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SUMMARY

An extension of the PRIME method for co-located grids and all-speed flows using co-located grids is
reported in this work. The calculation of the velocities at the interfaces are of key importance in this
method because the momentum equations are used as velocity correction equations. The findings seem
to be useful for other explicit methods and contributes to a better understanding of the role played by
the interface velocities in co-located methods. The full methodology, in nonorthogonal coordinates, is

described and results for incompressible and compressible flows are reported.

INTRODUCTION

After the publication of the papers by Rhie and Chow
(1983), and Peri¢ et al. (1988), many interesting works have
been developed about the use of non-staggered grids in finite
volume methods for the solution of the governing equations of
fluid flows. The SIMPLE-like procedures are normally employed,
and the works of Majundar (1988) and of Choi, Nan and Cho
(1993), among others, can be cited. Little attention, however,
has been paid to the sequential procedures like PRIME (Maliska
1981) and SUMMIT (Van Doormaal 1985). The latter meth-
ods, whatever the variables arrangement employed, seemed to be
less efficcient, hecause they propagate information of momentum
transport in a point by point way, througout an explicit veloci-
ties calculation.

Albeit this, methods explicit in its nature. like the Runge-
Kutta for solving compressible flows presented by Jameson et
al. (1981) and the MAPLE (Marek and Straub 1993), have
appeared to be attractive due to its effectiveness in exploiting
multi-grid techniques and the vectorization resources of modern
computers. Therefore, attention is now heing given to explicit
methods in general.

In the present paper an experience with PRIME, using
non-staggered grids is reported. The methodology uses non-
orthogonal grids and an all-speed flow algorithm. Interesting
findings were observed due to the “explicit” treatment of the
momentum equations. A new method is advanced, significantly
different fror: the ones used in SIMPLE-like procedures, for the
calculation of the velocities at cell centers and at cell faces.

The results obtained with this methodology in two test
cases are compared with other available results.

GOVERNING EQUATIONS

Since one is interested in solving the governing equations
in irregular shapes, the appropriate governing equations (Silva
and Maliska 1988) are transformed to a general curvilinear co-
ordinate system. Employing the chain rule and after some alge-
braic manipulations, in order to put the equation in the conser-
vative form (Maliska 1995), they reads
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U=yu—zw (2)

V =z - yeu (3)

o=l +y (4)
y=ai+y; (5)

B =TTy + Yeyn (6)

J =1/ (Teyn — To¥e) (7)

The expressions for P* and 5¢ are presented in Table 1.
As can be seen, the cartesian velocity components are kept as
dependent variables (Maliska and Raithby 1984).

Table 1: Expressions for P¢ and S¢.
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DISCRETIZED EQUATIONS

Eq. (1) is integrated over a square control volume in the
transformed space. Following the usual procedure in finite vol-
ume methods for incompressible flows (Patankar 1980) (Silva
1991), one obtains, after the integration,
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where some of the coefficients appearing in the above equation

are
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The remaining coefficients can be derived by analogy. The L[ ]
denotes numerical approximation of the expression inside the
brackets. Due to the presence of cross-derivatives in the diffu-
sion term the WUDS scheme (Raithby and Torrance 1974) is
applied only to the direct derivatives (Maliska 1981). The cross
derivatives are evaluated using central differencing. Therefore,
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Expressions for @ and 3. can be found in Minkowycz (1988).

Introducing equations (9), (10), and the corresponding
ones for the remaining faces of the control volume, in Eq. (8),
and after some algebraic manipulation one gets,
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where the coefficients are shown in Marchi and Maliska (1994)

PRESSURE EQUATION

In discrete form the mass conservation equation can be
written as (Marchi and Maliska 1994),
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Using the linearization of mass fluxes described in Van Door-
maal (1985), applied for curvilinear coordinate systems (Silva
and Maliska 1988), one has, for the east face of a control volume
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Substituting Eq. (13) and its counterparts in Eq. (12), one gets
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In order to obtain a equation for pressure from Eq. (14) it
is necessary to write U, V' and p as functions of pressure. First,
one shall write the cartesian components of velocity at cell faces.
Again taking the east face as example one gets
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The way ., 0. and d, are calculated is the matter of the next
section of this paper. Using the relation between the cartesian
and the contravariant (without metric normalization) velocity
components, equations (2) and (3), one obtains
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For the remaining faces similar equations are obtained.

The above expression is the so-called velocity correction
equation. The way the uncorrect velocities (U and V") are cal-
culated depends on the pressure-velocity coupling method used.
In this paper the main goal is to extend the sequential method
PRIME (Maliska 1981) for co-located arrangement. In this case
Eq. (17) is exactly the combination of the u and v momentum
equations for the east face.

The density is obtained through a linearization of the state
equation as

P=p+Cp (18)

Here the ideal gas assumption is used, giving po = 0 and C* =
(RT) ™,

Since p is located at the cell center, at cell faces it is ob-
tained using an interpolating function. An upwind interpolation
was used in this work (Van Doormaal 1985), making the weight-
ing parameter, ¥, equals to +1/2 or —1/2 according the signal
of U (or V) that is employed in the calculation of the mass flux
across each particular face. For the east face one gets,

pe=(1/2+73) pp + (1/2 = 7) pe (19)

Introducing Egs. (17) and (19) with its analogues for the
remaining faces in Eq. (14) one obtains the equation for pressure
as
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where the coefficients are straightforwardly deduced.
VELOCITY FIELD CALCULATION

Expressions for velocity calculation at cell faces, based on
the work of Rhie and Chow (1983), are proposed in Marchi and
Maliska (1994) and in the present work. Both can be written,
for calculating a cartesian component u at an east face, as,
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In Marchi and Maliska (1994) it is proposed that
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with I'r = (Ap)g, whereas. in the present work, Rg is given by
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In the above expressions the subscripts nb indicates sum-
ming over the neighouring points of P and E. It is worth to note
that here the transient part Ay = M9/At was removed from
the coefficient (Ap)g. It must be kept in mind that we want to
obtain one equation for the cell face velocity from the equations
of the velocities at nodal points P and E. The ¢ coefficient in the
expression of the “inertia” term Ig is introduced for controlling
inertia effects. This will be explained bellow.

Although these two expressions for Rg seems to be very
similar, the former has shown to be inadequate for the use with
“explicit” methods like PRIME. This has led to the development
of the new method proposed here.

It is important to remember that the cell face velocity,
herein reported, is the one which will enter the contravariant
velocity component used for calculating the mass flow. When u
assumes the role of ¢ in the Eq. (11) the cell face values required
for ¢ remain been calculated through the WUDS or another
interpolating function.

To explain Eq. (23) it is easier to consider a unidimen-
sional version of Eq. (8). Substituting Eq. (9) and Eq. (10) in




Eq. (23), one gets
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In an “explicit” technique, like the PRIME method, all quanti-
ties at the right hand side of this equation, except the pressure
term, will be evaluated with quantities known from the last it-
eration. In semi-implicit methods all the ¢ values would be
obtained from the solution of the linear system formed by the
set of equations like (24), one for each grid volume. To simplify
Eq. (24) it is wise to subtract the mass conservation equation,
Eq. (12) in its unidimensional form, multiplied by ¢5. The re-
sulting equation is
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Observe that in Eq. (24) ¢ and ¢ were made equal to
o) and oy, If ¢* is set equal to @ one recovers the usual equation
for ¢. Our objective is to obtain an interface velocity (¢ = u,v)
using Eq. (25), which is written for the cell center velocities.

The usual procedure is to write Eq. (25) for the control
volumes P and E and then average them to obtain the velocities
at the interfaces. In the procedure advanced here the average
of the equations is made different for each term, this difference
being according to the physical interpretation of each term.

The transient term is averaged using the interface veloc-
ity, since it represents an information about the control volume
which would be related to that velocity. The pressure term to
avoid the even-odd decoupling, must be evaluated at the cell
interfaces too.

The remaining terms of the equation (representing the di-
vergence of the convective and diffusive fluxes, and the source
term), can be evaluated with great simplicity, througout an
avarage of the values of such quantities at the cell centers.

It is also needed to eliminate the unknown Af,, of Eq. (25)
if one is interested in extract from it an equation for velocities.
The fact that the additional term on the left hand side of the
equation involving ¢7, is part of the approximation of the diver-
gence of the fluxes, and so it should be evaluated using an aver-
age of the values obtained at cell centers, precludes the obvious
device of make ¢p equal to ¢). A way to avoid this difficulty
would be to work with the products pu and pv as unknowns in
the momentum conservation, as done in the ICE (Harlow and
Amsden 1971), but it will precludes the use of the linearization
here utilized for the mass conservation equation. Another so-
lution would be substitute M, by its last iteration value, M.
Here M|, was made equal M? because only steady state solutions
was sought. The equation for ¢, then reads
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It is quite known that explicit methods works on a At range infe-
rior of that of the semi-implicit methods. To approximate these
ranges, an additional inertia term is introduced in the equation
resulting in Eq. (21) and (23).

If Eq. (21) is written in the form of Eq. (15) one gets
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When dealing with co-located variables and implicit meth-
ods, it is not necessary the approach just described. The reason
is that in the PRIME procedure the correcting equations are
exactly the momentum equations and not auxiliary equations
as in the SIMPLE-like procedures. So, the average of the ve-
locities equation at the cell centers, to obtain the velocities at
the interfaces, must be an accurate representation of momentum
conservation.

In the SIMPLE-like methods there’s no pressure equation,
but a pressure correction equation that drives the velocity field
to mass conservation according to a mass imbalance initially
detected. The mass and momentum conservation are treated
separately with its respectives linear systems. The velocities
introduced in mass conservation are interpolated and not calcu-
lated at cell faces. The important fact is that the role played by
the momentum conservation equations in the calculation of the
cell face velocities like proposed in Marchi and Maliska (1994) is
not too crucial. Some propositions for this calculation for semi-
implicit methods, in wich the expression of Marchi and Maliska
(1994) was inspired, can be viewed as a linear interpolation of
velocities with a third order pressure smoothing term (Lien and
Leschziner 1994). The velocities, in these methods, are really
calculated at cell centers, through the appropriate linear sys-
tem. In the PRIME procedure, due to its explicit nature we
could say that the velocities are really calculated at the inter-
faces. The velocities at cell centers are obtained by interpolation
of the contravariant components at the interfaces and use of the
inverses of equations (2) and (3):

w=J Uz +Va,) (29)
v=J Uy +Vy,) (30)

RESULTS

To asses the performance of the methodology described,
two test cases are shown: the incompressible (Mach 3.2 x 107°)
and laminar (Re = 100) lid driven cavity flow with lateral cavity
walls tilted of 45° (Demirdizi¢ et al. 1992), and the inviscid
supersonic flow over an infinite cylinder.

In the first case, a 40 x 40 uniform grid was used. The pro-
file of the nondimensional vertical cartesian velocity component
along the horizontal middle line obtained with the methodology
described in this work is compared with the benchmark solution
of Demirdizi¢ et al. (1992), and with the results obtained re-
placing the calculation of the cell face velocity as suggested in
Marchi and Maliska (1994) for the SIMPLEC procedure (Van
Doormaal 1985).

The results of Fig. 1 show the inadequacy of using expres-
sions developed for SIMPLE-like methods in sequential methods
like PRIME.

A large time step was taken (10° times the lid length per
lid velocity) making the transient term neglegible in the equa-
tions. This calculation was successfull due to the beneficial ef-
fects of the artifficial inertia term introduced in Eq. (23).

For the cylinder, grids with 20 volumes in the radial di-
rection and 26 in the circunferencial one were used. They were
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Figure 1: Nondimensional vertical velocity component profile
along the middle horizontal line of the cavity.

based on that used to solve the same problem in Silva (1991). A
special care was taken to make the grid orthogonal at the sym-
metry line and smooth near there. The results are not good if
this is not done. The reason for that is the need of the grid to
be consistent with the physics, that is, the grid needs to be also
symmetric, which implies orthogonality, at the symmetry line.
It can be seen, in Fig. 2, that the results agree well with the
experimental ones shown in Liepmann and Roshko (1957).
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Figure 2: Distance between shock line and stagnation point.

A comparision between the pressure coefficient over the
cylinder surface for Mach 4, given by this methodology and that
proposed in Silva (1991), is shown in Maliska (1995). The nondi-
mensional time step A7 = AtD/U, employed for supersonic
flows was of 0.2 in the present methodology and of 0.3 in that
of Silva (1991). These was near the maximum attainable. The
CPU time were also similar for both methodologies.

CONCLUDING REMARKS

This paper presented a non-staggered finite-volume meth-
od for handling the pressure-velocity coupling in sequential pro-
cedures. Due to the nature of the velocity calculation in sequen-
tial procedures, the cell face velocities is an important part of
the method. The method is easier to implement than the usual
ones. The outcome of this work can be also applied to explicit,
like MAPLE (Marek and Straub 1993), and artificial compress-
ibility methods. It also may be applied when the velocities used
in mass flow calculation are not stored at the middle of the cell
faces, as in ALE (Hwang 1993).

The results obtained for incompressible and compressible
flow problems are encouraging.
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