according to
the following turbulence models listed below.

Model = 0 CS model
1 Huang-Lin k-¢ model
2 Chien k-& model
= —1 zonal method
= —2 high Re # k-¢ model

In some problems, like airfoil flows, it is convenient to read in the dimensionless
airfoil coordinates x/c, y/c rather than the surface distance required in the boundary-
layer calculations. In all calculations, the external velocity u.(x) either dimensional
or dimensionless, u#, /i, and freestream or reference velocity, ue (), kinematic
viscosity » (CNU), reference length ¢ (chord), variable n-grid parameter K (VGP)
discussed in subroutine GRID must be specified together with Ry (RTHA) and ¢
(CFA) needed to generate the initial turbulent velocity profile with subroutine IVPT.
The input also requires the specification of the first grid point needed in the n-grid

generated by subroutine GRID. This is done by inputting yar (YPLUSW).
defined by

g e

v
where u; (UTAU) is the friction velocity, u./cf /2 and y0 is the variable grid parameter
h1, discussed in subroutine GRID. Its typical values for CS, zonal and high Reynolds
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number k-e models are around 0.5 to 1.0. For low Reynolds number k-e model, values of

y(J{ around 0.10 to 0.50 are typical. In the present program, K is set equal to 1.12, y(‘f

equal to 0.5 for low Reynolds number k-e model and 1.0 for zonal and CS models.
Since equations use transformed variables where y is given by

y = Vvx/uen
and since the location of x where the turbulent flow calculations are started, x|, can be
an arbitrary distance, in this subroutine we calculate x in order to control yaL better.
The calculation of the pressure gradient parameter m(x) (P2) in the transformed
momentum equation is achieved from the given external velocity u,(x) distribution
and from the definition of m.

10.7.3 SuBrouTiNE IVPT

This subroutine is used to generate the initial turbulent velocity profile for both
models by specifying a Reynolds number based on momentum thickness,

1
Ry = u,0 /v and local skin-friction coefficient ¢, [E Tw/ 3 Qu?] . It makes use of Eq.

(4.4.41) for y* < 50 ; and Eq. (4.4.35) for y* > 50. See problem 8.9. It is also given
in subsection 10.13.1.

10.7.4 SuBroutINE GROWTH

This subroutine is similar to the one described in subsection 10.3.4. An estimate of
7N (x) for turbulent flows is determined by the following procedure.

We always require that 7, (x") > 7,(x"~1), and in fact the calculations start with
7,(x%) = 7n,(x1). When the computations on x = x" (for any n > 1) have been
completed, we test to see if [V} < &, at n,(x") where, say &, = 5 x 10~ This test is
done in MAIN. If this test is satisfied, we set n,(x**!) = n,(x") Otherwise, we call
GROWTH and set Jpew = Joid + £, where ¢ is a number of points, say ¢ = 1. In this
case we also specify values of (];”7 u}-’, v}“, b;‘, k]”7 gf! etc.) for the new 7 ; points. We take
the values of uf = 1,0} = 0, f' = (mj —me)u +f7,k = k], €} ,s7 = 0,q{" = 0.

10.7.5 SusrouTINE GRID

See subsection 10.3.2

10.7.6 SusroutiINE OUTPUT

This subroutine prints out the desired profiles of the momentum, kinetic energy and
rate of dissipation equations, such as f;,u;,v;,kj,&; as a function of 5. It also
computes the boundary-layer parameters, cy, 6*, 0,R;s and Ry.
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10.8 Differential Method with CS and k-¢ Models:
CS Model

This part of the computer program which uses the CS model has five subroutines in
addition to those described in Section 10.7. They include subroutines COEFTR,
SOLV3, EDDY, GAMCAL, and CALFA and are briefly described in the following
subsections.

10.8.1 SusroutiINe COEFTR

The solution of the momentum equation, Eq. (8.2.6), is much simpler than the
solution of the k-e model equations. Since this equation is third order, we have three
first-order equations, the first two given by the first two equations in Egs. (8.2.9a, b)
(2.2.1) and the third by Eq. (8.2.9a). After writing the difference equations for Eqgs.
(8.2.9a, b) and linearizing them, we obtain Egs. (8.2.20a, b) and (8.2.21a, b). The
third equation is given by Eq. (8.2.20c) with (1) given by Eq. (8.2.21c)

The linearized boundary conditions correspond to Egs. (8.2.23) at » = 0 and to
ou; = Oatn = n;. This system of equations is again written in matrix- vector form
given by Eq. (8.2.24) with A;, B; and C; matrices given by Egs. (8.2.27) and (3 and
?j by Eq. (8.2.26).

The solution of Eq. (8.2.24) is again obtained with the block climination method
described in subsection 8.2.3

This subroutine contains the coefficients of the linearized momentum equation
given by Egs. (8.2.20c), (8.2.20a,b), and (8.2.21c). Since the calculations are for
turbulent flow only, these coefficients for the first two computed x-stations are slightly
different due to the use of two-point backward difference formulas for the streamwise
derivatives in the momentum equation. This is needed to avoid oscillations caused by
the specified initial velocity profiles. At the third x-station, the calculations revert back
to the central differences for the streamwise derivatives described in [1]. In this case
the coefficients (s1); to (s); and (r2); are given by Eqs. (8.2.22) and (8.2.21c).

10.8.2 SusrouTINE SOLV3

This subroutine is the same as the one described in subsection 10.3.7.

10.8.3 Susroutines EDDY, GAMCAL, CALFA

These subroutines use the CS algebraic eddy viscosity formulation discussed in
Section 5.2. In terms of transformed variables, (¢;); and (¢},), are given by

(e;)l. = 0.16772\/R_xv{1 — exp(f R}C/4vvlv/2/26/cn) }ytr (10.8.1a)
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(e0)0 = —aVRi(ny — f1) ey (10.8.1b)
where
m
e = 57 (10.8.2)
R

Subroutine EDDY contains the expressions for the inner and outer regions. The
intermittency expression used in the outer eddy viscosity formula is calculated in
subroutine GAMCAL and the variable « in subroutine CALFA.

10.9 Differential Method with CS and k-¢ Models:
k-¢ Model

The structure of the k-e model, which includes the zonal method and the model for
low and high Reynolds number flows, is similar to the CS model described above. It
consists of the subroutines described below.

10.9.1 SusrouTiNes KECOEF, KEPARM, KEDEF ano KEDAMP

Again we need a subroutine for the coefficients of the linearized equations for
momentum, turbutlent kinetic energy and rate of dissipation. We also need to
generate initial profiles for the kinetic energy and rate of dissipation equations
for both low and high Reynolds number flows. We do not need to generate the
initial turbulent velocity profile for the momentum equation since it is already
generated by subroutine IVPT discussed in subsection 10.7.3. Then we need an
algorithm, like SOLV3, to solve the linear system of equations for the zonal
method and k-¢ model with and without wall functions for low and high Rey-
nolds number flows.

To simplify the coding and discussion and the application of this computer
program to other turbulence models, we use three additional subroutines to define the
coefficients of the linearized equations for momentum, kinetic energy and rate of
dissipation given in subroutine KECOEF. The first of these three subroutines is
subroutine KEPARM, which calculates the parameters by, b,, b3 and production and
dissipation terms and their linearized terms such as

n n n n n
<%> ,(62) , (6—})) , (6_Q> , (G_P) , etc. in the equations for kinetic energy
Ok ) '\ de ); \de/; \0k/, \dv);
and rate of dissipation.
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The second of these three subroutines is subroutine KEDEF, which calculates
D, E, F terms, (see subsection 6.2.1), and their linearized terms such as
<6E>" <8F )” . . .

— | ,{ = , etc. in k-¢ model associated with low Reynolds number effects,
de j de j
which in the present program correspond to the models of Huang-Lin and Chien
discussed in Section 6.2.

The third of these subroutine is subroutine KEDAMP, which calculates near-wall
damping terms f1, f2, fu, 0k, 0, and their linearized terms which are for low Reynolds
numbers and are model dependent.

The linearized coefficients of the momentum equation in subroutine KECOEF
use both two and three point backward finite-difference approximations for the
streamwise derivatives. For j <j,, the coefficients (s1); to (se); are given by Eq.
(8.2.22) for the CS model. At j = j.

(emcs = (Em)p-e

and (s7); to (s12); are given by the following equations,

ab
(s7); = b’y <&> (10.9.1a)
J
ab
(s8); = —h-‘v~_1(—> (10.9.1b)
! RO
., (db
(s0); = Iy 'y <$> (10.9.1¢)
J
b
(s10); = *hj_lvjfl (6_> (10.9.1d)
s/ i1
., {0b
(s11); = hi’'y (ae> (10.9.1e)
J
b
(s12); = _h'IU'—l(—) (10.9.19)
J 7 Oe i1

for the k-& model.

This subroutine also presents the coefficients of the kinetic energy equation, (a);
to (a12); and (r4); in Eq. (9.2.35) and the coefficients of the rate of dissipation
equation, (81); to (814); (t5); in Eq. (9.2.36).

To discuss the procedure for obtaining the coefficients of the kinetic energy and
rate of dissipation equations, consider Eq. (9.2.7). With x-wise derivatives repre-
sented either by two- or three-point backward differences, the finite difference
approximations to Eq. (9.2.7) are given by Eq. (9A.5) and linearized Egs. by (9A.6).
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The coefficients of Eq. (9.2.35) are now given by Eqs. (9A.7a) to (9A.71) and
(9A.8a).

Remembering the definitions of the diffusion, production, dissipation, convention
and F terms. Eq. (9A.8a) can also be written as Eq. (9A.8b)

The parameters P, Q and F are model-dependent. As a result, the derivatives with

9

respect to k, € and v will be different for each model. The derivations of % and o
with respect to k and f are straight forward.

In term of transformed variables the parameters, P, Q and F in Hung and Lin’s
model, for example, are (here € is €) given by Egs. (9A.9a) to (9A.9¢)

We now consider the rate of dissipation equation given by Eq. (2.2.4). Following
a procedure similar to the one used for the kinetic energy equation, the finite-
difference approximation for this equation is given by Eq. (9A.13)

After linearization, Eq. (9A.13) can be expressed in the form given by Eq.
(9.2.3b) with (B1); to (B14)j and (rs5); given by Egs. (9A.14a) to (9A.15a). The latter
equation, (9A.15a), can also be written in the form given by Eq. (9A.15b).

10.9.2 SusrouTINE KEINITK

This subroutine generates the initial k-profile for low and high Reynolds numbers as
well as the profile for the zonal method. For high Reynolds number flows, the kinetic
energy profile k is determined by first calculating the shear stress t from

ou

55 (10.9.2)

T = (&m)

and using the relation between t and k,

k= _— (10.9.3)
ai
with a; = 0.30. The calculation of 7 is easily accomplished in subroutine IVPT once
the initial velocity profile is generated in that subroutine.
For low Reynolds number flows, we assume that the ratio of t7/k" is given by

L (a6h)B0) vt <40 (10.9.42)

T
o - atartadtar 60<yT <40 (10.9.4b)
0.30 yt > 60 (10.9.4c)

where z =In y™. The constants in Eq. (11.9.4a) are determined by requiring that
atyt =4.

t Y
e 0.054. (k_+) = 0.0145 (10.9.5)
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according to the data of [4]
The constants c; to ¢4 in Eq. (10.9.4b) are taken as

c; = 0.080015, ¢y = —0.11169

c3 = 0.07821, ¢4 = —0.0095665 (10.9.6)

10.9.3 SusrouTINE KEINITG

In this subroutine the rate of dissipation profile ¢ is determined by assuming

k2
(em)es (Eme-e = fucu (10.9.7)
or from
k2
e — Jucu
(em)cs

where (&,,)cs is determined from the CS-eddy viscosity model in subroutine EDDY.
Whereas f,, is constant for high Reynolds number flows with a typical value of 1.0, it
is not constant for low Reynolds number flows. Its variation differs according to
different models developed close to the wall, say y+ <60 [4].

10.9.4 SusrouTINE KEWALL

This subroutine provides the wall boundary conditions for the k-¢ model which
includes low (with wall functions) and high Reynolds number (without wall func-
tions) flows as well as the zonal method. For low Reynolds numbers, there are four
physical wall boundary conditions and one ‘‘numerical” boundary condition. They
are given by Egs. (9.2.9)

For high Reynolds numbers, the “wall”’ boundary conditions are specified at
a distance yo = (v/u:)yg - In this case we have a total of five boundary conditions.

10.9.5 SusrouTtINE KESOLV

This subroutine performs both forward and backward sweeps for low and high
Reynolds numbers, including the zonal method, by using the block elimination
method. When the perturbation quantities um (1, j) to um (8, j) are calculated so that
new values of f;, u;, v}, etc., can be calculated, a relaxation parameter rex is used in
order to stabilize the solutions.

In this subroutine, for the zonal method we also reset k, ¢ in the inner region only.
Since the CS model is used for the inner region, there is no need for these quantities.
For safety, they are arbitrarily defined in this region.
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10.9.6 Test Cases FOR THE CS AND k-¢ MODELS

There are five test cases for this computer program. They all use the notation
employed in the Stanford Conference in 1968 [1]. For example, flow 1400 corre-
sponds to a zero-pressure gradient glow. Flow 2100 has favorable, nearly-zero and
adverse-pressure-gradient flow. All calculations are performed for Model = 1, 2, —1,
and —2 (see subroutine 10.9.2). The predictions of four models with experimental
data are given for ¢y, 0" and Ry as a function of x in the companion site, store.elsevier.
com/companions/9780080983356.

A summary of the freestream and initial conditions for each flow are summarized
below.

1. Flow 1400: Zero-Pressure-Gradient Flow
NXT = 61, tp/utref = 1.0, ttrer =33 ms ™",
¢;=3.17 x 107, Ry = 3856, v=1.5 x 10° m’*s™', REF = 1
2. Flow 2100: Favorable, Zero and Adverse-Pressure-Gradient Flow
NXT = 81, uye = 100 ft s
¢;=3.10 x 107, Rg=3770, v=1.6 x 10~ * f’s”', REF = 1
3. Flow 1300: Accelerating Flow
NXT = 81, ttyef = 100 ms ™,
c;=4.61 x 107, Ry=1010, v = 1.54 x 107 ft>s™", REF = 1
4. Flow 2400: Relaxing Flow
NXT = 81, u,/u s = tabulated values, =1,
¢;=1.42 % 107, Ry=27,391, v=1.55 x 10 m*s™", REF = 1
5. Flow 2900: Boundary Layor Flow in a Diverging Channel
NXT = 81, u./uer = tabulated values, uer= 1,
¢;=1.77x 107, Ry =22.449.2, v = 1.57 x 107*t’s™!, REF = 1

The input and output for each flow are given in tabular and graphical form and
are included with the computer program. Figure 10.2 shows a comparison between
the calculated results and experimental data for flow 1400. The calculations for
Model =1, 2, —1 and -2 correspond to low Reynolds number flows with Huang-
Lin and Chien models, zonal method and high Reynolds number flows,
respectively.

10.9.7 SOLUTION ALGORITHM

When the system of first-order equations to be solved with the block elimination
method becomes higher than, say 6, the preparation of the solution algorithm with
the recursion formulas described in subroutine SOLV3 becomes tedious. A matrix-
solver algorithm (MSA) discussed here can be used to perform the matrix operations
required in the block elimination method. This algorithm consists of three
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Fig. 10.2 Comparison of calculated results with the experimental data for flow 1400.

subroutines, namely, subroutines GAUSS, GAMSYV and USOLV. To illustrate its use,
we discuss the replacement of SOLV3 with MSA.

(1) Read in
DIMENSION DUMM(3), BB(2,3), YY(3,81),NROW(3,81),GAMJ(2,3,81).
AA(3,3,,81),CC(2,3,81)
DATA TIROW,ICOL,ISROW,INP/3,3,3,81/

Here IROW, ICOL correspond to number of maximum rows and columns
respectively. ISROW denotes the number of “wall”” boundary conditions and
INP the total number of j-points in the n-direction, and

BB = B, YY = W;, GAMJ =1Tj, AA =4; CC=(;

The first and second numbers in the arguments of AA, BB, CC and GAMIJ correspond to

the number of nonzero rows and columns in A; (or 4;), B;, C; and I'; matrices, respec-

tively. Note that B; and I'; have the same structure and the last row of B; and the-first two

rows of C; are all zero. The index 81 in YY, NROW, GAMJ, AA and CC refers to INP.
(2) Set the elements of all matrices, A;, B;, C; (and 4;) equal to zero.
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(3) Define the matrices Ay and Cy by reading in their elements. Note that only those
nonzero elements in the matrices are read in since in (2) we set all the elements
equal to zero.

(4) Call subroutine GAUSS.

(5) Read in the elements of B; and call subroutine GAMSYV to compute I';.

(6) Define A; according to Eq. (9.2.33b), call GAUSS and read in the
elements of C;.

(7) Recall the elements of B; and call GAMSYV to compare .

(8) Repeat (6) and (7) for j < J.

(9) Atj=J. read in the last row of A; which is also equal to the last row of 4.

(10) Compute W according to Eq. (8.2.29a). Here 79 = RRR (1.81).

(11) Define the right-hand side of Eq. (8.2.29b) and compute W, according to Eq.
(8.2.29b) ~

(12) In the backward sweep, with ¢; corresponding to UM(I.J), compute ¢ ; accord-
ing to Eq. (8.2.30a) by calling USOLV at INP.

(13) Define the right-hand side of Eq. (8.2.30b) and solve for §; by calling USOLV
forj=J-1,J-2,...0.

This algorithm is very useful to solve the linear system for the k-e model equations.
With all A;, B, C; matrices and r; nicely defined in subroutine KECOEF, the solution
of Eq. (8.2.24) is relatively easy.

10.10 Differential Method with CS and k-¢ Models:
Basic Tools

The computer program also includes basic tools to perform smoothing, differentiation,
integration, and interpolation. For example, subroutine DIFF-3 provides first. second
and third derivatives of the input function at inputs. First derivatives use weighted
angles, second and third derivatives, use cubic fits. Subroutine INTRP3 provides cubic
interpolation. Given the values of a function (F1) and its derivatives at N1 values of the
independent variable (X1), this subroutine determines the values of the function (F2)
at N2 values of the independent variable (X2). Here X2 can be in arbitrary order.

Another subroutine used for interpolation is subroutine LNTP: it performs linear
interpolation.

I 10.11 Differential Method with SA Model

This computer program called BLPSA is the extension of BLP2 with the procedure
described in Problems 9.1 to 9.7. Many of the subroutines used in BLP2 remain the
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same except for some minor changes. Several additional subroutines are added.
Subroutine COEF contains the coefficients of linearized continuity, momentum and
eddy viscosity equations (Problem 9.4), subroutine MSA (subsection 10.10.3) is the
solution algorithm to solve the linear system in Problem 9.4.

The companion site, store.elsevier.com/companions/9780080983356 has two test
cases for this program and also includes another program for this model in which the
continuity, momentum and eddy transport equations are all solved together. This
program is referred to as 5 x 5 in contrast to the other one which is referred toas 2 x 2.

I 10.12 Differential Method for a Plane Jet

See Problem 9.8.

I 10.13 Useful Subroutines

In this section we present two subroutines that are useful to solve some of the
problems in Chapters 8 and 9. They are briefly described below and are given in the
companion site, store.elsevier.com/companions/9780080983356.

10.13.1 SusrouTtiNE IVPT

This subroutine is for generating initial velocity profiles turbulent flows with the
method discussed in Problem 8.9. It requires the initial values of Reynolds number
based on momentum thickness Ry (= u.0/v) and local skin friction coefficient

cr(= ZTW/QME).

10.13.2 SusrouTINE SOLV2

This subroutines is similar to the solution algorithm, SOLV3, in subsection 8.2.4. It is
designed to solve two first-order equations with the block-elimination method
subject to the boundary conditions given by Eq. (P8.2.4). See also Problem 8.2.

10.14 Differential Method for Inverse Boundary-Layer
Flows with CS Model

This computer program consists of a MAIN and 15 subroutines, INPUT, IVPL, HIC,
EDDY, SWTCH, COEF, WAKEPR, DIFF1, LNTP, INTEG, AMEAN, SOLVA4,
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EDGCHK, CALFA and GAMCAL MAIN, as before, is used to control the logic of
the computations. Here the parameter g;, in Eq. (8.8.7b) is also calculated with

i—1
SUMI = Y C;D; (10.14.1a)
j=1
and
N
SUM2 = Y C;D; (10.14.1b)
j=i+l

The initial displacement thickness (6*) distribution needed in the calculation of Bj is
computed in subroutine INPUT by assuming a 6" distribution flat-plate flow and
given by

b
— = 0.036HR_** (10.14.2)
X

with H=1.3.

Of the 15 subroutines, subroutine WAKEPR is used to modify the profiles
resulting from wall boundary layers for wake profiles. Except for this subroutine and
except for subroutines INPUT, IVPL and HIC, the remaining subroutines are similar
to those described in Sections 10.9.2 and 10.9.3. For this reason, only these three
subroutines are described below.

10.14.1 SusrouTtINE INPUT

This subroutine is used to generate the grid, calculate ytr in the eddy viscosity
formulas, initial 6° -distribution, and pressure gradient parameters m and mj. The
following data are read in and the number of j-points J(NP) is computed from Eq.
(10.3.3)

NXT Total number of x-stations

NXTE Total number of x-stations on the body

NXS NX-station after which inverse calculations begin

RL Reynolds number, us c/v

XTR x/c value for transition location

ETAE Transformed boundary layer thickness 5. at x=0, ETAE = 8.0 K is the variable-grid

parameter. Take K= 1.0 for laminar flow and K= 1.14 for turbulent flow. For a flow
consisting of both laminar and turbulent regions, take K=1.14

DETA(1)  4,/hy-initial step size of the variable grid system. Take h; = 0.01 for turbulent flows
P2(1) matx=0(NX=1)

x/c, ylc Dimensionless airfoil coordinates

Ue /U Dimensionless external velocity
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10.14.2 SusrouTtiNE HIC

This subroutine calculates the coefficients of the Hilbert integral denoted by Cj;.
While they can be generated from any suitable integration procedure, we use the
following procedure which is appropriate with the box method [5].

We calculate

s d
H; = / G(o) =22 (10.14.3)
gi gl — 0
where
dF
G(O') = E

with F denoting any function, so that over each subinterval @ em, except the two

enclosing the point £ = &', we replace G(o) by its midpoint value:

g gn . 1
* G(s)do S do gl gn
ol El_ g = Gu-1/2 /5”1 F_o = Gy_1)2ln W (10.14.4)
Making the further approximation,
Fn - anl
anl/Z - g En7_1
we can write
“dF do 4
/E doF _g E,(Fy— Fy-1) (10.14.5)
where forn # iori+ 1
i n n—1 gi - gn—l
e e (10.14.6)

for the two subintervals E"’l to £ and &' to EHI. Because of the cancellation with the
constant term, account should be taken of the linear variation of G from one interval
to the next. Thus, we take the linear interpolation

Gioip (gt — &) + Gi+1/2(§i —& ) + 2<Gi+1/2 - Gi—l/2) (0 —¢)
(gi-&-l _Ei—l)
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so that

Ei _ Ei_l

= In gi _ EiJrl

g gl i

~2(Gi12 = Gi1po)

/Ei+l Gdo  Giyp(E™ = &)+ Gy p(8 -6

(10.14.7)

Replacing the midpoint derivative values by difference quotients, we obtain

£ 4F do . .
/E” %51. — = E{(Fi—Fi1) +E_(Fiq— F) (10.14.8)
where
EiJrl _ gi gi . Ei71 )
o il n g it +
E; = Ao (10.14.9a)
gi _ gifl N 51' o gifl B
gH*l _ gifl 51' _ gi+1
Ei = EEm (10.14.9b)
Thus

H; = Ey(Fy — F1) + E{(F3s — F2) + ... + E¢_|(Fi -1 — F12) + E}(FL — F)
—ELF + (B —EY)Fo+ ...+ (Ej_| — EL)FL1 + EjFp,

(10.14.10)
so, finally the Cj; of Eq. (4.0.6) are given by
L i
Cj = (EJ. _ j+1) (10.14.11)

and the E' given by Egs. (10.14.9a) and (10.14.9b) with E{ = E} ., = 0.

I 10.15 Companion Computer Programs

10.15.1 SAMPLE CALCULATIONS FOR THE PANEL METHOD WITHOUT
Viscous EFFECTS

This test case is for a NACA 0012 symmetrical airfoil, with a maximum thickness of
0.12c: the pressure and external velocity distributions on its upper and lower
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surfaces are computed and its section characteristics determined using the panel
method. The airfoil coordinates are given on the companion site store.elsevier.com/
companions/9780080983356 for 184 points in tabular form. This corresponds to
NODTOT = 183. Note that the x/c and y/c values are read in starting on the lower
surface trailing edge (TE), traversing clockwise around the nose of the airfoil to the
upper surface TE. The calculations are performed for angles of attack of « = 0°, 8°
and 16°. In identifying the upper and lower surfaces of the airfoil, it is necessary to
determine the x/c locations where 1,(=u,/u) = 0. This location, called the
stagnation point, is easy to determine since the i, values are positive for the upper
surface and negative for the lower surface. In general it is sufficient to take the
stagnation point to be the x/c location where the change of sign i, occurs. For
higher accuracy, if desired, the stagnation point can be determined by interpolation
between the negative and positive values of i, as a function of the surface distance
along the airfoil.

Figures 10.3 and 10.4 show the variation of the pressure coefficient C,, and
external velocity i, on the lower and upper surfaces of the airfoil as a function of x/c
at three angles of attack starting from 0°. As expected, the results show that the
pressure and external velocity distributions on both surfaces are identical to each
other at « = 0°. With increasing incidence angle, the pressure peak moves upstream
on the upper surface and downstream on the lower surface. In the former case, with
the pressure peak increasing in magnitude with increasing «, the extent of the flow
deceleration increases on the upper surface and, we shall see in the following section,
increases the region of flow separation on the airfoil. On the lower surface, on the
other hand, the region of accelerated flow increases with incidence angle which leads
to regions of more laminar flow than turbulent flow.

Fig. 10.3 Distribution of pressure coefficient on the NACA 0012 airfoil at « = 0°, 8°,
and 16°.
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Fig. 10.4 Distribution of dimensionless external velocity on the NACA 0012 airfoil at
a = 0°, 8° and 16°.

These results indicate that the use of inviscid flow theory becomes increasingly
less accurate at higher angles of attack since, due to flow separation, the viscous
effects neglected in the panel method become increasingly more important. This is
indicated in Fig. 10.5, which shows the calculated inviscid lift coefficients for this
airfoil together with the experimental data reported in [4] for chord Reynolds
numbers, R.(=uwc/v), of 3 x 10% and 6 x 10°. As can be seen, the calculated
inviscid flow results agree reasonably well with the measured values at low and
modest angles of attack. With increasing angle of attack, the lift coefficient reaches
max> at an angle of attack,
«, called the stall angle. After this angle of attack, while the experimental lift

a maximum, called the maximum lift coefficient, (c,)

Fig. 10.5 Comparison of calculated (solid lines) and experimental (symbols) lift coef-
ficients for the NACA 0012 airfoil.
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coefficients begin to decrease with increasing angle of attack, the calculated lift
coefficient, independent of Reynolds number, continuously increases with increasing
«. The lift curve slope is not influenced by R, at low to modest angles of attack, but at
higher angles of attack it is influenced by R, thus making (c,) ., dependent upon R...

max

10.15.2 SAMPLE CALCULATIONS FOR THE INVERSE BOUNDARY-LAYER PROGRAM

This test case is again for the airfoil considered in the previous section. The
boundary-layer calculations are performed only for the upper surface, for laminar
and turbulent flows with transition location specified, at angles of attack of o = 4°,
8°, 12°, 14°, 16° and 17°. The airfoil coordinates, x/c, y/c are used to calculate the
surface distance. The calculations are done for a chord Reynolds number of
4 x 106,

In practice, it is also necessary to calculate the transition location. Two practical
methods for this purpose are the Michel method and the e*-method described, for
example, in [1, 5]. The former is based on a empirical correlation between two
Reynolds numbers based on momentum thickness, Ry, and surface distance R,. It is
given by Eq. (10.15.1), also Eq. (5.3.22),

22,400
Ry, = 1.174(1 +’—)R§3f6 (10.15.1)
Xie
where
Ry = Ul g MeT
1% v

The accuracy of this method is comparable to the ¢"-method at high Reynolds
number flows on airfoils. The e"-method, which is based on the linear stability
theory, is, however, a general method applicable to incompressible and compressible
two- and three-dimensional flows. As discussed in [1, 2], for two-dimensional flows
at low Reynolds numbers, transition can occur inside separation bubble and can be
predicted only by the e¢"-method. For details, see [1, 2].

While the boundary-layer calculations with this program can be performed for
standard and inverse problems, here they are performed for the standard problem,
postponing the application of the inverse method to the following section.

Here we present a sample of the input and output of the calculations. The
format of the inverse boundary-layer program is similar to the format of the
interactive code and is discussed in the following section. Figure 10.6 shows the
distribution of local skin friction coefficient, ¢y, and dimensionless displacement
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Fig. 10.6 Variation of (a) ¢; and (b) 6"/c on the NACA 0012 airfoil and its wake at
several angles of attack for R. = 4 x 10°.

thickness, 0" /c, for several angles of attack. These results were obtained for the
external velocity distribution provided by the panel method without viscous
corrections. The boundary-layer calculations were performed in the inverse mode
and several sweeps on the airfoil and in its wake were made. As can be seen, at
low or medium angles of attack, there is no flow separation on the airfoil cor-
responding to the vanishing of ¢y or »,. At higher angles, however, as expected,
the flow separates near the trailing edge and moves forward with increasing angle
of attack. It is interesting to note that at « = 16°, the flow separation occurs at
x/c= 0.6 and at &« = 17° at x/c=0.37. As we shall see in the next section,
interaction between inviscid and viscous results reduces the flow separation on the
airfoil considerably. The results also show that, again as expected, transition
location occurs very close to the stagnation point at higher angles of attack.

10.15.3 SAMPLE CALCULATIONS WITH THE INTERACTIVE BOUNDARY-LAYER
PrOGRAM

A combination of an inviscid method with a boundary-layer method allows the
inviscid and viscous flow calculations to be performed in an interactive way. Using
an inverse boundary-layer method allows similar calculations to be performed for
flows including separation.

Before we present sample calculations with the interactive boundary-layer
program, it is first useful to discuss the computational strategy in this program.
For a specified angle of attack « and airfoil geometry (x/c,y/c), the calculations
are first initiated with the panel method in order to calculate the external velocity
distribution and the lift coefficient. The external velocity distribution is then input
to the inverse boundary-layer program in which, after identifying the airfoil
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stagnation point, the calculations are performed separately for the upper and
lower surfaces of the airfoil and in the wake. The calculations involve several
sweeps on the airfoil, one sweep corresponding to boundary-layer calculations
which start at the stagnation point and end at some specified £-location in the
wake. In sweeping through the boundary-layer, the right-hand side of Eq. (8.8.4)
uses the values of 6 from the previous sweep when j > i and the values from the
current sweep when j < i. Thus, at each &-station the right-hand side of
Eq. (8.8.4) provides a prescribed value for the linear combination of ue(Ei) and
6 (£1). After convergence of the Newton iterations at each station, the summations
of Eq. (8.8.4) are updated for the next &-station. Note that the Hilbert integral
coefficients Cj; discussed in subsection 10.14.2 are computed and stored at the
start of the boundary-layer calculations.

At the completion of the boundary-layer sweeps on the airfoil and in the wake,
boundary-layer solutions are available on the airfoil and in the wake. The blowing
velocity on the airfoil v;, [see Eqgs. (8.7.4) and (8.7.5)] and a jump in the normal
velocity component A4v; in the wake [see Eq. (8.7.6)], for which an incompressible
flow are

d .
Vi = a(vl-wéA) (10.15.2)
d « d .
Av; = a(uméu) + a(um) (10.15.3)

are calculated and are used to obtain a new distribution of external velocity u;(x)
from the inviscid method. As before, the onset of transition location is determined
from the laminar flow solutions and the boundary-layer calculations are performed
on the upper and lower surfaces of the airfoil and in the wake by making several
specified sweeps. This sequence of calculations is repeated for the whole flowfield
until convergence is achieved.

The format of the input to this interactive boundary-layer (inviscid/viscous)
program is similar to the input required for the inverse boundary-layer described in
subsection 10.14.1. The code is arranged in such a way that it is only necessary to
read in the airfoil geometry, the angles of attack to be calculated, Mach number and
chord Reynolds number. The rest of the input is done internally.

We now present sample calculations for the NACAQ0012 airfoil for Reynolds
numbers corresponding to 3 x 10°. In this case, transition locations are calculated
with Michel’s formula. The calculations and the results are given on the
companion site.

Lift, ¢|, drag, cq, pitching moment, C,, coefficients for R, = 3 X 10° are
shown in Table 10.1 for &« = 2° to 16.5° and M« = 0.1 together with lift
coefficients calculated with the panel method. As can be seen, while at low and



TABLE 10.1 Results for the NACA 0012 airfoil ar Rc = 3x 106, Mo = 0.1

Companion Computer Programs 441

a Clin Cly; Cq Cinys Con,
2.00000 0.24261 0.21099 0.00586 ~0.06326 —0.04971
4.00000 0.48508 0.42567 0.00610 —0.12622 —0.10099
6.00000 0.72727 0.64337 0.00749 ~0.18857 ~0.15325
8.00000 0.96908 0.86241 0.00955 ~0.25003 ~0.20621

10.00000 1.21041 1.07109 0.01178 ~0.31029 ~0.25434

12.00000 1.45120 1.26253 0.01498 ~0.36907 ~0.29536

13.00000 157138 1.34396 0.01658 ~0.39782 ~0.31005

14.00000 1.69142 1.40836 0.01892 ~0.42609 ~0.31856

15.00000 1.81133 1.44754 0.02181 —0.45385 —0.31873

15.50000 1.93110 1.45653 0.02366 —0.48107 ~0.31636

16.00000 1.99094 1.45811 0.02592 —0.49446 —0.31261

16.50000 1.44226 0.02837 ~0.30540

modest angles of attack, the inviscid lift, Clipe and viscous lift, Clyis coefficients
agree reasonably well, at higher angles of attack, as expected, they differ from

each other.

Figure 10.7 shows a comparison between the calculated and experimental
values of lift and drag coefficients. The agreement is good and the stall angle

Fig. 10.7 Comparison between calculated (solid lines) and experimental values
(symbols) of: (a) ¢, vs a, and (b) Cy vs c;. NACA 0012 airfoil at Rc = 3 x 106.
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is reasonably well predicted. For additional comparisons with experimental
data, see [2].

To describe the input and output of the computer program, we now present
additional calculations for the same airfoil, this time for R, = 4 X 10°.

The input to the IBL program (Fig. 10.8) includes airfoil geometry and/or the
number of angles of attack (N), the freestream Mach number, M., and
the Reynolds number, R.. The input file in the sample calculations contains
the NACA 0012 airfoil coordinates which are specified by choosing either M1M4
or MIMA4INP. The first choice contains only the airfoil geometry and does not
contain either the angles of attack, Mach number or Reynolds number. The second
choice contains airfoil geometry, angles of attack, Mach number and Reynolds
number. If the first one is chosen, then it is necessary to specify N, M. and R..
For example if N = 5, then the angles of attack can be, say, 0°, 4°, 6°, 8° and 9°.
Of course, these angles of attack as well as N can be changed.Then the calcu-
lations are started by specifying M« and R.. Figure 10.8 shows a sequence of the
screens used for input.

Figure 10.9 shows the screen for starting the calculations and Fig. 10.10 shows
the screen for the format of the output and the variation of lift coefficient with angle
of attack. Other plots to include cq vs @, ¢y Vs « and ¢q Vs ¢ can also be obtained as
shown in Fig. 10.11. Finally, the screen in Fig. 10.12 shows that one can copy the plot
to the Microsoft Word file.

Figure 10.13 shows a comparison between the results of the previous section
where the inviscid flow calculations did not include viscous effects, and the results of
this section which include viscous effects in the panel method. Figures 10.13a and
10.13b show the strong influence of viscosity on ¢; and cq4. Figure 10.13c shows that

Fig. 10.8 Input format.
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Fig. 10.8 (Continued)

with interaction, the extent of flow separation on the airfoil decreases. For example at
o = 17°, without viscous effects in the panel method, the flow separation occurs
around x/c=0.37. With interaction, it occurs at x/c=0.62. Similarly, with inter-
action, the peak in 6%/c (Fig. 10.13d) decreases and is the reason for less flow
separation on the airfoil.
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Fig. 10.9 Beginning of calculations.

Fig. 10.10 Output format.
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Fig. 10.11 Calculated results for the NACA0012 airfoil, R = 4 x 10, Mo = 0.1.
@ cq vs @, (b) ¢y vs a.

Fig. 10.12 Instruction for copying plots.



446 Analysis of Turbulent Flows with Computer Programs

Fig. 10.13 Comparison of results between the inverse boundary-layer method and the
interactive method. (@) ¢; vs a, (b) cq vs a, (€) ¢rvs x/c, (d) 6*%/c vs x/c.
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A
Application of the interactive boundary-layer methods
airfoils, 332f, 342-347, 345f
flap configuration, 346
stall, 345-348
Axisymmetric flows
compressible, 322, 323f
incompressible, 315-317, 315t, 316f
airship, 316
along circular cylinder, 315
Murphy bodies, 316, 316f

B
Blasius flow, with slip, 113f, 115, 115f
Blowing, see Mass transfer
Blowing velocity, 324-326
BLP2 (boundary-layer program), 413
Bodies of revolution, see Axisymmetric flows
Boundary layer
equations
laminar flows, 55-59
turbulent flows, 59-64, 213-214,
217-218, 223-227
Boussinesq formula, 99-100
Box method, see Keller’s box method

C

Cebeci-Smith (CS) turbulence model, 160-161
Coles’ profile parameter IT, 117-123, 123f
Coles’ velocity-profile expression, 117-120, 119f
temperature-profile expression, 120121
Composite nature of a turbulent boundary layer, 90-99,
91f, 92f, 94f, 96f, 97f, 98f
Computer program (BLP2)
differential method with CS model, see Differential
method with CS model
interactive boundary-layer program,
439-446, 446f
blowing velocity, 440
calculation beginning, 443f
copying plot instruction, 445f
external velocity distribution, 439-440
input format, 442f, 442-443
NACA 0012 airfoil results, 421-442, 437f, 441t
output format, 444f
inverse boundary-layer program, 438-439, 439f
MAIN, 413414
panel method, NACA 0012 symmetrical airfoil
airfoil coordinates, 435

dimensionless external velocity distribution, 436,
437f
inviscid lift coefficients, 437438, 437f
pressure coefficient distribution, 436, 436f
subroutine COEF3, 417
subroutine EDDY, 417-418
subroutine GROWTH, 417
subroutine INPUT, 414416, 415f
subroutine IVPL, 416417
subroutine OUTPUT, 418
subroutine SOLV3, 418
Conservation equations, see Continuity, Momentum, or
Energy equations
Continuity equation, 54-56, 65, 70-71, 295-296
axisymmetric flows, 69-71
infinite swept-wing flows, 196-199
three-dimensional flows, 71-72
Coordinate system, 69
Correlation, 14-18, 16f
autocorrelation, 14-16, 15f
Eulerian, 14-16
transverse, 16-18, 17f
Crocco integral, 131-135
CS boundary-layer method: two-dimensional laminar
and turbulent flows
computer program, 413-418, 415f
governing equations, 273-275
numerical method, 295-305, 297f
transformation of equations, 295

D

Damping parameter, 159
Density and velocity fluctuations, 61-62
Difference approximations, 296-297, 297f
Difference equations, 297-298
block elimination method, 301-302
Newton’s method, 299-301
Differential method with CS model
infinite swept-wing flows, 421
inverse boundary-layer flows
parameter, 432-433
subroutine INPUT, 433
subroutine HIC, 434-435
k-& models
MAIN, 421-422
solution algorithm, 429-431
subroutine COEFTR, 424
subroutine DIFF-3, 431
subroutine EDDY, GAMCAL, CALFA, 424-425
subroutine GRID, 423
subroutine GROWTH, 423

447
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Differential method with CS model (Continued)
subroutine INPUT, 422423
subroutine INTRP3, 431
subroutine IVPT, 423
subroutine KECOEF, KEPARM, KEDEF and
KEDAMP, 425-427
subroutine KEINITG, 428
subroutine KEINITK, 427-428
subroutine KESOLYV, 428
subroutine KEWALL, 428
subroutine LNTP, 431
subroutine OUTPUT, 423
subroutine SOLV3, 424
test cases, 429, 430f
two-dimensional laminar and turbulent flows,
413-418
two-dimensional flows with heat transfer, 420-421
Differential method for a plane jet, 432
Differential methods
k-& model, 371-375
transport-equation, 358
zonal method, 358-370
Diffusive nature of turbulence, see Turbulence
Direct numerical simulation (DNS), 48, 156
Dissipation integral coefficient, 80-81
Drag
airfoils, 332f, 342-347, 345f

E
Eckert number, 67-69
Eddy viscosity, see Transport coefficients
Energy equations, 41-42, 54-56, 66, 392-393
axisymmetric flows, 70
infinite swept-wing flows, 411
three-dimensional flows, 71-72
Energy spectrum, 19-22, 20f
Fourier transform, 20-21
Entrainment function, 259-262
Entrainment velocity, 259-260
Equilibrium boundary layers, 116-117, 311, 311f
Evaluation of turbulence models
CS model, 295-305
transport equation models, 378-392,
379f-382f, 384f-392f

F

Falkner—Skan transformation, 296, 326-327

Free-shear flows, 268-280, 268f, 273f, 277f, 278f, 281t,
379-384, 379f, 381f, 382f, 384f, 392f

Friction temperature, 93

Friction velocity, 92-93

H

Hagen-Poiseuille flow, 4-5
Heat-transfer formulas, 243-248
Hess—Smith panel method (HSPM)
airfoil coordinates, 333
airfoil surface and notation, 333, 334f
boundary points, 334
coefficient matrix, 339
flowfield calculation, 342-344

Gaussian elimination method, 340

Kutta condition, 337-340

Laplace equation, 336

potential vortex, 335

viscous effects, 340-342
MAIN, 418-419
subroutine CLCM, 420
subroutine COEF, 419
subroutine GAUSS, 419
subroutine OBKUTA, 419
subroutine VPDIS, 419-420
subroutine VPDWK, 420

I

Inner region, 109-111, 110f, 111f, 112f
Integral equations of the boundary layer, 78
Integral methods, 257-263, 258f-259f, 412-413
Ambrok’s method, 263
computer program for Ambrok’s method, 413
computer program for Head’s method, 412-413
computer program for Smith—Spalding method,
412
computer program for Thwaites’ method, 412
Green’s “lag-entrainment” method, 261-262
Head’s method, 259-260
Truckenbrodt’s method, 262
Intensity of turbulence, 11-14
Interaction problem, 324-326, 325f
blowing/suction velocity, 324-325
displacement surface, 324
interactive boundary-layer scheme, 326f
Kautta condition, 337-340
Interactive boundary-layer theory, 324, 326f, 344
Intermittency
edge, 22, 102-103
effect on exterior, inviscid stream, 23
in transition, 168-169
Intermittency factor, 103

K
k-& model, 215-221, 220t
k-w model, 221-223
SST model equations, 375-378
Keller’s box method
difference approximations, 296-297, 297f
momentum equation, 295-296
Kinetic energy balance, 95
Kinetic energy of turbulence, 13-14
Kolmogorov scale, 10-11

L

Large eddy simulation, 48

Law of the wake, 117-118

Law of the wall, 92-93, 117-118
Ludwieg—Tillmann law, 260

M

Mangler transformation, 85-87
Mass transfer flows

flat plate, 320, 320f

heat transfer, 319



law of the wall, 129-130
compressible, 135-139
pressure gradient effects, 320, 320f
velocity-defect law, 130-131
Mass-weighted averaging, 35-39
relation to time averaging, 39—41
Matrix solver algorithm, 302, 429-431
Mean-kinetic-energy equation, 4244, 73-74, 95
Mean-velocity and temperature distributions
incompressible flows
porous surfaces, 129-130
rough surfaces, 123-129, 125f, 126f, 128f
smooth surfaces, 104-123, 106f,
110f-113f, 115f, 117f, 119f, 123f
compressible flows, 135-145, 146f
effect of pressure gradient, 145-146
Mixing layer, 273-280, 273f, 277f, 278f
Mixing length
concepts, 99-104, 102f, 103f, 104f
formulas, 156-160
Momentum equation, 295-296
axisymmetric flows, 70
infinite swept-wing flows, 350
three-dimensional flows, 71
Momentum integral equation, 79-80, 259-260

N
Navier—Stokes equations, 34-35
Nusselt number, 192-193
Newton’s method, 299-301
Numerical solution, 295
box method, 296-297
transformed equations, 296
Numerical solution of the boundary-layer equations
with algebraic turbulence models, 295
block elimination method, 301-302
Falkner—Skan transformation, 296
finite difference approximation, 297-298
linear system, 299
Newton’s method, 299-301
numerical formulation, 297-299
similarity variables, 296
Numerical solution of the boundary-layer equations
with transport-equation turbulence models,
358
k-& model equations with and without wall functions,
371
solution with wall functions, 374-375
solution without wall functions, 371-374
zonal method for k- model, 358-360
solution procedure, 360-370

o

Order-of-magnitude analysis, 48
laminar flows, 35
turbulent flows, 49-50

Outer region, 112-115, 113f, 115f

P

Panel method, viscous effects
Peclet number, 192—-193
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Pipe flow, 4-5, 4f
Power law assumptions, 242
Power laws for similar free shear layers, 280, 281t
Prandtl number
Cebeci’s model, 189-190, 192-194
Jenkin’s formula, 186-187
turbulent, 185-194, 186f, 187f, 190f, 191f, 192f, 193f
Pressure gradient flows, 310
equilibrium flows, 311, 311f
nonequilibrium flows, 311-312, 312f
separating flows, 311-312, 312f
streamlined body, boundary layout, 310-311, 310f
thermal boundary layers, 312, 313f
Pressure gradient parameter, 116, 296-297

R
Random motion, theory of, 23-25
Recovery factor, 133-135, 134f
Reynolds analogy, 255, 255f
Reynolds stresses, 27-28, 41
Reynolds-stress transport equations, 44-48, 74-78
Roughness
shift parameter, 127-128
spaced, 125-127
uniform, 124-125

S

Separation
prediction of, 264-268, 266f, 267f, 322-325, 325f
Stratford method, 264-266, 268
Shape factor
flat plate, 260
Shear-stress distribution, 121-123, 123f
Short-cut methods
free shear flows, 268-280, 268f, 273f, 2771,
278f, 281t
prediction of flow separation, 264-268, 266f—267f
pressure gradient, 257-263
zero-pressure gradient
compressible, 250-255, 253f, 254f, 255f
incompressible, 239-248, 241f, 245f
Similarity solutions of turbulent free shear flows,
268
mixing layer, 273-280, 273f, 277f, 278f
two-dimensional jet, 268-273, 268f
Skin-friction formulas
compressible, 250-255, 253f, 254f, 255f
power law, 241-243
rough plate, 248-250, 249f, 250f, 251f
smooth plate, 239-241, 241f
Van Driest, 250-253, 253f-254f
Spectrum, see Energy spectrum
Stanton number, 243-248
Subroutine COEF3, 417
Subroutine COEFTR, 424
Subroutine DIFF-3, 431
Subroutine EDDY, 417-418
GAMCAL, CALFA, 424-425
Subroutine GRID, 423
Subroutine GROWTH, 417, 423
Subroutine INPUT, 409f, 414-416, 422423
Subroutine INTRP3, 431
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Subroutine IVPL, 416417

initial velocity profiles, 432
Subroutine IVPT, 423, 432
Subroutine KECOEF, KEPARM, KEDEF and

KEDAMP, 425-427

Subroutine KEINITG, 428
Subroutine KEINITK, 427-428
Subroutine KESOLY, 428
Subroutine KEWALL, 428
Subroutine LNTP, 431
Subroutine OUTPUT, 418, 423
Subroutine SOLV2 and SOLV4, 432
Subroutine SOLV3, 418, 424
Suction, see Mass transfer flows

T

Taylor’s hypothesis, 16
Temperature distribution, 133-134
Temperature and velocity fluctuations, 59, 60f
Thermal boundary layers, 312
Thwaites’ method, 412
Time averaging, 35-39
Transformed equations, 296, 359-360
Transpiration, see Mass transfer flows
Transport coefficients
eddy conductivity, 100-101, 185-186
eddy viscosity, 25, 99-101, 156-160
effect of low Reynolds number, 161-165, 163f,
164f, 164t
effect of natural transition, 168-172, 169t, 170f,
171f, 172f
effect of roughness, 172-175, 174f-175f
effect of streamwise curvature, 166-168, 167f
effect of transverse curvature, 165-166, 166f
mixing length, 99-101
recommendations, 203
Transition length, 168-172, 169t, 170f, 171f, 172f
Truckenbrodt formulas, 262
Turbulence
continuum hypothesis, 8—11
convection, 97
decay of, 18-19, 22
definition, 3
diffusion, 97
diffusive nature of, 23-26, 26t
dissipation, 96-97
integral scale, 16-18, 20-21
microscale, 16-18, 20-21
minimum Reynolds number for, 7
miscellaneous properties, 3—7, 4f, 5f, 6f
origin of name, 3
production, 97
Reynolds number of, 18-19
shear-stress work, 97
Turbulence models

eddy viscosity, 156-175, 194-203, 197f, 199f, 200f,

201f, 202f
inverse mode
Falkner—Skan transformation, 326-327

Hilbert integral, 324-327
numerical formulation, 328-333, 332f
mixing length, 156-175
one-equation
Bradshaw, 227-228, 228f
Spalart—Allmaras, 228-230
stress transport, 230-233
two-equation
k-g, 215-221, 220t
k-w, 221-223
SST, 224-226
Turbulence simulation, 26-29
Turbulent boundary layer
buffer layer, 93
fully-turbulent region, 93
outer region, 94
viscous sublayer, 93
Turbulent energy equation, see Turbulent-
kinetic-energy equation
Turbulent energy integral equation, 81-82
Turbulent-kinetic-energy equation, 45—47,
75-78
meanings of terms, 4547
Two-dimensional compressible flows, 317-322
flat plate, 320, 320f
heat transfer, 319, 319f
mass transfer, 320, 320f
pressure gradient, 320-322, 321f
Two-dimensional incompressible flows
equilibrium flows, 311
flat plate, 305, 306f
flat plate, mass transfer, 307-309
heat transfer, 309
nonequilibrium flows, 311-312, 312f
pressure gradient, 310
separation, 311-312, 312f
thermal boundary layers, 312

U

Useful subroutines, 405-406
subroutine IVPT, 432
subroutine SOLV?2 and SOLV4, 432

\%
Van Driest mixing length, 159-161

Cebeci’s extension, 160-175, 163f, 164f, 164t,

166f-167f, 169t, 170f-172f, 174f-175f

Variable grid system, 414
Velocity defect law, 94
Velocity distribution, see Mean velocity distribution
Velocity profiles

instantaneous, 5-6, 6f

power-law, 241-243

transitional, 170-171

w

Wake flows, 331-333, 332f

Wake, law of the, see Coles’ profile parameter, IT
Wakes, 7, 9f, 22
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