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Abstract

The details of an ezperimental wind {unncl investiga-
tion for pressure disiribution and force measurements for
the Brazilian VLS are described. The development of an
all speed Euler and/or Navier-Stokes flow simulation code
which uses a segregated finite volume algorithm for 3-D
body conforming curvilinear coordinates with a colocated
variable errangement is also described. The efforts to-
wards the physical validation of this code are the major
coniribution of the present work. The resulls oblained for
subsonic and supersonic flow condilions are in very good
agreement with the erperimental data. Transonic cal-
culations, however, show a much poorer agreement with
the available datia for equivalent and even more refined
meshes. The compulational resulls produced by the codes
here described are already supplying aerodynamic infor-
mation which is currently being used in the VLS design
process.

Introduction

The first Brazilian Satellite Launch Vehicle (VLS) is of
the cluster type with four strap-on boosters around the
central core, as shown in Fig. 1. The hammerhead type
fairing is of non-conventional shape, but its use is rather
common on satellite launchers in order to accommodate
spacecraft with a diameter larger than the last boosting
stage. The prediction of the local aecrodynamic character-
istics of such type of fairing, for shape optimization and
design purposes, is typically made primarily through wind
tunnel tests. These tests, however, require high costs and
usually a long turnaround time for the complete cycle,
which encompasses test specification, model production,
the test itself and data reduction. Therefore, there is
great interest and a lot of effort has been put into de-
veloping the capability of simulating such aerodynamic
flowfields. We are particularly interested in accurately
computing the high speed flow about the hammerhead
fairing, and so far only steady state cases have been con-
sidered.
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Figure 1: General configuration of the VLS vehicle.

Both for actual design and for code validation pur-
poses, a wind tunnel test program was established and
performed. This has covered a wide range of test pa-
rameters such as Mach number, Reynolds number and
angle of incidence. The test program has attempted to
cover the relevant aerodynamic regimes for the complete
expected flight trajectory of the vehicle. Moreover, the
test program was organized in such a way that the exper-
imental data so obtained could be readily used for Com-
putational Fluid Dynamics (CFD) code development and
validation studies. In particular, although the configura-
tion tested was inherently complex, care was exercised in
order to avold booster attachment details and body ex-
ternal protuberances, which would be extremely difficult
to numerically simulate without severely penalizing the
size of the computational grids.

The institutions here represented have been actively
involved in the development of high speed flow simula-
tion codes for several years now. It is hoped that these
codes will help to ease the burden presently put onto the
experimental investigations for the VLS aerodynamic de-
sign. However, before these codes can be used in a design
environment, they must be thoroughly validated. More-
over, although of a more subjective value, project engi-
neers have to develop confidence in the use of the codes
for their analysis and design work. Two quite distinec-



tive lines of work have been pursued. The first one was
based on the methods typically used in acrodynamics in
which the governing equations are solved simultancously
with local lincarization based on Jacobian matrices. The
other was based on segregated solution methods which
were originally developed for low speed flows and heat
transfer problems. The emphasis here will be on the sec-
ond class of methods, since a novel methodology for flow
simulation at all speeds has been recently developed by
some of the present authorsl! 23 in this context.

The present work will briefly describe the experimen-
tal investigation conducted and the code development,
and it will concenirate on the physical validation of the
results produced by the new code against the experimen-
tal data. Code-to-code comparisons are also performed,
using independent computational results generated by
a central difference, implicit, approximate factorization
algorithm which has been previously tested for similar
configurations!®®l. Further details of the experimental
test program are reported by Moraes and Netol®). More
details of the numerical formulation in the new segre-
gated, finite volume code are described by Maliska and
co-workersth 37,

Experimental Test Program

The general wind tunnel test program comprised three
different test series, although we will only be concerned
with the first two in the present work. These two consid-
ered the acquisition of global and local vehicle character-
istics through the measurement of forces, moments and
local pressures along the vehicle. The third test series
considered the simulation of lift-off conditions in a low
speed wind tunnel. The computational simulation of lift-
off conditions has not been attempted yet and, therefore,
the results of this third test series will be of no concern
for the present work. Moreover, our major interest in
the present case will be the local pressure measurements
reported in Ref. [8].

Pressure measurements tests were performed both in
a continuous type transonic wind tunnel and in a blow-
down supersonic tunnel. The continuous transonic tun-
nel has a test section size of 1.75 x 1.77m? and it uses
perforated walls for tests in the transonic speed regime.
Tests were conducted in this tunnel for the Mach number
range from 0.5 up to 2.5. Tests in the Mach number range
2.5 < My < 3.75 were performed in the blow-down tun-
nel. For the measurements, a 1 : 15 scale smooth model
with non-attached boosters has been used. It was con-
figured with approximately 320 pressure taps distributed
along the surface of the vehicle’s central core and boost-
ers. The model was held in the test section using a five-
sting support system, which would allowed even the sim-
ulation of the strap-ons separation in a static manner. A
sketch of the five-sting support system is indicated in Fig.
2. Moreover, with the objective of increasing the amount
of azimuthal pressure information without exceeding the
available internal space of the model, pressure taps were
distributed along some azimuthal positions on the core
and on the boosters, and the model was tested at two
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Figure 2: Sketch of the wind tunnel model with the five-
sting support system.
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Figure 3: Front view of the pressure taps distribution in
the azimuthal direction and imdication of the two model
positions used for testing.
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different positions rotated by 90° with respect to each
other. We call these as corresponding to ¢ = 0° and
¢ = 90°. This is indicated in Fig. 3 where a front view of
the model is sketched. Since all tests were performed for
positive and negative angles of attack, this distribution of
pressure tap lines allowed measurements every 30° in the
azimuthal direction, from lee- ¢o windside, for all bodies
involved. It is also important to mention that, for every
Mach number, tests were performed from —6° to +6° in
angle of attack at 2° intervals.

One of the major thrusts for the specification of the
five-sting support was precisely the need for good exper-
imental data for code validatiom. Since it is very difficult
to computationally model all the details of actual booster
attachments, we have decided to perform experimental
tests without these attachmesfs in order to provide the
computational specialists with clean data with which to
compare their results. Moremer, it is fairly clear that
in a code validation effort ome should not unnecessarily
complicate the geometry becamse the grid, and the cor-
responding computational time, can become very large.
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Figure 4: Reynolds number influence on the vehicle’s lon-
gitudinal pressure coeflicient distribution.

The solution found was, then, to support each individual
body, i.e., central core and four boosters, with its own
sting. Certainly, the same system can be used to test the
vehicle simulating the condition of strap-on separation,
as previously mentioned.

Finally, it is worth observing that the wind tunnel tests
have also contemplated the problem of Reynolds number
influence in the flow topology, i.e., the effect of separation
and reattachment points in the flowfield. In particular,
experimental results have been able to clearly indicate the
effect of the Reynolds number in the flow separated re-
gion in the boattail. This is shown in Fig. 4 for a Mo, =3
and zero angle of attack case, and considering Reynolds
numbers (based on the model length) of 9.3 x 10° and
29.0 x 10%. This is a very important effect because flow
separation in the boattail can adversely modify the buffet-
ing behavior of the vehicle. Therefore, it is obviously de-
sirable that flow simulation codes be able to capture such
Reynolds number influence. As we will discuss later, the
present viscous flow simulation capability implemented is
still not able to capture such effects, and further work is
certainly necessary in this area.

The Central Difference Algorithm

The compressible Euler equations(® can be written in
strong conservation-law form for general three dimen-
sional, body-conforming, curvilinear coordinates'¥ as
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In the above equations, the usual nomenclature is being
used. Therefore, p . the density, u, v and w are the carte-
sian components of velocity, and e is the total energy per
unit of volume. The"equations have been nondimension-
alized following the work of Pulliam and Steger{1®11],

The pressure, p, can be obtained by the equation of
state for perfect gases

F=J1{

G=J"1¢

p=(’)’—1)pe;:(7—l) [6—%p(u2+v2+w2)] (6)

where ¢; is the specific internal energy of the fluid, and v
is the ratio of specific heats. The contravariant velocity
components are defined as

U = &LG+&Eut&u+iw
V = m+nutngu+nw (7N
W = (+CGutu+Cw

Throughout this work, the curvilinear coordinate sys-
tem is defined such that £ is the longitudinal direction,
n is the mormal direction, and ( is the circumferential
direction. This coordinate system is obtained from the
transformation of variables

T =t

§E = &(z,y,2,1)

n = n(z,y2t) (8)
¢ = ((z,y,2,1)

The Jacobian of the transformation, J, can be expressed
as

I = (zeynzc + Tyycze + 2 yezy

-1
—TgYe 2y = TqYeZg — T¢YnZe) (9)
Expressions for the various metric relations can be found,
among ofher references, in Pulliam and Steger[1%11],
In the present case, the above governing equations were

implemented through the use of finite difference methods.
The implicit Euler method was used for the time-march,

s



and the spatial derivatives were approximated by three-
point, second order central differences. The Beam and
Warming implicit approximate factorization schemel!213]
was uscd for the solution of the resulting finite difference
equations in order to obtain a cost cfficient algorithm.
The resulting scheme is sccond order accurate in space,
as mentioned, but it is only first order accurate in time
due to the use of the implicit Euler method.

The factored finite difference equations can be written

in the delta form as
LyL¢LeAQ" = Re+ Ry + R (10)

The various operators are defined as
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In the above, &, 6, and &; are central difference opera-
tors; Ve, Vy, and VC are backward difference operators,
and A¢, A, and A¢ are forward diflerence operators in
the &- , n- and (-directions, respectively. As an example,
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—n —n
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The A, is a forward difference operator in time given by
+1 —n
Ath = Gﬂ -C (13)

Artificial dissipation terms have been introduced in the
operators described by Eq. 11 in order to maintain the
stability of the numerical solution process. Fourth order
numerical dissipation terms were added to the right-hand
side operators, and second order terms were used in the
left-hand side operators. From an accuracy standpoint,
one would like to also use fourth order artificial dissipa-
tion in the implicit operators. However, computational
efficiency constraints prevent such use. The Jacobian ma-
trices A", B" and C™ are described in detail elsewhere in
the hterature (see, for instance, Pulliam and Stegerl1]).

The Segregated All Speed Scheme

Preliminary Considerations

Most of the available algorithms for the solution of
the Euler, or the Navier-Stokes, equations are only suit-
able for either compressible or incompressible flows. Al-
though there is no universal agreement as to the cause
of this behavior, there are several authors who believe
that the key point is associated with the form in which

density is treated in the mass conservation equation. In
the present work, a numerical method for the solution
of three-dimensional, viscous or inviscid, all speed flows
of a perfect gas is considered. The method is developed
in the framework of a boundary-fitted, structured, finite
volume spatial discretization, and it uscs a fully implicit
time march procedure. The system of equations is solved
in a segregated manner in which one of the dependent
variables is assumed to be the active one in each of the
governing equations. All other variables in that equation
assume a passive role in the linearization process. Primi-
tive variables are used as dependent variables. Moreover,
a colocated variable arrangement is employed which ren-
ders compactness to the method and considerable savings
in the storage of geometric information concerning the
grid system.

The method is derived from the well known approach
used for incompressible ﬂows[“], whereby the mass con-
servation equation is transformed into an equation to find
pressure. In this equation, density and velocily com-
ponents are replaced by relations involving pressure ob-
tained from the equation of state and from approximate
forms of the momentum equations, respectively. This al-
lows both velocity and density to remain active in the
continuity equation!!] and, therefore, enables the method
to treat both compressible and incompressible flow prob-
lems. It should be pointed out that a similar approach
has been presented by Karki and Patankar(!3]. Here,
however, the procedure developed by Maliska and his
co-workers!23) is employed. Moreover, the present ver-
sion of the code has incorporated the ability of consid-
ering mulmple block grids. The difficulty in discretizing
such complex computational domains such as the flow-
field about the VLS vehicle has indicated the need for
such procedure.

Formulation of the Method

)

The segregated all speed finite volume scheme will be
described here as applied to the Navier-Stokes equations.
For its application to the Euler equations, one simply has
to neglect the viscous terms and make obvicas changes on
the wall boundary conditions. In the nomesclature that
is usually used with segregated finite volume schemes, the
Navier-Stokes equation can be written for general, body-
conforming, curvilinear coordinates as

10 0

750 (P9 + 5 (WU + 52 % (Vo) + 2 a (PW9) =
F¢aa§ _a“‘jaq; + alngd) + alsJ%? +

r— 8‘9" :alzJZ? + angg¢ + azsJ Z‘é + (14)
r¢ g( :alsJ‘?? + a23J3¢ + ozgng? — 54+ 5¢

The general form given in Eq. 14, with the appropriate
various source terms, can recover the contimmity equation,
the three momentum equations, and the energy equation.



For that, ¢ must be chosen as 1, u, v, w, and T, respec-
tively. J is the Jacobian of the coordinate transformation,
and U, V and W are the contravariant velocity compo-
nents. The expression for the Jacobian is given in Eq. 9,
and the contravariant velocity components are defined in
the present context as

U = —}(fxu+£yv+€zw)
V = % (nzu + pyv + n.w) (15)
W = ‘ll'((xu’*‘CyU'}'Czw)

Expressions for the various metric terms can be found
in the same references previously given. The a11, o1z,
..metric coeflicients involve the product of the appro-
priate metric terms, and they can be found in Maliska
et al.l'® among other references. The source terms are
defined as

7= 3 (ke + Gone + gzcz)

7= 7 (506 + g+ %)
13"’=-J:(€€z+——z+ Q) (16)
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=& :aéé (vV)e+ a% (v.7) e+ % (v7)¢
go=L 5‘% (v.7)e+ 5‘91-7 (v.7) nz+% (v.9)<.
&T _ 7%;[%+v pﬁ)—p VV)]
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We emphasize that all viscous mmulatlons performed here
were laminar calculations. /

Since we are considering low enough angles of attack,
the flowfield is symmetric about the pitch plane. There-
fore, the computational solution domain spans only 180°
in the circumferential direction around the vehicle, going
from the leeward to the windward plane. Flow symmetry
conditions are, then, imposed at both lee- and windward
planes. At the body surface, no-slip conditions are en-
forced for the viscous cases and flow tangency conditions
are considered for the inviscid cases. Moreover, the wall
is assumed to be adiabatic. Freestream conditions are
prescribed at the computational entrance surface. At the
exit plane, all properties are obtained by extrapolation of
interior information. At the upstream stagnation line, it
turns out that no numerical boundary conditions are ac-
tually required. Freestream conditions are used as initial
conditions for the simulations performed here.

Eq. 14 is discretized using a control volume method
(see, for instance, Patankar(14), The mass conservation

equation is lincarized in such a way that maintains both
density and velocity as unknowns!!?]) therefore allowing
the solution of incompressible as well as compressible
flows. Through the use of the SIMPLEC method*®} for
the pressure-velocity coupling, the continuity equation is
used for the calculation of pressure, the equation of state
is used to obtain the density, and the three momentum
equations plus the energy equation are used in order to
obtain the other quantities (u, v, w and T'). A co-located
variable arrangement is employed in the present work.
Further details of the numerical methodology used here
can be seen in Marchi et al.[%3],

The solution procedure that will be described next as-
sumes a single grid block. The necessary modifications
in this procedure in order to accommodate a multiblock
strategy will be discussed in the next section. Once initial
values for the six state variables are known, the solution
procedure adopted in the present work takes the follow-
ing steps. 1. Estimate of the v, v, w, p, T and p fields
at instant { + At. 2. Computation of the coeflicients for
the three momentum equations. 3. Computation of the
coeflicients for the continuity equatio‘\{l. 4. Computation
of the source terms for u, v and w. 5. Solution of the
momentum equations. This step determines new veloc-
ity components u*, v* and w* which do not necessarily
conserve the mass. 6. Evaluation of the contravariant
velocity components U*, V* and W*. 7. The error, or
the residue, in the continuity equation is computed us-
ing the available contravariant velocity components and
density field. 8. A correction to the pressure field is de-
termined using the coeflicients evaluated in step (3) and
the reSidues determined in step (7). 9. Velocity com-
ponents and densities are corrected by the new pressure
field. The resulting fields conserve mass. 10. Compu-
tation of the coeflicients and source terms for the energy
equation. 11. Calculation of a new temperature field.
12. Computation of the density as function of pressure
and temperature. 13. Return to step (1) and iterate until
the steady state is reached.

The solution process, as presented above, does not in-
volve any iteration cycle within each time interval. How-
ever, due to the type of limearization adopted and due
to the coupling scheme implemented, some steps must be
executed more than once within each time step. In the
present work, the computations associated with steps (3)
through (9) were usually executed twice for each time in-
terval. This inner iteratiom cycle, which has no meaning
for incompressible problems, allows the use of larger time
steps. Finally, we must emphasize that steps (5), (8) and
(11) involve the solution of Enear systems.

Multiblock Technique Implementation

The multiblock implementation used in the present
work was actually developed in two phases. The ini-
tial phase assumed that there would be a perfect match
of the boundary control welumes on two adjacent grid
blocks. Later, this has beem extended to the general case
in which the size of the comfrol volumes in two adjacent
blocks do not have any specific relation between them.



Morcover, it is important to cmphasize that the present
approach assumes no overlap of adjacent grid blocks. In
other words, adjacent grid blocks simply touch each other
at their common interface. We will start our discussion
liere with the simpler case because it iIs instrumental to
understand the procedure adopted for the gencral case.
We should also emphasize that the important point to be
discussed is the transfering of information from one grid
block to its neighbor, since, within each grid block, the
solution process is precisely as previously described.

The present finite volume approach is using “fictitious”,
or “slave”, control volumes in order to implement bound-
ary conditions in each grid block. These are control vol-
umes which are located outside the computational do-
main of interest (for each block) and that serve the solely
purpose of implementing boundary conditions. Hence,
our previous statement that grid blocks do not overlap
should be well understood here. We mean that the “ac-
tual” control volumes do not overlap, but the “fictitious”
volumes of one grid block are overlapping a few “actual”
volumnes of the adjacent grid block. That is, wlzn solving
for a given grid block, the information on its‘fictitious
volumes which correspond to a boundary with®another
grid block should come precisely from this overlapping.
Moreover, this explains the previously made distinction
between the two phases of the work here reported. In the
initial phase, there is a perfect match between the ficti-
tious volumes of one grid block with the actual boundary
volumes of the adjacent one. In the general case, such nice
coincidence does not occur, and one must use some form
of interpolation in order to obtain the fictitious control
volume properties from those of the actual control vol-
umes in the adjacent block that have some overlap with
the fictitious volume considered.

The procedure for information transfering in the case
of a perfect match between adjacent control volumes (ini-
tial phase) is based solely on the direction of the flow at
the interface. If the contravariant velocity component at
the interface is positive, that is, the flow is leaving the
grid block being currently solved at that interface, prop-
erty values at the interface are set equal to their values
at the center of the interior volume. Therefore, in this
case, the solution in the current grid block is indepen-
dent of the solution at the adjacent grid block. However,
since the numerical method being used needs equations
for the calculation of the fictitious volume, we simply set
the properties of the fictitious volume equal to those of
the interior volume. The opposite situation occurs when
the contravariant velocity component at the interface is
negative. In this case, everything works as if the interface
was an entrance boundary in which all flow variables are
prescribed. The difference between this boundary and,
for example, a freestream boundary is that the properties
do not receive constant values, but their values are deter-
mined from the corresponding current values of the prop-
erties in the control volume of the adjacent grid block.
Hence, u, v, w, T, p and p of the fictitious volume corre-
sponding to the grid block being solved are set equal to
their respective values in the control volume of the ad-

Jacent block. Moreover, propertics at the interface itsclf
are also calculated using the values of the control volume
at the adjacent block and, of course, the metric terms of
the interface.

When the control volumes on both sides of the interface
do not have the same dimensions, the additional difliculty
that appears is associated with determining which-rcal
control volumes of the adjacent block surround the' cen-
troid of the fictitious volume of the grid block currently
being solved. Once this has been done, the procedure is
similar to what we have described for the case with coin-
cident volumes. The difference, now, is that properties at
the centroid of the fictitious volume must be determined
by an appropriate interpolation of the values associated
with the centroids of the control volumes of the adjacent
block which have some overlap with the fictitious volume
considered. If the contravariant velocity component at
the interface is positive, interface properties are set equal
to their corresponding values at the interior volume. If
the contravariant velocity component at the interface is
negative, one must first perform the interpolation previ-
ously discussed, and then determine the interface values
following a similar procedure as discussed for the case of
coincident volumes.

It is important to observe that, in the three-
dimensional case and considering the general case dis-
cussed above, typically there are eight control volumes
involved in this interpolation process. Hence, the com-
putational time involved in finding the control volumes
which surround the centroid of the fictitious volume and
performing the trilinear interpolation described can be
signiﬁéant. Therefore, an approximate procedure for the
transfering of information was also implemented in which
the property values at the centroid of the fictitious vol-
ume are taken to be equal to their corresponding values
at the actual volume of the adjacent block whose centroid
is the closest to the centroid of the fictitious volume. This
is clearly introducing an approximation which, however,
becomes less serious as the mesh is refined. Tests per-
formed comparing the correct treatment of the interface
and the approximate one here described have indicated
that, in most cases, the results are extremely similar. Ob-
viously, the approximate treatment has a lower computa-
tional cost.

The algorithm for the numerical solution of the prob-
lem with the multiblock implementation is actually quite
similar to the one that has been previously described.
The difference is that the advance of the iteration scheme
in time is done by performing a few number of itera-
tions .in each block, transfering this block information to
its neighbors, and then moving on the next block un-
til the complete computational domain is advanced the
same number of iterations. Then, we return to the first
block and repeat the whole procedure until a convergence
criterion is satisfied for all blocks. We have found that
something of the order of 3 to 5 iterations in each block,
before transfering the information to the adjacent blocks,
seems to be a good compromise. It is worth mentioning
that this multiblock approach is extremely useful not only
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Figure 5: Inviscid finite difference calculations for sub-
sonic and supersonic freestream conditions at zero angle
of attack.

for the case of very complex configurations, but also for
the case in which the available computational resources
do not have enough central memory to accommodate the
complete grid (or all the grid blocks) in core. Hence,
one can have only the grid block being worked on in cen-
tral memory. Therefore, from a computational efficiency
point of view, it can be extremely interesting to perform
several iterations on one grid block before having to write
this block’s information on disk and reading in the next
next block’s information. Of course, this can only be done
if this procedure does not seriously deteriorate the overall
convergence rate of the algorithm. Finally, the authors
refer the interested reader to the work of Marchi et al.[7]
for further details of the present implementation of the
multiblock technique.

Some Validation Results

The calculations performed for the VLS vehicle so far
have only considered the central body. Therefore, none
of the computational results to be presented here will
include the effect of the boosters. When comparing these
computations with the experimental data, we have taken
precautions to avoid comparisons in regions in which the
properties at the central body are affect by the presence
of the boosters. Hence, all the computations are mostly
concerned with the forebody portion of the vehicle.

Fig. 5 presents pressure coeflicient distributions for the
VLS obtained with the centered finite difference algo-
rithm previously discussed. These results are presented
here mainly for comparison purposes, since our major in-
terest in this work is to discuss results concerning the
validation of the segregated finite volume algorithm with
the multiblock implementation, using our own experi-
mental data. As indicated in Fig. 5, the freestream con-
ditions considered in these computations were Mq, = 0.5
and 3.0. The two cases assumed a zero angle of attack.
The computational meshes used in these calculations were
generated algebraically for one axisymmetric longitudinal
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Figure 6: Leeside pressure coeflicient distributions for
My, = 0.5 and a = 6°.
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Figure 7: Leeside pressure coeflicient distributions for
My = 0.9 and o = 6°.

plane, and then rotated 360° around the body. Therefore,
the finite difference calculations are using periodic bound-
ary conditions in the circumferential direction. This is in
contrast with the finite volume calculations, to be pre-
sented next, which use symmetry boundary conditions in
the circumferential direction. The computational meshes
used for these simulations had 63 x 34 x 26 points in the
longitudinal, normal and circumferential directions, re-
spectively. It is clear from Fig. 5 that both subsonic and
supersonic cases are presenting good agreement with the
experimental data. In the subsonic case, we also observe
an over-expansion of the flow in the forward cone-cylinder
intersection. Our own experience with axisymmetric cal-
culations has indicated that this has a tendency of occur-
ing with Euler simulations with the present method, but
that the over-expansion typically disappears when viscous
terms are included in the formulation.

Pressure distribution comparisons for the segregated fi-
nite volume algorithm were performed in the Mach num-
ber range 0.5 < My < 3.0, and considering angles of
attack of 0°, 2° and 6°. Some representative results of
the calculations performed with this code are presented
in Figs. 6, 7and 8. The leeside pressures are being shown
in these figures. Similar comparison is obtained for other
azimuthal planes. The computational meshes used for
these calculations had 48 x 70 x 12 control volumes in
the longitudinal, normal and circumferential directions,
respectively. We emphasize that the computational do-
main in the longitudinal direction extends further down-
stream in the finite difference calculations which justifies
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Figure 8: Leeside pressure coeflicient distributions for
Mo = 3.0 and o = 6°.

the difference in the number of longitudinal grid points
as compared with the calculations presented in Figs. 6-
8. On the other hand, the computations presented in
these figures show results for viscous simulations which
accounts for the marked increase in the number of grid
points in the wall normal direction. One can obsgrve
that there is good agreement between computational and
experimental results for both subsonic (M = 0. 5) and
supersonic (Mq = 3.0) flow cases. Moreover, it is evi-
dent from Figs. 6 and 8 that the relevant flow features
are correctly captured by the simulation.

The agreement in the transonic case is much poorer.
Of special concern is the fact that around z/L = 0.15,
which is the location of the forebody cylinder-boattail in-
tersection, both viscous and inviscid simulations predict
a local expansion of the flow whereas the experimental
results show no indication of such behavior. Video tapes
of the wind tunnel tests indicate that for My, = 0.9 there
is a rather strong shock wave impinging upon the vehi-
cle’s forebody cylindrical section. This is clearly indi-
cated by the experimental pressure coefficient distribu-
tion shown in Fig. 7. Therefore, our current explanation
for the difference in pressure distribution behavior around
z/L = 0.15 is that the present implementation of the code
is unable to capture the flow separation that occurs at the
impingement point of this transonic shock. The reason for
such behavior is still being investigated. In a parallel de-
velopment, the implementation of an eddy viscosity type
turbulence model in the present code is currently under
_way. It is expected that this will be able to improve the
correlation of the computational viscous results with the
experimental data.

Another important conclusion that one can draw from
the results presented in Figs. 6-8 is that the addition
of the viscous terms does not seem to significantly im-
prove the correlation of the present computational results
with the experimental data. A possible explanation for
such behavior is that these simulations are performed for
Reynolds numbers of the order 107. Therefore, it is clear
that the boundary layer should become turbulent in the
very nose region of the body. Since we are performing
laminar simulations, this could be a reason for the be-
havior observed. Morcover, as previously discussed, it is
expected that the implementation of a turbulence model
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Figure 9: Comparison of leeside pressure coefficient dis-
tributions for Mo = 3.0 and o« = 6° with multiblock
implementation.

should improve the present simulation capability.

Inviscid results using the multiblock technique previ-
ously described are presented in Fig. 9 for a 3.0 freestream
Mach number case with 6° angle of attack. Two different
computational meshes were used for these simulations,
besides the single block grid. Both of these meshes had
two blocks, where the first block is always close to the
body surface and the the other one is the outer block.
Mesh 1 had 60 x 10 x 18 volumes in the first block and
60 x 14 x 18 volumes in the second block. Mesh 2 had
60x 14 x 18 in the first block and 60x 10 x 18 in the second
block. The single block grid is simply formed by the addi-
tion of these two grid blocks in a single mesh. The leeside
pressure distributions shown in Fig. 9 indicate that the
multiblock calculations do agree well with the single block
solution. The differences observed in mesh 1 in the fore-
body cone region can be attributed to the fact that, in
this case, a block interface was located in a region of very
high gradients. As would be expected, this seems to be
causing a degradation in the accuracy of the information
transfering from one block to the other.

Concluding Remarks

The details of an experimental wind tunnel investiga-
tion for pressure distribution and force measurements for
the Brazilian VLS are described. The development of
an all speed Euler and/or Navier-Stokes flow simulation
code which uses a segregated finite volume algorithm for
3-D body conforming curvilinear coordinates with a colo-
cated variable arrangement is also described. The efforts
towards the physical validation of this code are the major
contribution of the present work. The results obtained for
subsonic and supersonic flow conditions are in very good
agreement with the experimental data. Transonic cal-
culations, however, show a much poorer agreement with
the available data for equivalent and even more refined
meshes. Recent calculations by Marchi et al.[*) and by
Azevedo et al.l?%) for transonic nozzle applications seem
to indicate that the flow solution methodology used in
the present code does need a severe refinement in the
longitudinal direction in order to truly capture the rapid
flow gradients present in transonic flow conditions, at
least as compared to conventional central difference type



algorithms[”]. The validation results obtained so far also
indicate that further work must be done with regard to
the captlure of Reynolds number effects in viscous com-
putations. Nevertheless, at the present stage of devel-
opment, the code already gives very useful information
which can be used for preliminary design studies, and
which is actually being presently used in the VLS design
process. Moreover, cflorts are also under way in order to
use the present multiblock implementation to provide the
first threc-dimensional comnputational results of the VLS
vehicle together with its 1st stage boosters.
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