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Abstract. There are a lot of problems in engineering, some of them can be modeled through
mathematical model equations without greater error addition. An analytical solution for these
models equations are generally unknown, so one uses a numerical method to solve them. In this
work, the Finite Volume Method (FVM) is employed to solve the following model equations:
Burgers 1D, Poisson 2D and Poisson 3D. The linear system of equations resulted from FVM
is solved using the Additive Correction Multigrid (ACM) strategy with Gauss-Seidel solver, the
singlegrid is also tested and a comparison between them is shown. The coefficient of complexity,
i.e., the rate which the CPU time increases in relation to the size of the grid doesn’t reach exactly
the unity, which is the theoretical complexity coefficient of Multigrid strategy, but a possible
explanation to this fact is shown.
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1 INTRODUCTION

Nowadays engineering problems are solved using a mixed of theory and empiricism. In any
case, solving problems using the theory, through mathematical models, usually the analytical
solution is unknown. This is the reason why numerical methods are used to obtain its solu-
tion and commonly these mathematical models are composed of systems of partial differential
equations and/or integrals.

There are lot of numerical methods for solving differential equations, the simplest is the
Finite Difference Method (Fortuna, 2000 & Incropera; DeWitt, 2003) which is based in a di-
rect aproximation of the derivatives of diffential equation throughout the nodes of the grid. In
the other hand the Finite Volume Method (Maliska, 2010) is based in the discretization of the
domain in control volumes, which the conservation equations are integrated, the terms resulted
from this integration are approximated, be differential or integral terms.

Once that the approximation has been applied, algebraic equations are generated and must
be solved somehow. Solvers, are used for this purpose, but the convergency rate, i.e., the speed
which these methods get closer to the numeric solution is sometimes very slow.

1.1 Multigrid

It is possible to ally these solvers with a methodology named multigrid (Briggs; Henson
& McCormick, 2000), which presents some properties which increase the convergency rate
and reduce the computational time to obtain the numerical solution. There are two groups
within multigrid methodologies: geometrical and algebraic. The first one presents in general
the smaller computational time and is easier to understand and apply but is not as generic as the
second one which presents a greater CPU time.

The Additive Correction Multigrid (ACM) (Keller, 2007) can be considered an algebraic
methodology but is simpler to understand and apply than most algebraic multigrid methods
(Briggs; Henson & McCormick, 2000). The reason is that this methodology is based only in
the coefficient matrix of the linear system generated from the discretization, thus can be applied
independently from the numerical method used.

As an example, consider the volume 5* of the coarse grid in Fig. 1, this coarse volume is
composed of volumes 15, 16, 21 and 22 of the fine grid. The coefficients and source term of the
volume 5* are calculated as an restriction of the volumes composed shown in the Eq. (1).

as(5∗) = as(15) + as(16)

aw(5∗) = aw(15) + aw(21)

aP (5∗) = aP (15) + aP (16) + aP (21) + aP (22)−

[ae(15) + an(15) + aw(16) + an(16) + as(21) + ae(21) + as(22) + aw(22)]

ae(5∗) = ae(16) + ae(22)

an(5∗) = an(21) + an(22)

bP (5∗) = r(15) + r(16) + r(21) + r(22)

(1)
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Figure 1: Example of applied 2D ACM

where r is the residual of linear system in the analysed volume ({r}=[A] {x}-{b}).

This coefficients and source terms are obtained to solve the correction (Eq. (2)) for the
entire coarse volume, i.e. in the previouse example, the correction must be used in volumes 15,
16, 21 and 22 through the Eq. (3).

[A] {c} = {b} (2)

where c is the correction.

φ = φ∗ + c (3)

where φ∗ is the previous value and φ is the corrected value.

1.2 Goals

The goal of this work is to apply the additive correction multigrid metodology in three
model problems: Burgers 1D, Poisson 2D e Poisson 3D. The numerical implementation will be
analysed as well as the computational time and the complexity coefficient of the implemented
multigrid metodology.

1.3 Finite volume method

The Finite Volume Method (Maliska, 2010) is based on the integration of differential equa-
tion over control volumes, which the domain is divided. An ilustrative generic onedimensional
uniform grid is shown in Fig. 2, where grid size h is given by h = L

N
where N is the total
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Figure 2: Generic 1D grid for the discretization of the domain

number of volumes used in that direction. In all the model problems solved, the grids were
uniform in each direction.

where, W , P and E are the nodes of the volumes and ww, w, e and ee are the faces of these
volumes.

2 Mathematical and numerical models
In this section the mathematical and numerical models of selected problems are shown.

The secondary variables in each model problem, there is the calculation of the average.
This average will be calculated using the numeric integration of rectangle rule (Chapra; Canale,
2015).

2.1 Burgers 1D
The Burgers 1D problem can model several physical problems which include but are not

limited to: a onedimensional laminar flow of a fluid of constant properties. The differential
equation of this model problem is given by Eq. (4).

Re
du2

dx
=
d2u

dx2
+ S(x) (4)

where Re is the Reynolds number of the flow, defined by Re = ρUL
µ

, where ρ is the density of
the fluid and µ is the dynamic viscosity.

The source term is given by: S(x) = Re2exRe 2exRe−eRe−1
(eRe−1)2

was obtained through the fabri-
cated solutions method, and allow an analytic solution proposed by Eq. (5).

u(x) =
exRe − 1

eRe − 1
(5)

The boundary conditions are given by Eq. (5) in the limits of the used unitary domain
0 ≤ x ≤ 1 and are u(1) = 0 and u(N) = 1, in this work: Re = 100.

The secondary variables analysed are: (1) velocity in the domain center, which is obtained
by a linear interpolation between neighbour volumes and (2) velocity average, which is given
by Eq. (6).

u =
1

Lx

∫ 1

0

u(x)dx =
eRe −Re− 1

Re (eRe − 1)
(6)
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Appling the integration over the control volume, second order approximation for the dif-
ferential terms, linearization of the quadratic terms and rectangle rule for the integration terms,
one can obtain a system of algebraic equations which are a threediagonal, which the general
equation is given by Eq. (7) and the coefficients and source terms are given by Eq. (8).

aPuP = aeuE + awuW + bP (7)

P = 1, . . . , N

aP = 8 +Reh(u∗E − u∗W )

ae = 4−Reh(u∗P + u∗E)

aw = 4 +Reh(u∗W + u∗P )

bP = 4h2SP

(8)

where uW∗, uP∗ and uE∗ are the velocities known in the previous iteration.

The boundary conditions application is made using the fictitious volumes method. There-
fore, external volumes are created in all the external faces, which will have the coefficients and
source terms obtained by an interpolation between the real and fictitious volumes, this interpo-
lation is exactly equal to the boundary condition in that face.

The solution behaviour of this problem for the following Reynolds number: 1, 5, 25 and
125 is shown in Fig. 3.

Figure 3: Burgers 1D, solution behaviour for Re = 1, 5, 25 and 125. Adapted from Moro & Marchi (2016)

2.2 Poisson 2D and 3D

The Poisson 2D problem can model several physical problems which include but are not
limited to: heat conduction with internal heating source, laminar incompressible flow in a plane
of a pipe in a completely developed flow or still in the stream function-vorticity formulation,
two Poisson 2D equations-like are solved to obtain a laminar incompressible twodimesional
flow. The differential equation of this model problem is given by Eq. (9).
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∂2T

∂x2
+
∂2T

∂y2
+ S(x, y) = 0 (9)

The source term is given by: S(x, y) = 2 π2sin (πx) sin (πy), was obtained through the
fabricated solutions method, and allow an analytic solution proposed by Eq. (10).

T (x, y) = sin (πx) sin (πy) (10)

The boundary conditions are null in all the faces of the unitary plate between 0 ≤ x, y ≤ 1.

The secondary variables analysed are: (1) temperature in the domain center, which is ob-
tained by a linear interpolation between neighbour volumes and (2) temperature average, which
is given by Eq. (11).

T =
1

Ly

1

Lx

∫ 1

0

∫ 1

0

T (x, y) dx dy =
4

π2
(11)

Appling the integration over the control volume, second order approximation for the dif-
ferential terms and rectangle rule for the integration terms, one can obtain a system of algebraic
equations which are a fivediagonal, which the general equation is given by Eq. (12) and the
coefficients and source terms are given by Eq. (13).

aPTP = asTS + awTW + aeTE + anTN + bP (12)

P = 1, . . . , N

as = aw = ae = an = 1

aP = 4

bP = h2SP

(13)

The boundary conditions application folow the same methodology used in the previous
model problem.

The solution behaviour of this problem is shown in Fig. 4 obtained using the VisIt (Childs
et al., 2012) application, this software was developed by the Department of Energy (DOE)
Advanced Simulation and Computing Initiative (ASCI) of US.

The Poisson 3D problem can model several physical problems which include but are not
limited to: heat conduction with internal heating source. The differential equation of this prob-
lem is given by Eq. (14).
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Figure 4: Poisson 2D, solution behaviour

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
= −S(x, y, z) (14)

The source term is given by: S(x, y, z) = 3 π2sin (πx) sin (πy) sin (πz), was obtained
through the fabricated solutions method, and allow an analytic solution proposed by Eq. (15).

T (x, y, z) = sin (πx) sin (πy) sin (πz) (15)

The boundary conditions are null in all the faces of the unitary cube between 0 ≤ x, y, z ≤
1.

The secondary varibles analysed are: (1) temperature in the domain center, which is ob-
tained by a linear interpolation between neighbour volumes and (2) temperature average, which
is given by Eq. (16).

T =
1

Lz

1

Ly

1

Lx

∫ 1

0

∫ 1

0

∫ 1

0

T (x, y, z) dx dy dz =
8

π3
(16)
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Appling the integration over the control volume, second order approximation for the dif-
ferential terms and rectangle rule for the integration terms, one can obtain a system of algebraic
equations which are a sevendiagonal, which the general equation is given by Eq. (17) and the
coefficients and source terms are given by Eq. (18).

aPTP = adTD + asTS + awTW + aeTE + anTN + auTU + bP (17)

P = 1, . . . , N

ad = as = aw = ae = an = au = 1

aP = 6

bP = h2SP

(18)

The solution behaviour of this problem is shown in Fig. 5, again obtained using the VisIt
application, for three planes of the unitary cube.

Figure 5: Poisson 3D, solution behaviour in three planes of the unitary cube

2.3 Stopping criteria, initial guess and more information

The used stopping criteria was a tolerance of 10−10 for the average L1 norm of linear
system residual (Eq. (19)), if |L1| was smaller than the tolerance applied, the iterative system
was stopped.
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|L1| =
∑N

i=1 |Ax− b|
N

(19)

where A is the matrix of the linear system, x is the unknown vector and b is the source term
vector.

The initial guess used in each model problem was the analytical solution. The PC used
was a Asus B85M-E/BR, Intel Core i7-4790 3.6 GHZ with 8 GB of RAM memory, using
Windows 7 64 Bit. The code language used was Fortran 95, the compiler version: Intel Fortran
15.0.115.2010.

In this work, in 1D ACM application, two volumes of the fine grid become one volume
in the coarse grid, and in 2D ACM four volumes become one and in 3D ACM eight volumes
become one. In Fig. 1 is shown an example of 2D ACM.

The number of solver sweeps in the V cycle were: one iteration for the fine grid, two for
the restriction and for prolongation.

2.4 Effective and apparent orders

In the verification procedure of a numerical code, one should analyse if the numerical
solution approximate from analytical solution, i.e. if the finer the grid the lesser discretization
error, and if the numerical accuracy is close to the teoretical one, i.e. if the second order scheme
applied in this work really gives this order of accuracy.

The effective and apparent orders are used to obtain the true orders of numerical error, if
both are close to two, this gives confidence that the code is solving the problem accordingly.

If one consider a three grid solution, φ1, φ2 and φ3 (where the subscript 1 is the coarser and
3 is the finest) and an analytical solution Φ, with a constant refinement ratio of r. The effective
and apparent order of the finer grid are given by Eq. (20) and (21) for effective and apparent
order respectively.

pE =
log(Φ−φ2

Φ−φ3 )

log(r)
(20)

pU =
log(φ2−φ1

φ3−φ2 )

log(r)
(21)

3 Results

The results obtained for each model problem are shown in this section.
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3.1 Burgers 1D

For this model problem the following real volumes were used in the discretization: 2, 4, 8,
16, 32, 64, 128, 256, 512, 1 024, 2 048, 4 096, 8 192, 16 384, 32 768, 65 536, 131 072, 262 144,
524 288, 1 048 576 and 2 097 152.

The Fig. 6 show the discretization error, i.e., the difference between analytical solution
and numerical solution, for both secondary variables analysed in relation with the number of
volumes used.

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7
1 0 - 9
1 0 - 8
1 0 - 7
1 0 - 6
1 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0

 

 

E h

N

 u
 u c e n t e r

Figure 6: Burgers 1D, discretization error of the secondary variables

The Fig. 7 show the effective and apparent orders, i.e., the rate which the discretization
error decreases in relation with the increase of the numbers of volumes used for both secondary
variables analysed.

Finally, the Fig. 8 show the computational time and a exponential fit to show the complexity
coefficient of the implemented additive correction multigrid method.

3.2 Poisson 2D and 3D

For these model problems the following real volumes were used in the discretization: 22,
42, 82, 162, 322, 642, 1282, 2562, 5122, 1 0242, 2 0482 and 4 0962 in Poisson 2D; 23, 43, 83, 163,
323, 643, 1283 and 2563 in Poisson 3D problem.

The Figs. 9 and 10 show the discretization error, i.e., the difference between analytical so-
lution and numerical solution, for both secondary variables analysed in relation with the number
of volumes used.

The Figs. 11 and 12 show the effective and apparent orders, i.e., the rate which the dis-
cretization error decreases in relation with the increase of the numbers of volumes used for both
secondary variables analysed.
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Figure 7: Burgers 1D, effective and apparent orders of the secondary variables

Finally, the Figs. 13 and 14 show the computational time and a exponential fit to show the
complexity coefficient of the implemented additive correction multigrid method.

4 Discussion and conclusion

The goal of this work was to apply the additive correction multigrid metodology in three
model problems: Burgers 1D, Poisson 2D and Poisson 3D.

The finite volume method was used and a set of algebraic equations were obtained, which
was the starting point for the Additive Correction Multigrid strategy, the solver used was Gauss-
Seidel in each linear system.

Through Figs. 6, 9 and 10 for Eh, and Figs. 7, 11 and 12 for the true orders of numerical
error of numerical scheme applied, one can analyse that when the discretization error is greater
than iteration errors, i.e. until intermediate number of volumes (≈ 104 in 1D, ≈ 2.105 in
2D and not reached in 3D), the true orders are getting closer and closer to the second order
approximation scheme applied. But if refined even further, as the stopping criteria is fixed in
a tolerance of 10−10 of the average L1 norm of the residuals, the iteration errors became more
significantly.

Through Figs. 8, 13 and 14 is possible to analyse that the complexity coefficient obtained
through a exponential fit of the computational time versus problem size (number of volumes)
for ACM is not close to the teoretical unity as obtained through Keller (2007) or Brigs; Henson
& McCormick (2000), but 1.56 for 1D, 1.44 for 2D and 1.11 for 3D. The singlegrid is also
compared, the bigger number of volumes, the higher speedup obtained from multigrid.

A possible explanation for these results is the following: it is possible to anaylse that in
the geometric Poisson 1D multigrid correction scheme using Finite Differences Method (Brigs;
Henson & McCormick, 2000), the residual on a restriction of the coarse volume (correction
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Equation y = a*x^b
Adj. R-Square 0.99893

Value Standard Error
Multigrid a 5.14097E-6 2.02646E-6
Multigrid b 1.55598 0.02725

Equation y = a*x^b
Adj. R-Square 0.99999

Value Standard Error
Singlegrid a 6.16301E-6 2.83277E-7
Singlegrid b 2.50933 0.00605

Figure 8: Burgers 1D, computational time with complexity coefficient

linear system) will be r2 greater than in the fine volume (where r is the refinement ratio, 2 in
each direction for this work). This means that a four times greater residual is expected, but
the restriction operator in Aditive Correction Multigrid is basically the sum of residuals, so the
residual in the coarse grid is just two times greater.

Better studies about the behaviour of this strategy should be made, specially because of the
easy implementation and generic application.
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Figure 9: Poisson 2D, discretization error of the secondary variables
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Figure 10: Poisson 3D, discretization error of the secondary variables
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Figure 11: Poisson 2D, effective and apparent orders of the secondary variables
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Figure 12: Poisson 3D, effective and apparent orders of the secondary variables
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Equation y = a*x^b
Adj. R-Square 1

Value Standard Error
Multigrid a 1.12492E-7 1.56008E-9
Multigrid b 1.43666 8.34922E-4

Equation y = a*x^b
Adj. R-Square 1

Value Standard Error
Singlegrid a 1.67822E-9 1.1017E-10
Singlegrid b 2.15715 0.00526

Figure 13: Poisson 2D, computational time with complexity coefficient
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Equation y = a*x^b
Adj. R-Square 1

Value Standard Error
Multigrid a 1.48546E-6 5.65507E-8
Multigrid b 1.10634 0.00229

Equation y = a*x^b
Adj. R-Square 1

Value Standard Error
Singlegrid a 2.3379E-7 1.23234E-8
Singlegrid b 1.46343 0.00362

Figure 14: Poisson 3D, computational time with complexity coefficient
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