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Abstract. Verification is an important procedure to assess numerical schemes and its solutions.
One of the most popular numerical scheme is the Weighted Essentially Nonoscillatory (WENO).
This scheme is high-order accurate and presents high resolution. The purpose of this work
is to assess numerical solutions of three hyperbolic equations, namely, the linear advection
equation and one-dimensional and two-dimensional Euler system of equations. In order to
solve these equations, the Finite Volume Method was employed with an explicit formulation,
Lax-Friedrichs flux, two numerical shcemes, first-order and WENO, and Runge-Kutta method.
We have presented an error and order analysis for both numerical schemes, in which the WENO
scheme showed fifth-order accuracy in all problems, except with discontinuous solutions as
expected. We also confirmed that the WENO scheme is less dissipative even with discontinuities
and in coarse meshes.
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Verification of WENO for hyperbolic conservation laws

1 INTRODUCTION

The verification is an important procedure in numerical methods that check accuracy and
grants numerical reliability, lead by an error assessment that plays a fundamental role. Nonethe-
less, there are some works that do not present an error assessment and the numerical solution
is obtained on a single mesh (Marchi and Hobmeir, 2007). Although one can assess the error
on a single mesh, it is pertinent to evaluate the error behavior through some different meshes,
for instance, to confirm that the solution is convergent. Furthermore, the verification can also
evaluate how numerical procedures, e.g., numerical fluxes and schemes, behaves with different
types of problems.

One of the most popular numerical schemes to solve hyperbolic conservation laws is the
Weighted Essentially Nonoscillatory (WENO), that is a modification of the original Essentially
Nonoscillatory (ENO) scheme (Liu et al., 1994). Since its first modification, this scheme was
improved by several authors (see, for instance, Jiang and Shu (1996) and Henrick et al. (2005))
in order to correct some drawbacks and improve the resolution. In their work, Borges et al.
(2008) proposed an improvement to WENO that required smaller computational effort and is
less dissipative.

With regard to the above mentioned, the purpose of this work is to verify numerical codes
and its solutions and to evaluate the WENO-Z (Borges et al., 2008) behavior in four different
problems and different meshes. In order to do that, we employed an explicit formulation of
the Finite Volume Method (FVM), Lax-Friedrichs flux and Runge-Kutta method for time dis-
cretization. Also, we solved the same problems with a first-order numerical scheme to better
observe the WENO-Z features. The problems solved were linear advection equation and one-
dimensional (1D) and two-dimensional (2D) Euler systems of equations. These equation belong
to the class of hyperbolic conservation laws and can be written as

U t + F (U)x + G(U)y = 0, (1)

where U , F (U) and G(U) are the vectors of conserved variables and fluxes. Depending on
the problem, they can be a scalar instead of a system and have only the F (U) component, if it
is 1D.

2 NUMERICAL PROCEDURE

The numerical procedure is divided into two sections: the discretization will briefly shows
the FVM setup for each problem and the verification will present an a priori error analysis to
determine the asymptotic order of numerical schemes and an a posteriori technique to assess
the error and effective order.

2.1 Discretization

We will first present the setup for a scalar one-dimensional problem and then some modifi-
cations for systems and two-dimensional problems. Consider a generic volume i, shown in Fig.
1. To apply the FVM one can use the method of lines approach and integrate the Eq. (1) over
the volume to obtain Eq. (2) (Shu, 1998).
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Figure 1: Generic volume i.

du(xi, t)

dt
= − 1

∆xi

[
f(u(xi+1/2,t))− f(u(xi−1/2,t))

]
, (2)

where u(xi, t) is the cell average, t is the time, ∆xi is the volume size in x direction and f is
the flux.

According to Shu (1998), one needs to approximate Eq. (2) by a conservative scheme, such
as

dui(t)

dt
= − 1

∆xi

(
f̂i+1/2 − f̂i−1/2

)
, (3)

where ui(t) is an approximation to the cell average and f̂i±1/2 is the numerical approximation
to the flux (f(u(xi±1/2,t))). One of the most simple albeit dissipative monotone flux is the
Lax-Friedrichs flux

f̂i+1/2(u
−
i+1/2, u

+
i+1/2) =

1

2

[
f(u−i+1/2) + f(u+i+1/2)− α(u+i+1/2 − u

−
i+1/2)

]
, (4)

where u±i+1/2 are reconstructed from the cell averages by the numerical schemes (WENO-Z or
first-order) and α = max

u
|f ′(u)| is the maximum absolute eigenvalue.

The first-order scheme is obtained from a Taylor series and is shown in Eq. (5) and (6).

u−i+1/2 = ui (5)

u+i+1/2 = ui+1 (6)

To apply the WENO-Z one has the following equation

u−i+1/2 = ω0φ0 + ω1φ1 + ω2φ2, (7)

where ω are the nonlinear weights and φ are the polynomial approximations to u−i+1/2.

The nonlinear weights are (Borges et al., 2008)

ωk =
αk∑2
j=0 αj

, k = 0, ..., 2 (8)

and αk are the unnormalized nonlinear weights, shown in sequence:

αk = dk

[
1 +

(
τ

βk + ε

)p]
, k = 0, ..., 2. (9)
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Where dk are the ideal weights, τ is the global smoothness indicator, βk are the local smoothness
indicator, p is the power parameter and ε is the sensitivity parameter. In our case, p = 2 and
ε = 10−40. The ideal weights and smoothness indicators are shown in the following equations:

d0 =
1

10
, d1 =

6

10
, d2 =

3

10
, (10)

τ = |β0 − β2|, (11)

β0 =
13

12
(ui−2 − 2ui−1 + ui)

2 +
1

4
(ui−2 − 4ui−1 + 3ui)

2,

β1 =
13

12
(ui−1 − 2ui + ui+1)

2 +
1

4
(ui−1 − ui+1)

2,

β2 =
13

12
(ui − 2ui+1 + ui+2)

2 +
1

4
(3ui − 4ui+1 + ui+2)

2.

(12)

To complete the scheme one needs the polynomial approximations, shown in Eq. (13).
More details can be seen in Borges et al. (2008).

φ0 =
2ui−2 − 7ui−1 + 11ui

6
,

φ1 =
−ui−1 + 5ui + 2ui+1

6
,

φ2 =
2ui + 5ui+1 − ui+2

6
.

(13)

One should note that Eq. (7) provides an approximation to u−i+1/2 with the five-point stencil
S = {ui−2, ui−1, ui, ui+1, ui+2}. To approximate u+i+1/2, the five-point stencil becomes S =

{ui+3, ui+2, ui+1, ui, ui−1}.

We will use periodic boundary conditions in all cases, since they are easy to impose. Con-
sider a mesh with Ng real volumes. To impose the boundary condition at the left boundary
ghost volumes, one needs to set the ghost volumes u−2, u−1 and u0 with uNg−2, uNg−1 and uNg ,
respectively (LeVeque, 2002). The right ghost volumes must be imposed in a similar way, i.e.,
uNg+1, uNg+2 and uNg+3 with u1, u2 and u3, respectively.

The numerical flux, scheme and boundary conditions will provide a spatial discretization
to Eq. (3) and to solve this equation one needs the time discretization. This can be done by an
optimal third-order Strong Stability Preserving (SSP) Runge-Kutta method (Shu, 1998):

u(1) = un + ∆tL(un)

u(2) =
3un + u(1) + ∆tL(u(1))

4

un+1 =
un + 2u(2) + 2∆tL(u(2))

3
,

(14)

where the superscripts (1), (2), n and n+ 1 are the first and second stages, the current time and
the next time step, ∆t is the time step size and L(·) is the spatial approximation to Eq. (3).

The procedure described above is suitable for scalar equations. In the case of nonlinear
system of equations, such as Euler 1D and 2D, a characteristic variable decomposition is needed
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(Shu, 1998):

W = LU , (15)

where W and L are the characteristic vector and the left eigenvectors.

Instead of approximating u±i+1/2, one needs to approximate each component of the charac-
teristic variables and, after that, change back into conservative variables with

U = RW , (16)

where R is the right eigenvectors. More details about the eigenvectors can be found in Toro
(2009).

Finally, to solve the 2D Euler system of equations one can use the procedure for nonlinear
system of equations in each direction and combine them in the following conservative scheme
(Buchmüller and Helzel, 2014)

dui(t)

dt
= − 1

∆xi
(f̂i+1/2 − f̂i−1/2)−

1

∆yi
(ĝi+1/2 − ĝi−1/2), (17)

where ĝi±1/2 is the numerical flux in y direction.

As pointed by Buchmüller and Helzel (2014), this approach will only retain the WENO
higher order for simple problems, which is our case. For more complex problems they suggest
a modification, that will not be discussed here.

2.2 Verification

We consider only discretization errors in our analysis since we used high precision and no
iterative schemes. To assess these errors we first need an a priori error analysis to obtain the
error of the numerical schemes. This can be done via Taylor expansion, with the first order
scheme and information from Fig. 1

u(xi+1/2) = u(xi) + u′(xi)(xi+1/2 − xi) +
u′′(xi)

2
(xi+1/2 − xi)2 + · · · . (18)

Clearly, the error for this approximation is (xi+1/2 − xi = ∆xi/2)

E(u(xi+1/2)) =
u′(xi)

2
∆xi +

u′′(xi)

4
∆x2i + · · · = O(∆xi). (19)

The asymptotic order (pL) is the first power of ∆xi in the error equation. For the first-order
scheme pL = 1.

For the WENO-Z scheme, details of the Taylor series expansion can be found in Borges et
al. (2008). Regarding that this scheme uses a polynomial reconstruction and a stencil combina-
tion to achieve higher orders, the fifth-order WENO-Z have pL = 5.

In order to achieve convergence, one must confirm that apparent order (pU ) approaches
the pL monotonically in more than three meshes (Marchi and Silva, 2005). Since all problems
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Verification of WENO for hyperbolic conservation laws

solved have analytical solutions, we will use the effective order (pE) instead of pU , which is
given by

pEg =
log10 (L1

g−1/L
1
g)

log10 (r)
, g = 2, ..., G, (20)

where the subscript g refers to the mesh level, lower is coarse, r = ∆xig−1/∆xig is the refine
ratio, G is the mesh quantity and L1 is the norm of the error, computed from Eq. (21).

L1
g =

Ng∑
i=1

∆xig|Ei|, g = 1, ..., G. (21)

Here, the error is the difference between exact and numerical solutions.

3 NUMERICAL EXPERIMENTS
The numerical codes used in this work were written in Fortran (standard 90 and higher)

and compiled with Intel R© Fortran 17 and all simulations were performed in one computer with
Intel R©CoreTM i7-4790 @ 3.6 GHz and 8 threads, 8 GB of RAM and Debian 9 operating system.
Some of the simulations were parallelized using OpenMP. The main reason was to reduce the
simulation time and for that purpose details will not be shown.

One should note that the Runge-Kutta has third-order accuracy in time and this should
degenerate the solution accuracy order to three. To avoid this, the following time step must be
used for the WENO-Z scheme:

∆t = min(∆xigCFL/α,∆xi5/3g ), (22)

where CFL is the Courant-Friedrichs-Lewy number.

3.1 Linear advection equation
In this section, we present the results for the linear scalar equation,{

ut + ux = 0 x ∈ (−1, 1), t > 0,
u(x, 0) = 0.25 + 0.5 sin(πx) x ∈ [−1, 1],

(23)

that has the exact solution (Tan and Shu, 2010)

u(x, t) = 0.25 + 0.5 sin [π(x− t)]. (24)

The domain was uniformly discretized,

∆xg = ∆xig =
xr − xl
Ng

, Ng = N2g−1, g = 1, ..., G. (25)

Here, xr = −1 and xl = 1 are the right and left boundary position, G = 10, N = 20 is the base
mesh and Ng is the mesh volume quantity.

The L1 norm of the discretization errors and its effective order at t = 2 are presented in
Fig. 2 and 3, where we can see that the effective order is converging to the asymptotic as mesh
is refined.
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Figure 2: L1 norm of the error for the linear advection equation at t = 2.
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Figure 3: Effective orders of the L1 norm for the linear advection equation at t = 2.

3.2 Euler 1D with smooth solutions
In this section, we present the results for the nonlinear 1D Euler system of equations with

smooth solutions,

{
U t + F (U)x = 0 x ∈ (−π, π), t > 0,

ρ(x, 0) = 1 + 0.2 sin (x), u(x, 0) = 1, p(x, 0) = 2 x ∈ [−π, π],
(26)

with

U =

 ρ
ρu
E

 and F (U) =

 ρu
ρu2 + p
u(E + p)

 , (27)
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where ρ is the density, u the velocity in the x direction, p is the pressure, E is the total energy
per unit volume

E =
ρ

2
u2 +

p

γ − 1
(28)

and γ = 1.4 is the ratio of specific heats. More details on 1D Euler system of equations can be
found in Toro (2009).

The exact solution for this problem is (Tan and Shu, 2010)

ρ(x, t) = 1 + 0.2 sin (x− t), u(x, t) = 1, p(x, t) = 2. (29)

The domain was uniformly discretized with Eq. (25), N = 20, G = 10, xl = −π and
xr = π.

The L1 norm of discretization errors of the density and its effective order at t = 2 are pre-
sented in Fig. 4 and 5, where we can see that the effective order is converging to the asymptotic
as mesh is refined.
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First-order WENO-Z

Figure 4: L1 norm of the error for the 1D Euler system of equations with smooth solution and t = 2.

3.3 Euler 1D with discontinuous solutions

In this section, we present the results for the nonlinear 1D Euler system of equations with
discontinuous solutions that have the following initial conditions


ρ(x, 0) = −0.8(x+ 0.5) + 0.7,

if −0.5 ≤ x ≤ 0
u(x, 0) = 1, p(x, 0) = 2

ρ(x, 0) = 0.3, u(x, 0) = 1, p(x, 0) = 2 otherwise
(30)
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Figure 5: Effective orders of the L1 norm for the 1D Euler system of equations with smooth solution and
t = 2.

For t < 1, the exact solution for this problem is
ρ(x, t) = −0.8(x+ 0.5− t) + 0.7,

if −0.5 + t ≤ x ≤ 0 + t
u(x, t) = 1, p(x, t) = 2

ρ(x, t) = 0.3 u(x, t) = 1 p(x, t) = 2 otherwise
(31)

The domain was uniformly discretized with Eq. (25), N = 20, G = 10, xl = −1 and
xr = 1.

Exact and numerical solutions of the density for the first order and WENO-Z in the coarse
mesh are presented in Fig. 6. One can note that the WENO-Z produces solutions with much less
dissipation than the first order scheme and is close to the exact solution even with discontinuities
and in coarse meshes.

The L1 norm of the discretization errors of the density and its effective order at t = 0.5
are presented in Fig. 7 and 8, where the orders are converging to a value below the asymptotic
order. This is an expected behavior since near the shock is a high dissipation region.

Figure 9 shows the error behavior near the discontinuity. Note the error increase as the
solution approaches the discontinuity.

3.4 Euler 2D

In this section, we present the results for the nonlinear 2D Euler system of equations,

{
U t + F (U)x + G(U)y = 0, (x, y) ∈ (0, 1)× (0, 1), t > 0,
ρ(x, y, 0) = 1 + 0.5 sin (2πx) cos (2πy), u(x, y, 0) = v(x, y, 0) = p(x, y, 0) = 1

(32)
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Figure 6: Exact and numerical solutions for the 1D Euler system of equations in the coarse mesh with
discontinuous solution and t = 0.5.
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Figure 7: L1 norm of the error for the 1D Euler system of equations with discontinuous solution and t = 0.5.

with

U =


ρ
ρu
ρv
E

 , F (U) =


ρu

ρu2 + p
ρuv

u(E + p)

 , G(U ) =


ρv
ρuv

ρv2 + p
v(E + p)

 , (33)

where v is the velocity in the y direction and

E =
ρ

2
(u2 + v2) +

p

γ − 1
. (34)

More details on 2D Euler system of equations can be found in Toro (2009).
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Figure 8: Effective orders of the L1 norm for the 1D Euler system of equations with discontinuous solution
and t = 0.5.
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Figure 9: Error behavior near the discontinuity at t = 0.5.

The exact solution for this problem is

ρ(x, y, t) = 1+0.5 sin [2π(x− t)] cos [2π(y − t)], u(x, t) = u(v, t) = p(x, t) = 1. (35)

The domain was uniformly discretized in each direction with Eq. (25), N = 20, G = 6,
xl = 0, xr = 1, yb = 0 and yt = 1, where yb and yt are the bottom and top boundaries in y
direction.

For the 2D Euler system of equations we used the following L1 norm

L1
g = ∆xg∆yg

NgNg∑
i=1

|Ei|, g = 1, ..., G. (36)
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The L1 norm of the discretization errors of the density and its effective order at t = 2 are
presented in Fig. 10 and 11, where we can see that the effective order is converging to the
asymptotic as mesh is refined.
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Figure 10: L1 norm of the error for the 2D Euler system of equations at t = 2.
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Figure 11: Effective orders of the L1 norm for the 2D Euler system of equations at t = 2.

4 CONCLUDING REMARKS

We briefly presented the discretization for an explicit FVM formulation with Lax-Friedrichs
flux, first-order and WENO-Z numerical schemes and an optimal third-order SSP Runge-Kutta
method suitable for hyperbolic conservation laws, such as the Euler equations. The solution of
each problem is reliable as depicted by the verification procedure.

We showed that the WENO-Z solution is close to the exact even with discontinuities and in
coarse meshes. This is an important behavior for shock-capturing schemes.
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In most of the problems, the WENO-Z presented fifth-order accuracy. Although expected,
in the case of 1D Euler system of equations with discontinuous solutions the order degenerates.
This happens because the WENO-Z scheme selects the smoothest combination of the substen-
cils, which may not achieve higher order, and because of the high dissipation effect near the
discontinuity.
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