# Otimização do Perfil de Nariz de Foguete em Relação ao Arrasto Aerodinâmico.

Phillipe M. Rosa<sup>1</sup>, Carlos M. Marchi<sup>2</sup> PPGMNE/UFPR, Curitiba, PR Guilherme Bertoldo<sup>3</sup> DAFEM/UTFPR, Francisco Beltrão, PR

**Resumo**. O presente trabalho tem por objetivo realizar um procedimento que melhora a otimização do perfil geométrico de nariz de foguete em relação ao coeficiente de arrasto frontal para escoamento invíscido em regime supersônico. Nesse sentido, é realizado um teste de malhas que tem por fim escolher um domínio computacional adequado e uma malha que possua uma relação equilibrada entre tempo computacional e precisão nos resultados. O fenômeno físico é modelado pelas equações de Euler que, por sua vez, são discretizadas e resolvidas numericamente através do Método dos Volumes Finitos (MVF). A otimização é realizada por meio da Programação Sequencial Quadrática em conjunto com o Método Adjunto Discreto, através do programa de código aberto SU2. Como resultado, é sugerido um procedimento que fornece uma gama de malhas com até 18,3% de diferença no coeficiente de arrasto e erro de 1,06%. Além disso, propõe-se uma solução que atenua falhas no processo de otimização.

**Palavras-chave**. Teste de malhas, Simulação Numérica, Otimização, Aerodinâmica, Coeficiente de Arrasto, Nariz de Foguete

## 1 Introdução

As simulações em CFD fornecem uma poderosa ferramenta que tem por objetivo simular problemas físicos existentes nas engenharias quando não há a possibilidade executar um estudo prévio experimental, seja pelo custo de criar uma bancada adequada ou pela própria impossibilidade de realizar o experimento físico. Nesse sentido, a simulação numérica torna-se uma ótima alternativa.

Para que haja um resultado satisfatório, há de se observar um aspecto importante antes de realizar as simulações propriamente ditas: a utilização do domínio de cálculo adequado e a utilização de uma malha equilibrada. Por um lado, uma malha com poucos volumes pode levar a uma interpretação inadequada dos fenômenos físicos existentes (como uma região de separação ou camada limite, por exemplo), podendo levar a resultados errôneos ou imprecisos. Por outro lado, uma malha com muitos volumes, além de poder trazer efeitos indesejados como divergência numérica, pode também encarecer o projeto devido ao aumento do tempo computacional. Além disso, é desejável que toda a informação física global e que tenha efeito na dinâmica do escoamento esteja contida no domínio computacional. Sendo assim, esse fator também é importante nos estudos de CFD.

O presente trabalho tem por fim sugerir um procedimento para avaliar a escolha da malha e do domínio computacional adequados para o problema de otimização aerodinâmica de nariz de foguete em regime supersônico, tendo como objetivo a redução do coeficiente de arrasto frontal.

<sup>&</sup>lt;sup>1</sup>mscphillipe@gmail.com

<sup>&</sup>lt;sup>2</sup>chmcfd@gmail.com

<sup>&</sup>lt;sup>3</sup>glbertoldo@gmail.com

Nesse caso, o escoamento é considerado invíscido, bidimensional e com simetria axial. Além disso, é apresentada uma solução para o problema de deformação nos volumes da malha, oriundos do processo de otimização. Os resultados obtidos são comparados com os resultados de *benchmark* de Kraiko et al. [5], uma vez que as soluções desses autores não são analíticas, exceto para algumas razões de aspecto.

#### 2 Modelagem Matemática e Numérica

Nessa seção é apresentada uma visão global do problema, onde são exibidas as principais variáveis em questão. Em seguida é colocada a formulação matemática e, por fim, a metodologia numérica empregada. A Figura 1 apresenta um perfil de lei de potência, S, que representa um nariz de foguete de comprimento  $l_r$ , raio de base  $r_b$ , utilizado como aproximação inicial. O corpo está submetido a um escoamento bidimensional, axissimétrico, supersônico, com parede adiabática e deslizamento na sua superfície. O domínio do problema, por onde o fluido escoa, é delimitado pelas linhas N, S, W, E, que representam os contornos norte, sul, oeste e leste, respectivamente. O domínio e o perfil somados compõem um quarto de elipse, onde a altura (semieixo) é dada por  $l_b$ , e a largura (outro semieixo) é dada por  $l_a = X_{ent} + l_r$ , com  $X_{ent}$  representando a distância entre o início do domínio e a ponta do objeto. Todo o sistema está imerso em um escoamento, determinado por um número de Mach de corrente livre,  $M_{\infty}$ , e temperatura de corrente livre,  $T_{\infty}$ . A razão de aspecto, f, é dada em termos do comprimento e do raio da base pela relação  $f = l_r/2r_b$ .



Figura 1: Esboço do domínio.

As condições de contorno aplicadas no domínio são de temperatura, pressão e velocidade na corrente livre prescritas no contorno norte, N, de simetria axial no contorno oeste, W, de condição de deslizamento na superfície, no contorno sul, S, e condição de escoamento supersônico do tipo *outlet* na saída do contorno leste, E. O fluido é considerado o ar na forma padrão. Os dados de entrada referentes às propriedades termodinâmicas do fluido, geometria do domínio e variáveis de escoamento são apresentados na Tabela 1.

Tabela 1: Propriedades termodinâmicas do fluido, variáveis do escoamento e geometria.

| Variável                                       | Símbolo            | Valor                                       |
|------------------------------------------------|--------------------|---------------------------------------------|
| Comprimento do perfil                          | $l_r$              | 2 m                                         |
| Raio da base do perfil                         | $r_b$              | $0,5 \mathrm{m}$                            |
| Número de Mach na corrente livre               | $M_{\infty}$       | 1, 5[-]                                     |
| Temperatura na corrente livre                  | $T_{\infty}$       | 300 K                                       |
| Razão de calores específicos na corrente livre | $\gamma_{\infty}$  | 1, 4                                        |
| Constante do gás                               | $R_{g}$            | $287,058 \text{ J kg}^{-1} \text{ K}^{-1}$  |
| Calor específico na corrente livre             | $c_{p\infty}$      | $1004,703 \text{ J kg}^{-1} \text{ K}^{-1}$ |
| Pressão na corrente livre                      | $\dot{P}_{\infty}$ | 100000 Pa                                   |

As equações que governam a física do problema são as equações de Euler, como apresentadas

em Economon et al. [2],

$$\mathcal{R}(\phi) = \frac{\partial \phi}{\partial t} + \nabla \cdot \bar{F}^c(\phi) - S = 0, \qquad \phi \in \{\rho, \rho \bar{v}, \rho E\}^T$$
(1)

onde t representa o tempo,  $\nabla$  o gradiente, S é um termo fonte genérico e  $\bar{F}^c$  é o fluxo advectivo, dado por

$$\bar{F}^{c} = \left\{ \begin{array}{c} \rho \bar{v} \\ \rho \bar{v} \times \bar{v} + \bar{I} p \\ \rho E \bar{v} + p \bar{v} \end{array} \right\}$$
(2)

Na Eq. (2),  $\rho$  é a massa específica do fluido,  $\bar{v} = \{u, v\}^T$  é o vetor de velocidades no sistema cartesiano de coordenadas, E é a energia total por unidade de massa e p é a pressão estática. Considerando que o fluido tem um comportamento de um gás perfeito, a temperatura, T, é calculada através da equação dos gases perfeitos,  $T = p/\rho R_g$ , onde  $R_g$  é a constante particular dos gases perfeitos. Para fechar o sistema, a pressão é calculada através da expressão

$$p = (\gamma_{\infty} - 1) \rho \left[ E - 0, 5 \left( \bar{v} \cdot \bar{v} \right) \right].$$
(3)

O número de Mach da corrente livre,  $M_{\infty}$ , é calculado através de propriedades do fluido como, por exemplo, a razão de calores específicos,  $\gamma_{\infty}$ , a velocidade e a temperatura, pela expressão  $M_{\infty} = u_{\infty}/\sqrt{\gamma_{\infty}R_gT_{\infty}}$ , onde  $\gamma_{\infty}$  é dado por  $\gamma_{\infty} = 1/\left[1 - (R_g/c_{p\infty})\right]$  e  $c_{p\infty}$  é o calor específico na corrente livre.

O coeficiente de arrasto é considerado o frontal, levando em conta apenas os efeitos de pressão (omitindo os efeitos viscosos, uma vez que na formulação de Euler despreza-se esses efeitos). A relação do coeficiente de arrasto,  $C_D$ , é dada por Bertoldo [1],

$$C_D = \frac{2\pi}{q_\infty A_b} \int_0^{l_r} \left(p - p_\infty\right) y \frac{dy}{dx} dx, \qquad y = g(x) \tag{4}$$

onde  $q_{\infty}$  é a pressão dinâmica e  $A_b$  é a área da base do nariz.

suje

Em relação à parte numérica, as Eqs. (1) e (2) são discretizadas e resolvidas algebricamente por meio do Método de Volumes Finitos desenvolvido por Patankar [6], através do programa SU2. Para os termos advectivos, utiliza-se o esquema JST [4]. A discretização no tempo é dada pela formulação de Euler implícita. Para a solução do sistema algébrico é empregado o suavizador LU-SGS e o solver FGMRES, com uma precisão de  $10^{-4}$ . O critério de Courant-Friedrichs-Lewy (CFL) é mantido como 5. Para o critério de parada, a simulação se encerra quando o coeficiente de arrasto atinge a ordem de  $10^{-5}$  do valor inicial ou ocorre um resíduo mínimo total de  $10^{-8}$ .

Para acelerar a convergência, utiliza-se o método multiquid com dois ciclos em V. Além disso, o método adjunto discreto (implementado no SU2) é utilizado para calcular a sensibilidade da função objetivo,  $C_D$ , através do gradiente das propriedades do escoamento e a matriz Jacobiana, reduzindo assim o tempo computacional no processo de otimização.

Em relação ao processo de otimização, o programa SU2 utiliza a biblioteca Scipy, implementada no Python, para minimizar o coeficiente de arrasto. Dentre os vários algoritmos de otimização presentes no pacote, o método que apresentou melhor desempenho foi a Programação Sequencial Quadrática, SLSQP de programação não linear, baseada em gradiente. De forma geral, o problema a ser otimizado é dado por,

minimizar 
$$f(x)$$
  
sujeito a:  $c_i(x) = 0, \quad i \in \mathcal{E}$   
 $c_j(x) \ge 0, \quad j \in \mathfrak{J}$   
 $lb_n \le x_n \le u \, b_n, \quad n = 1, \dots, N.$ 
(5)

Na Eq. (5),  $\mathcal{E} \in \mathfrak{J}$  são conjuntos de índices contendo restrições de igualdade e desigualdade, respectivamente. A função objetivo, f(x), que representa o coeficiente de arrasto frontal,  $C_D$ , torna-se consecutivas funções quadráticas e suas restrições  $(c_i(x) \in c_j(x))$ , consecutivas funções lineares. Sendo assim, os problemas vão sendo resolvidos de forma iterativa. A cada iteração o método SQP resolve o problema quadrático,

a fim de se determinar a melhor direção de busca,  $d^k$ , a partir de  $x^k$  e, com isso, caminhar para o próximo passo,  $x^{k+1} = x^k + a_k d^k$ , onde  $a_k \in (0, 1]$ . A função  $H(x^k, \lambda^k, \mu^k)$  cumpre o papel de tentar aproximar a matriz Hessiana da função de Lagrange. A próxima seção é destinada a apresentar a metodologia empregada para encontrar o domínio e a malha ideal.

#### 3 Teste de Malhas e Domínio

Essa seção é dedicada aos testes de malha e domínio. Contudo, primeiramente é realizado um teste que tem por objetivo avaliar o funcionamento do programa, ou seja, se o programa está resolvendo de forma adequada o escoamento externo para o problema proposto. Testes mais completos de verificação e validação sobre o programa SU2 podem ser checados em [3]. Sendo assim, simula-se um escoamento sobre um perfil cônico com Mach 2,73 e razão de aspecto 3 em quatro níveis de malha (estruturada e com espaçamento uniforme):  $200 \times 100, 400 \times 200, 800 \times 400$ e  $1600 \times 800$  volumes (axial × radial). Os resultados comparados com o coeficiente de arrasto obtido por Taylor & Maccoll [8],  $C_D = 0,082880590432055$  são apresentados na Tabela 2, com o estimador de erro GCI, Roache [7]. De acordo com a tabela, nota-se que quanto maior o tamanho da malha, menor é a diferença relativa, que chega na ordem percentual de  $10^{-4}$ . Isso indica que o escoamento está sendo resolvido de forma satisfatória.

Tabela 2: Coeficientes de arrasto para um cone de f = 3 e  $M_{\infty} = 2,73$ .

| <br>000 | nerences ac a     | rabto para am | 001040 00110          |
|---------|-------------------|---------------|-----------------------|
| Malha   | Elementos         | $C_D$         | Diferença Relativa(%) |
| M1      | $200 \times 100$  | 0,08286 (3)   | $0,\!019595095$       |
| M2      | $400 \times 200$  | 0,08287 (3)   | 0,006680988           |
| M3      | $800 \times 400$  | 0,08288(1)    | $0,\!001826122$       |
| M4      | $1600 \times 800$ | 0,082880 (4)  | $0,\!000189765$       |

No próximo passo determina-se a quantidade de variáveis de otimização (VO), e o tipo de distribuição utilizada. Para essa análise foram utilizados três níveis de malhas, M1, M2 e M3 com respectivos  $100 \times 25$ ,  $200 \times 50$  e  $400 \times 100$  volumes. Em relação às variáveis de otimização, testouse três casos: 7, 10 e 20 VO com  $M_{\infty} = 1,5$  e f = 2. Em testes prévios não foram constatadas mudanças significativas (sempre na ordem de 0,04%) nos resultados relativos à forma com que se distribui as VO, exceto pelo fato de ser necessário acumular mais pontos na ponta do nariz. Sendo assim, optou-se por fazer distribuições geométricas tais que  $h_1 \approx 10^{-3}$ . Partindo desse princípio, obteve-se três progressões geométricas com razões r = 1, 9, para 7 VO, r = 1, 75, para 10 VO, e r = 1, 3, para 20 VO. A Figura 2 ilustra um perfil otimizado para  $M_{\infty} = 1, 5, f = 2$  e 7 VO denotadas pelos pontos em vermelho (as extremidades não contam, pois são fixas).

Antes de iniciar os testes para avaliar a extensão do domínio, parte-se de uma malha inicial M0 (200 × 50) com perfil de lei de potência com n = 0,551 e 7 VO. A Figura 3 a) ilustra essa configuração. O coeficiente de arrasto para esse perfil inicial foi de  $C_D = 0,152759$ . Após a otimização, o perfil obtido juntamente com o campo de Mach é apresentado na Figura 3 b). O



Figura 2: Distribuição de pontos no perfil otimizado  $M_{\infty} = 1, 5, f = 2$ , para 7 variáveis de otimização.

coeficiente de arrasto otimizado ficou em  $C_D = 0,146246$  (com uma diferença relativa à Kraiko et al. [5],  $C_D = 0,144$ , de 1,54%). Além disso, o campo de Mach indica que o domínio está adequado, uma vez que todos os fenômenos (no caso do presente trabalho, apenas onda de choque denotada por tons de laranja e verde) estão inseridos no domínio. Para diferentes números de Mach ou razões de aspecto deve-se observar a inserção dos fenômenos no domínio, principalmente ao estudar outros regimes como transônico e subsônico. Nesse cenário, por exemplo, o domínio deve ser largamente ampliado.



Figura 3: Malha inicial partindo da lei de potência com n = 0,551 e perfil otimizado para o número de Mach 1,5, f = 2, e M0 com  $200 \times 50$  volumes.



Figura 4: Detalhe das malhas inicial e final para  $M_{\infty} = 1, 5, f = 2$  e 7 VO nas: a) primeira otimização; b) segunda otimização.

Ao realizar esse procedimento de otimização, ocorrem distorções dos volumes próximos à origem, no início do perfil. Esse é um comportamento inerente ao processo de otimização e das sucessivas deformações que a malha sofre ao longo das iterações. A Figura 4 a) ilustra esse fenômeno.

Para contornar esse problema, é realizada uma nova otimização com uma malha gerada a partir do perfil otimizado obtido no procedimento anterior (primeira otimização). Sendo assim, a malha inicial da segunda otimização tem por característica preencher com mais volumes o perfil vertical que compreende o início do nariz e, assim, obter informações mais precisas da dinâmica do escoamento nessa região. A Figura 4 b) ilustra esse cenário, além de também apresentar o respectivo perfil otimizado. Nota-se que, após a segunda otimização, o perfil final já não apresenta uma malha computacional com grandes distorções de volumes. Além disso, o coeficiente de arrasto reduz para  $C_D = 0,145862$ , que representa uma diferença percentual de 1,27% em relação ao resultado de Kraiko et al. [5].

A próxima análise visa avaliar o número de variáveis de otimização e o tamanho da malha. Nesse teste, analisa-se 7, 10 e 20 VO e três níveis de malha: M1, M2 e M3, com  $100 \times 25$ ,  $200 \times 50$  e  $400 \times 100$  volumes, respectivamente. Em todos os casos, parte-se de uma geometria inicial gerada a partir do primeiro perfil otimizado, ilustrado na Figura 4 b). Os resultados das simulações, tempos computacionais e diferenças percentuais são apresentados na Tabela 3.

| VO | Malha | Volumes | Distribuição     | $C_D$      | Tempo (hh:mm:ss) | Diferença Kraiko et al. $(\%)$ |
|----|-------|---------|------------------|------------|------------------|--------------------------------|
|    | M1    | 2500    | $100 \times 25$  | 0,14590636 | 00:13:54         | 1,31                           |
| 7  | M2    | 10000   | $200 \times 50$  | 0,14586223 | 00:28:54         | 1,28                           |
|    | M3    | 40000   | $400 \times 100$ | 0,14558524 | 01:58:34         | 1,09                           |
|    | M1    | 2500    | $100 \times 25$  | 0,14592876 | 00:04:48         | 1,32                           |
| 10 | M2    | 10000   | $200 \times 50$  | 0,14583234 | 00:14:01         | 1,26                           |
|    | M3    | 40000   | $400 \times 100$ | 0,14555507 | 01:19:59         | 1,07                           |
|    | M1    | 2500    | $100 \times 25$  | 0,14591040 | 00:26:15         | 1,31                           |
| 20 | M2    | 10000   | $200 \times 50$  | 0,14581262 | 00:22:28         | 1,24                           |
|    | M3    | 40000   | $400 \times 100$ | 0,14554400 | 01:30:21         | 1,06                           |

Tabela 3: Coeficientes de arrasto para as malhas M1, M2 e M3 com 7, 10 e 20 VO.

Pela Tabela 3, nota-se que não há mudanças significativas quanto ao número de variáveis de otimização utilizadas nas simulações. Por outro lado, é observado uma melhora no  $C_D$  em relação ao refino da malha. Malhas com mais volumes tendem a gerar coeficientes de arrasto menores, o que

significa perfis geométricos melhores. A média entre todos os cenários de variáveis de otimização foi de 1,31% para malha M1 enquanto para malha M3 foi de 1,07%. Isso significa uma melhora de 18,3%, o que ressalta a importância da quantidade apropriada de volumes na malha.

# 4 Conclusão

O presente trabalho abordou aspectos importantes sobre os procedimentos iniciais, quando pretende-se realizar um trabalho de simulação em CFD. Primeiro, partiu-se de um caso simples (do perfil cônico), para testar o programa e verificou-se que a diferença relativa percentual atingiu ordem de  $10^{-4}$ . Com isso, pôde-se assegurar que o problema relativo ao escoamento estava sendo bem resolvido.

Ao realizar o teste de variáveis de otimização, identificou-se que a distribuição de variáveis não altera o resultado de forma significativa. O acúmulo de variáveis no início o perfil (região importante para otimização) é indicado.

No processo de otimização verificou-se que ocorre uma distorção nos elementos da malha próximos ao início do perfil, o que pode levar a um perfil passível de mais otimização e melhoras no coeficiente de arrasto. Ao repetir o processo de otimização, partindo-se do primeiro perfil ótimo, constatou-se que há uma redução de 1,54% para 1,27%. Para outras condições ( $f \in M_{\infty}$ ) podem ser necessários até 3 processos sucessivos de otimização para corrigir essas distorções.

Ao realizar um teste com 7, 10 e 20 variáveis de otimização e três níveis de malha, verificou-se que não há diferenças significativas em relação ao número de VO. Por outro lado, ao aumentar a malha, nota-se uma melhora no coeficiente de arrasto, podendo chegar a até 18,3% de diferença. Outro aspecto importante é o tempo computacional de otimização, que ficou abaixo de 1 hora e 30 minutos. Isso torna o programa SU2 uma boa alternativa para a obtenção de perfis geométricos ótimos em escoamentos externos.

Embora o presente trabalho envolva escoamento externo e otimização do perfil de nariz de foguete, o procedimento adotado aqui (ou parte dele) pode ser estendido para outros problemas de CFD, podendo auxiliar na redução de custos computacionais e elaboração de cronogramas.

### Referências

- Guilherme Bertoldo. "Otimização Aerodinâmica de Newton com base nas Equações de Navier-Stokes". Tese de doutorado. UFPR, 2014.
- T. D. Economon et al. "SU2 An Open-Source Suite for Multiphysics Simulation and Design". Em: AIAA Journal 54.3 (2016).
- [3] T.D Economon e E. V. D. Weide. Acesso online 2021-10-09. SU2. 2021. URL: https://github.com/su2code/VandV.
- [4] A. Jameson, W. Schmidt e E. Turkel. "Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes." Em: AIAA Journal (1981).
- [5] A. Kraiko et al. "Axisymmetric nose shapes of specified aspect ratio, optimum or close to optimum with respect to wave drag". Em: Journal of applied mathematics and mechanics 67.5 (2003), pp. 703-730.
- [6] S. Patankar. Numerical heat transfer and fluid flow. CRC press, 1980.
- P. J. Roache. "Verification and Validation in Computational Science and Engineering." Em: Hermosa, Albuquerque, USA (1998).
- [8] G. I. Taylor e J. W. Maccoll. "The Air Pressure on a Cone Moving at High Speeds." Em: Proceedings of the Royal Society of London A 139.838 (1933), pp. 278–297.